
Implementation of procedures for optimal
control of timed event graphs with resource

sharing 1

Davide Zorzenon ∗ Germano Schafaschek ∗ Dominik Tirpák ∗

Soraia Moradi ∗ Laurent Hardouin ∗∗ Jörg Raisch ∗,∗∗∗

∗ Control Systems Group, Technische Universität Berlin, Germany
(e-mail: [zorzenon,schafaschek,moradi,raisch]@control.tu-berlin.de,

dominik.tirpak@campus.tu-berlin.de)
∗∗ Laboratoire Angevin de Recherche en Ingénierie des Systèmes,

Polytech Angers, Université d’Angers, France (e-mail:
laurent.hardouin@univ-angers.fr)

∗∗∗ Science of Intelligence, Research Cluster of Excellence, Berlin,
Germany

Abstract: It is a well-known fact that the dynamics of timed event graphs (TEGs), a
subclass of timed Petri nets able to model delay and synchronization phenomena, admits linear
representation in dioids of formal power series. In order to model and control systems presenting
resource sharing phenomena, it is useful to extend the usual set of operations between series
by including the Hadamard product, its residual, and its dual residual. Until now however, the
characterization of the largest set of series for which the dual residual of the Hadamard product
is defined was still incomplete. Rather than being a mere theoretical dilemma, this open problem
delayed the development of reliable algorithms for optimal control. In this paper, we provide
the solution to the problem, and discuss the implementation of procedures for computing the
Hadamard product and affine operations. Such procedures have been recently implemented on
top of the C++ library ETVO. Tests are conducted to evaluate their performance in solving
optimal-control problems on TEGs with resource sharing and output-reference update.

Keywords: Petri nets, timed event graphs, resource sharing, optimal control

1. INTRODUCTION

Resource-sharing phenomena occur in a variety of appli-
cations. For example, in manufacturing, the same machine
may serve parallel production lines but can only operate
on a limited number of items at a time. Resource sharing
can be modeled by general (timed) Petri nets but not
by timed event graphs (TEGs). Nonetheless, TEGs are
appealing because, as opposed to general Petri nets, their
dynamics can be represented by linear equations in dioids,
which has made it possible to develop an elegant theory
for their analysis and control (see Baccelli et al. [1992],
Hardouin et al. [2018]). The simplicity of TEG models in
dioids has motivated several approaches to the extension
of this theory towards encompassing TEGs with resource
sharing, i.e., systems where each user competing for the
resources is modeled by a TEG (e.g. Correia et al. [2009],
Addad et al. [2010], Moradi et al. [2017]).
In Schafaschek et al. [2020], some of the authors of the
present paper studied the optimal control of TEGs with
resource sharing and output-reference update, namely, sys-
tems consisting of a number of TEGs that share resources
1 Support from Deutsche Forschungsgemeinschaft (DFG) via grant
RA 516/14-1 and under Germany’s Excellence Strategy – EXC
2002/1 “Science of Intelligence” – project number 390523135 is
gratefully acknowledged.

and whose output-reference signals can change over time.
Optimal control here is to be understood in terms of the
just-in-time criterion, which aims at generating the input
events as late as possible while guaranteeing that the
output ones are never later than specified by the reference.
Their approach is based on some operations on formal
power series, including the Hadamard product, its residual,
and its dual residual.
In this paper, we focus on the implementation of such
operations. After recalling some preliminaries in Section 2,
in Section 3 we give a characterization of the largest
set for which the dual residual of the Hadamard prod-
uct is defined. This result, which improves Proposition 3
of Hardouin et al. [2008], is of both theoretical and prac-
tical relevance; indeed, it allows to clarify the range of
applicability of the operation and to simplify the imple-
mentation of reliable optimal-control procedures. In the
same section, we present the algorithms for computing
the Hadamard product and its residuals on monomials,
polynomials, and periodic formal power series. Such algo-
rithms have been implemented in C++, extending the set
of routines provided by the library ETVO ((Event|Time)-
Variant Operators), which is capable of representing and
manipulating several classes of formal power series in
dioids (Cottenceau et al. [2020]). The usefulness of the
operations for solving optimal-control problems in discrete

event systems is discussed in Section 4. Finally, the per-
formance of our implementation of the Hadamard product
and affine operations is evaluated in Section 5, where we
report the computational time for solving optimal-control
problems with different number of TEGs and resources,
with and without output-reference update.

2. PRELIMINARIES

In this section, we recall some preliminary concepts from
dioid and residuation theory. We refer to Baccelli et al.
[1992], Hardouin et al. [2018] for an in-depth presentation.

2.1 Dioid theory

A dioid (or idempotent semiring) (D,⊕,⊗) is a set D
equipped with two binary operations, ⊕ and ⊗, called
respectively addition and multiplication, having the fol-
lowing properties. Addition is commutative, associative,
idempotent (i.e., a⊕a = a ∀a ∈ D), and admits neutral (or
zero) element ε; multiplication is associative, distributes
over addition, admits neutral (or unit) element e, and ε is
absorbing for multiplication (i.e., a⊗ε = ε⊗a = ε ∀a ∈ D).
As it is common in standard algebra, the multiplication
symbol “⊗” will be often omitted. Operation ⊕ induces
an order relation �, defined by a � b ⇔ a⊕ b = b.
A dioid is complete if it is closed for infinite sums
and if multiplication distributes over infinite sums, i.e.,
a ⊗

(⊕
x∈X x

)
=
(⊕

x∈X a⊗ x
)
, and

(⊕
x∈X x

)
⊗ a =(⊕

x∈X x⊗ a
)

for all a ∈ D, X ⊆ D. Let (D,⊕,⊗) be a
complete dioid. Its top element is defined by > =

⊕
x∈D x.

The greatest lower bound ∧ is defined, for all a, b ∈ D, by
a ∧ b =

⊕
Dab

x, where Dab = {x ∈ D | x � a, x � b}.
Operation ∧ is commutative, associative, idempotent, and
admits > as neutral element. Moreover, in a complete dioid
(D,⊕,⊗), the Kleene star operator ∗ applied to a ∈ D
yields a∗ =

⊕
k∈Z,k≥0 a

k, where a0 = e, and ak+1 = a⊗ak

for all k ≥ 0.
Remark 1. The implicit equation x = ax ⊕ b over a
complete dioid D admits x = a∗b as least solution (see
Baccelli et al. [1992]). 3

As in standard algebra, operations ⊕ and ⊗ can be
extended to matrices as follows: for all A,B ∈ Dm×n and
C ∈ Dn×p, A⊕ B ∈ Dm×n, and A⊗ C ∈ Dm×p are such
that

(A⊕B)ij = Aij ⊕Bij , (A⊗ C)ij =

n⊕
k=1

Aik ⊗ Ckj .

If (D,⊕,⊗) is a complete dioid, then (Dn×n,⊕,⊗), where
⊕ and ⊗ are extended as above, is also a complete dioid. Its
zero (resp. top) element is the n×n-matrix with all entries
equal to ε (resp. >), and its unit element is the n×n-matrix
with e’s on the main diagonal and ε’s elsewhere.
Example 2. An example of complete dioid is the set Z =
Z ∪ {−∞,+∞}, with the minimum operation as ⊕ and
standard addition as ⊗. With this notation, the complete
dioid Zmin := (Z,⊕,⊗) is called the min-plus algebra. In
Zmin, ε = +∞, e = 0, > = −∞, ∧ corresponds to the
maximum operation, and � corresponds to the standard
≥; this means that the order � is reversed with respect
to the conventional one (e.g., 5 � 2). The dual dioid of

Zmin, denoted Zmax, corresponds to the set Z with the
maximum operation as ⊕ and standard addition as ⊗;
observe that the order in Zmax coincides with the standard
one. Due to the absorbing property of ε, the result of
−∞⊗+∞ = +∞⊗−∞ is different in Zmin and Zmax.

A mapping Π : D → C, where (D,⊕,⊗) and (C,⊕,⊗) are
two dioids, is isotone or non-decreasing (resp. antitone or
non-increasing) if ∀a, b ∈ D, a � b ⇒ Π(a) � Π(b) (resp.
Π(a) � Π(b)).
Example 3. Another example of complete dioid is the
algebra of counters. Let s : Zmax → Zmin, t 7→ s(t),
be an antitone mapping such that 2 s(−∞) = −∞ and
s(+∞) = +∞. (Note that, due to the reverted order of
Zmin, such mappings are non-decreasing in the standard
sense.) This kind of mappings can be used to represent
the cumulative number of firings s(t) of a transitions in
a TEG up to and including time t. The δ-transform of s,
called counter, is the non-increasing formal power series in
δ with coefficients s(t) in Zmin and exponents t in Zmax,
defined by

s =
⊕
t∈Z

s(t)δt.

As no ambiguity will occur, we indicate both the mapping
and its δ-transform by the same symbol. The set of
counters, denoted Σ, equipped with operations ⊕ and ⊗
defined by

(s⊕ s′)(t) = s(t)⊕ s′(t) ∀t ∈ Z,
(s⊗ s′)(t) =

⊕
τ∈Z

s(τ)⊗ s′(t− τ) ∀t ∈ Z,

is a complete dioid.
Since counters are non-increasing and such that s(−∞) =
−∞, s(+∞) = +∞, we can represent them compactly
by omitting terms −∞δ−∞, +∞δ+∞, and all terms s(t)δt
such that s(t) = s(t+ 1). For instance,

−∞δ−∞ ⊕
⊕

−∞<t≤1

−2δt ⊕
⊕

2≤t≤5

3δt ⊕
⊕
t≥6

+∞δt

will be simply denoted −2δ1 ⊕ 3δ5. With this simplified
notation, the zero, unit, and top element of (Σ,⊕,⊗) can
be written, respectively, as sε = +∞δ−∞, se = eδ0, and
s⊤ = −∞δ+∞. Note that, given two counters s, s′ ∈ Σ,
s � s′ ⇔ s(t) � s′(t) for all t ∈ Z, and their greatest lower
bound is given by

(s ∧ s′)(t) = s(t) ∧ s′(t) ∀t ∈ Z.

For algorithmic reasons, it is convenient to distinguish
three increasingly larger classes of counters: monomials,
of the form nδt, polynomials, of the form

⊕m
i=1 niδ

ti

with m > 0, and ultimately periodic series. Series of
the third kind are all those that can be written as s =
p ⊕ qr∗, where p =

⊕m
i=1 niδ

ti is the transient part of
s, q =

⊕l
i=1 Niδ

Ti is the periodic pattern of s, whose
periodicity is described by the monomial r = νδτ . When s
represents the cumulative firings of a transition in a TEG,
the sequence of firings specified by q repeats every τ time
units and after ν firings of the corresponding transition.
The ratio ν/τ is called throughput, and represents the
average number of firings of the transition per unit time
2 The importance of the end-point conditions on s is explained
in [Baccelli et al., 1992, Chapter 5].

t

s(t)

1 3 6 8 11

τ

ν

Figure 1. Series (0δ1 ⊕ 1δ3)(2δ5)∗.

during the periodic regime. Due to the periodic behavior
of ultimately periodic series, their representation in the
form p ⊕ qr∗ is not unique; however, every ultimately
periodic series admits a unique canonical form, in which
m (i.e., the number of monomials in the transient part
p) is minimal. For example, the canonical form of series
0δ1 ⊕ 1δ3 ⊕ (2δ6 ⊕ 3δ8)(2δ5)∗, graphically represented in
Figure 1, is (0δ1 ⊕ 1δ3)(2δ5)∗.

2.2 Residuation theory

To solve control problems, it is often necessary to compute
the inverse of a certain mapping. When the mapping is not
invertible, sometimes it is possible to find the best under-
and over-approximation of its inverse, called respectively
its residual and dual residual.
Let (D,⊕,⊗) and (C,⊕,⊗) be two complete dioids, and
Π : D → C an isotone mapping. The mapping Π is
residuated (resp. dually residuated) if, for all y ∈ C, set
{x ∈ D | f(x) � y} admits maximum (resp. {x ∈
D | f(x) � y} admits minimum). In this case, the mapping
f ♯ : C → D, y 7→

⊕
{x ∈ D | f(x) � y} (resp. f ♭ : C → D,

y 7→
∧
{x ∈ D | f(x) � y}) is called the residual (resp.

dual residual) of f .
We recall the following result, which will be used later to
prove that a certain mapping is dually residuated.
Proposition 4. Let (D,⊕,⊗) and (C,⊕,⊗) be two com-
plete dioids. An isotone mapping f : D → C is dually
residuated if and only if f(>D) = >C and f(

∧
x∈X x) =∧

x∈X f(x) for all X ⊆ D.
Example 5. Given a complete dioid (D,⊕,⊗) and an el-
ement a ∈ D, the mapping La : D → D, x 7→ a ⊗ x
is residuated. Its residual, called left division by a, is
denoted by L♯

a(y) = a◦\y. Therefore, a◦\y corresponds to
the greatest solution x of the inequality a⊗ x � y.

3. THE HADAMARD PRODUCT OF FORMAL
POWER SERIES

3.1 Definition and residuals

In this subsection, we define the Hadamard product and its
residuals; these operations are useful for solving optimal-
control problems for some interesting classes of discrete
event systems, as will be discussed in the next section.
The Hadamard product of two counters s1, s2 ∈ Σ,
denoted by s1 � s2, is defined by

(s1 � s2)(t) = s1(t)⊗ s2(t) ∀t ∈ Z.
In standard algebra, it corresponds to the element-wise
addition of the coefficients of the corresponding series.

t

s(t)

♯ ♯ ♯ ♯

♯ ♯ ♯

♯ ♯ ♯ ♯ ♯

♭ ♭ ♭ ♭

♭ ♭ ♭

♭ ♭ ♭ ♭ ♭

Figure 2. Series x̄, y�♯a, and y�♭a, indicated, respectively,
by ’s, ♯’s, and ♭’s, when y = 1δ1 ⊕ 3δ4 ⊕ 5δ+∞ and
a = 0δ0⊕1δ2⊕2δ6⊕3δ∞. Note that x̄ is not a counter.

Remark 6. Note that, given two counters x, a ∈ Σ, the
series Πa(x) = a�x is always a counter. On the other hand,
given y ∈ Σ, the same is not always true for the series x̄
defined by x̄(t) = y(t)− a(t) ∀t ∈ Z. The greatest counter
less than or equal to x̄ (in the sense of the order in Σ) is
given by the residual of Πa, Π♯

a(y) = y �♯ a, and the least
counter greater than or equal to x̄, when defined, is given
by the dual residual of Πa, Π♭

a(y) = y�♭ a. The difference
between series x̄, y �♯ a, and y �♭ a is shown through an
example in Figure 2. Let us now formally characterize the
operations �♯ and �♭.

The following results, proved in Hardouin et al. [2008],
shows that the Hadamard product is residuated.
Proposition 7. The mapping Πa : Σ → Σ, x 7→ a � x
is residuated for any a ∈ Σ. Its residual is denoted by
Π♯

a(y) = y �♯ a, and corresponds to the greatest counter
x ∈ Σ that satisfies a� x � y.

In general, however, the mapping Πa is not dually resid-
uated. Indeed, if for a certain t ∈ Z a(t) = +∞ and
y(t) 6= +∞, the least solution x of a�x � y is not defined,
as inequality a(t) ⊗ x(t) � y(t) (in standard algebra,
+∞ + x(t) ≤ y(t)) does not admit solutions. Another
situation in which Πa is not dually residuated is when
there exists t ∈ Z such that a(t) = −∞ and y(t) 6= +∞; in
this case, inequality a(t)⊗x(t) � y(t) (in standard algebra,
−∞ + x(t) ≤ y(t)) admits infinitely many solutions, but
the infimum of the solution set, +∞, does not belong to
it. In the following, we will prove that these two are the
only cases in which the dual residual of Πa is not defined;
but for doing so we first need the following lemma.
Lemma 8. The set Σ of counters endowed with operation
⊕ as addition and � as multiplication, (Σ,⊕,�), forms a
complete dioid.

Proof. It is easy to verify that the following properties
hold: � is associative and distributes over operation ⊕, its
neutral element is e⊙ = eδ+∞, and the zero element sε =
+∞δ−∞ is absorbing for it. This proves that (Σ,⊕,�) is a
dioid. We already know that Σ is closed under infinite ⊕;
thus, to prove that the dioid is complete we only need to
show that � distributes over infinite ⊕. Observe that, since
⊕ operates component-wise in Σ, and ⊗ distributes over
infinite ⊕ in Zmin, we have that, ∀t ∈ Z, s ∈ Σ,X ⊆ Σ,(

s�
⊕
x∈X

x

)
(t) = s(t)⊗

(⊕
x∈X

x

)
(t) = s(t)⊗

(⊕
x∈X

x(t)

)
=
⊕
x∈X

(s(t)⊗ x(t)) =
⊕
x∈X

(s� x)(t),

which is the last property we had to show. �

We recall from Hardouin et al. [2008] that � is also
commutative and distributes over finite ∧; now we can
prove the main result of the paper.
Proposition 9. For a ∈ Σ, let Da = {x ∈ Σ | x =
sε if ∃t ∈ Z with a(t) = −∞}, and Ca = {y ∈ Σ | y(t) =
+∞ ∀t ∈ Z such that a(t) ∈ {−∞,+∞}}. The mapping
Πa : Da → Ca, x 7→ a � x is dually residuated for any
a ∈ Σ. Its dual residual is denoted by Π♭

a(y) = y �♭ a,
and corresponds to the least counter x ∈ Σ that satisfies
a� x � y.

Proof. To prove the theorem using Proposition 4, we first
need to show that (Da,⊕,�) and (Ca,⊕,�) are complete
dioids; to do so, we consider different cases. If there is
no t ∈ Z with a(t) = ±∞, then Da = Ca = Σ, which
forms a complete dioid when endowed with ⊕ and � (cf.
Lemma 8). If a value t ∈ Z with a(t) = −∞ exists, then
a = s⊤ and Da = Ca = {sε}; but ({sε},⊕,�) is a (trivial)
complete dioid, with ε = e = > = sε. If there is no t ∈ Z
with a(t) = −∞, but there exists one with a(t) = +∞,
then Da = Σ, and, due to the non-increasingness of
counters, Ca = {y ∈ Σ | y(t) = +∞ ∀t ≥ ta}, where
ta is the least (in the standard sense) integer t such that
a(t) = +∞. Then, (Ca,⊕,�) is also a complete dioid, with
εCa = sε, eCa = 0δta−1 and >Ca = −∞δta−1.
Now that we have established that domain and codomain
of Πa are complete dioids, it needs to be shown that
Πa(>Da

) = >Ca : if a does not contain ±∞, >Da
= >Ca =

s⊤, and Πa(s⊤) = s⊤; if a(t) = −∞ for some t ∈ Z,
>Da

= >Ca = sε and Πa(sε) = sε; if a(t) = +∞ for all
t ≥ ta, and for all t ∈ Z a(t) 6= −∞, then >Da

= s⊤,
>Ca = −∞δta−1, and Πa(s⊤) = a� s⊤ = >Ca .

The final property to show is Πa

(∧
x∈X x

)
=
∧

x∈X Πa(x)
for all X ⊆ Da. Note that Πa is known to distribute over
finite ∧; in particular, if a(t) = −∞ for some t ∈ Z, then
X is either ∅ or {sε} and the property holds. Thus, we
only need to consider the case in which X is infinite (and
hence nonempty) and a(t) 6= −∞ for all t ∈ Z. For t ∈ Z
such that a(t) /∈ {−∞,+∞},(

a�
∧
x∈X

x

)
(t) = a(t)⊗

(∧
x∈X

x

)
(t) = a(t)⊗

∧
x∈X

x(t)

=
∧
x∈X

(a(t)⊗ x(t)) =
∧
x∈X

(a� x)(t),

since ∧ operates component-wise, and ⊗ distributes over
infinite ∧ in Zmin; finally, for t ∈ Z such that a(t) = +∞,(

a�
∧
x∈X

x

)
(t) = +∞⊗

∧
x∈X

x(t) = +∞,

which equals∧
x∈X

(a�x)(t) =
∧
x∈X

(a(t)⊗x(t)) =
∧
x∈X

(+∞⊗x(t)) = +∞.

�

Note that, for y �♭ a to be defined for any y ∈ Σ, it
suffices that a(t) 6= ±∞ for all t ∈ Z. This condition is not
restrictive for application purposes, as a(t) will typically
denote the (finite) accumulated number of firings of a
transition up to and including time t. Hence, the previous
propositions guarantee the existence of the residual and
dual residual of the Hadamard product for any case of

practical interest. In the next subsection, we see how to
compute the results of these operations.

3.2 Implementation on non-increasing formal power series

In order to implement operations on non-increasing for-
mal power series, it is convenient to consider separately
monomials, polynomials, and more general periodic series.
The rules for computing these operations are reported in
Table 1, whose interpretation is explained in the following.
Due to space constraints, the proof of their correctness is
provided in the separate technical report Zorzenon et al.
[2022a]. The formulas show the rules to compute �, �♯,
and �♭ between monomials r, r′, polynomials p, p′, and
periodic series s, s′ defined in the caption of Table 1. Col-
umn “Convention +∞−∞” explains how to interpret the
standard additions and subtractions contained in column
“Monomials”, when n or n′ are +∞ and −∞.
The computation of the Hadamard product, its residual,
and its dual residual on monomials and polynomials is
straightforward and, for polynomials, the result can be
obtained in time complexity O(mm′); less trivial is the
situation when considering general periodic series. An
important observation is that applying the Hadamard
product and its residuals on two periodic series s and s′

yields another periodic series s′′, with throughput ν′′/τ ′′

and periodic behavior starting at the latest at time t′′p
(the values of ν′′, τ ′′, and t′′p being reported in the table).
Consequently, to compute the result of operation ◦ ∈
{�,�♯,�♭} between s and s′, we can adopt the following
procedure: obtain the polynomials, say p̃ and p̃′, composed
by the first terms of series s and s′ up to and including
time t′′p + τ ′′ − 1; compute p̃′′ = p̃ ◦ p̃′; define polynomials
p′′ and q′′ such that elements of p̃′′ with a δ-exponent less
than t′′p belong to p′′, and those with a δ-exponent between
t′′p and t′′p + τ ′′ − 1 belong to q′′; the result of s ◦ s′ is then
s′′ = p′′ ⊕ q′′(ν′′δτ

′′
)∗. Note that values of t′′p reported in

the table are only upper bounds of the starting time of
the periodic pattern of s′′; a formula for the exact starting
time is indeed not necessary for computing s′′. The only
inconvenience is that series p′′⊕q′′(νδτ

′′
)∗ obtained in this

way may be not in canonical form, resulting in a transient
part longer than necessary; nevertheless, rewriting a given
series in canonical form is not computationally expensive.
The procedure described above, of time complexity O(m̃m̃′)

where p̃ =
⊕m̃

i=1 ñiδ
t̃i and p̃′ =

⊕m̃′

j=1 ñ
′
jδ

t̃′j , can be applied
successfully for each operation. A simple formula for tp is
unknown to the authors for the residual of the Hadamard
product, but an upper bound for the beginning of the
periodic pattern of s′′ = s �♯ s′ can be computed on the
basis of the analysis of series s̄, defined by s̄(t) = s(t)−s′(t)
for all t ∈ Z; we recall that series s′′ is then the greatest
counter less than or equal to s̄ (see Remark 6). It turns out
that we can take t′′p as t′′p = t̄p+κτ ′′, with t̄p = max(T1, T

′
1),

κ = 1 +max

0,


(

t̄p−1
max
i=t̄1

s̄(i)

)
−
(

t̄p+τ ′′−1
max
j=t̄p

s̄(j)

)
ν′′


 ,

and t̄1 = min(t1, t
′
1).

Table 1. Rules for computing �, �♯, and �♭ between monomials r = νδτ and r′ = ν′δτ
′ ,

polynomials p =
⊕m

i=1 niδ
ti and p′ =

⊕m′

j=1 n
′
jδ

t′j , and periodic series s = p ⊕ qr∗ and
s′ = p′ ⊕ q′r′∗, where q =

⊕l
i=1 Niδ

Ti and q′ =
⊕l′

j=1 N
′
jδ

T ′
j .

Convention
+∞−∞ Monomials Polynomials Periodic series

τ ′′ ν′′ t′′p

⊙ +∞ (ν + ν′)δmin(τ,τ ′)

m⊕
i=1

m′⊕
j=1

(niδ
ti ⊙ n′

jδ
t′j) lcm(τ, τ ′) τ ′′

(
ν
τ
+ ν′

τ ′

)
max(T1, T ′

1)

⊙♯ −∞
{
(ν − ν′)δτ if τ < τ ′,

(ν − ν′)δ+∞ otherwise

m′∧
j=1

m⊕
i=1

(niδ
ti ⊙♯ n′

jδ
t′j) lcm(τ, τ ′) τ ′′

(
ν
τ
− ν′

τ ′

)
see text

⊙♭ +∞
{
(ν − ν′)δτ if τ ≤ τ ′,

undefined otherwise


m⊕
i=1

m′∧
j=1

(niδ
ti ⊙♭ n′

jδ
t′j) if tm ≤ t′m,

undefined otherwise
ignoring undefined results on monomials

lcm(τ, τ ′) τ ′′
(
ν
τ
− ν′

τ ′

)
max(T1, T ′

1)

4. APPLICATIONS IN DISCRETE EVENT SYSTEMS

In this section, we recall recent results on the control of
a class of discrete event systems where the Hadamard
product and its residuals play a prominent role. Sections
4.2 and 4.3 are mainly based on Moradi et al. [2017] and
Schafaschek et al. [2020], respectively, to which the reader
may refer for details. We start with a brief overview of the
basic modeling formalism and related control theory.

4.1 Timed event graphs – modeling and control

Timed event graphs (TEGs) are timed Petri nets in which
each place has exactly one upstream and one downstream
transition and all arcs have weight 1. With each place p
is associated a holding time, representing the minimum
amount of time every token needs to spend in p before it
can contribute to the firing of its downstream transition.
In a TEG, we can distinguish input transitions (those
that are not affected by the firing of other transitions),
output transitions (those that do not affect the firing of
other transitions), and internal transitions (those that are
neither input nor output transitions). In this paper, we
shall limit our discussion to SISO TEGs, i.e., TEGs with
only one input and one output transition, which we denote
respectively by u and y; internal transitions are denoted
by xi. An example of a SISO TEG is shown in Fig. 3.
We henceforth assume that TEGs operate under the
earliest firing rule, which states that every internal and
output transition fires as soon as it is enabled.
With each transition xi, we associate a non-increasing
mapping xi : Zmax → Zmin, for simplicity denoted by the
same symbol, where, for every t ∈ Z, xi(t) represents the
accumulated number of firings of xi up to and including
time t. Similarly, we associate mappings u and y with
input and output transitions, respectively. By inspection
of Fig. 3, one can see that, at any time t, x1(t) cannot

u x1 4 x2

3

y

Figure 3. Simple example of a SISO TEG.

exceed (in the standard sense) the minimum between u(t)
and x2(t− 3) + 2. This can be expressed as

(∀t ∈ Zmax) x1(t) � u(t)⊕ 2x2(t− 3) . (1)
Under the earliest firing rule, (1) turns into equality and,
through the δ-transform, can be written in Σ as

x1 = u⊕ 2δ3x2 .

We can obtain similar relations for x2 and y and, defining
x = [x1

x2
], write

x =

[
sε 2δ3

0δ4 sε

]
x⊕

[
0δ0

sε

]
u , y =

[
sε 0δ0

]
x .

In general, a TEG can be described by implicit equations
over Σ of the form

x = Ax⊕Bu , y = Cx . (2)
From Remark 1, the least solution of (2) is given by

x = A∗Bu and y = CA∗Bu , (3)
where G = CA∗B is often called the transfer function of
the system. For instance, for the system from Fig. 3 we
obtain the transfer function G = 0δ4(2δ7)∗.
Now, suppose equations (2) model a TEG to be controlled
and let an output-reference z ∈ Σ be given. We aim
at a just-in-time input u, i.e., one that fires, by each
time instant, the least possible number of times while
guaranteeing that the output transition y fires at least as
many times as specified by z. In other words, we seek the
greatest (in the order of Σ) u such that y = Gu � z. Based
on Example 5, the solution is directly obtained by

uopt = G◦\z . (4)

4.2 Control of systems with resource sharing

Consider a system consisting of TEGs S1, . . . , SK sharing
a resource with finite but arbitrary capacity, as shown
in Fig. 4. β may, in general, be a TEG (or, in simple
cases, just a single place) describing the capacity of the
resource as well as the minimum delay between release and
allocation events. Hk represents the internal dynamics of
Sk. For simplicity, let us assume that input transitions
(uk) are connected to resource-allocation transitions (xk

A)
via a single place with zero delay and no initial tokens,
the same being true for the connection between resource-
release transitions (xk

R) and output transitions (yk). This

u1 x1
A

H1

x1
R

β

y1

α1α2

u2 x2
A

H2

x2
R y2

...
uK xK

A

HK

xK
R yK

S1:

S2:

SK :

Figure 4. A number of TEGs with a shared resource.

implies yk = xk
R and, for just-in-time inputs uk, also

xk
A = uk.

Clearly, the overall system from Fig. 4 is not a TEG,
as there are places with several upstream or downstream
transitions. In particular, the relationship among counters
xk
A and xk

R, k ∈ {1, . . . ,K}, cannot be described by linear
equations (2). With the help of the Hadamard product,
however, this relationship can be expressed as

β ⊗
(K⊙
k=1

xk
R

)
�

K⊙
k=1

xk
A . (5)

Let the input-output behavior of each Sk, including the
resource and ignoring all other subsystems, be described
by yk = Gkuk, and assume respective output-references
zk are given. It should be clear that, due to the limited
capacity of the resource, in general it is not possible for
all subsystems to achieve the same just-in-time schedule
as in the case without resource sharing. One way to settle
the dispute is introducing a priority policy. We henceforth
assume, without loss of generality, that the subsystems are
indexed according to their priority level, meaning Sk has
higher priority than Sk+1 for all k ∈ {1, . . . ,K − 1}. The
priority policy then dictates that, for each k ∈ {2, . . . ,K}
and for all i ∈ {1, . . . , k− 1}, Sk cannot interfere with the
performance of Si.
Hence, the optimal input for S1 can be computed neglect-
ing any competition for the resource, which amounts to
(4), i.e., u1

opt = G1◦\z1. Denote the corresponding resource-
allocation and release schedules by x1

Aopt and x1
Ropt , re-

spectively. Then, based on (5) and making use of the
fact that the Hadamard product is residuated, we obtain
the optimal inputs uk

opt successively for k = 2, . . . ,K by
computing the greatest fixed point of respective mappings
Φk : Σ → Σ,

Φk(u) = Hk◦\
[(

β◦\
(k−1⊙

i=1

xi
Aopt � u

))
�♯

k−1⊙
i=1

xi
Ropt

]
∧ Gk◦\zk ∧ u .

(6)

The procedure is summarized in Algorithm 1.

Example 10. In order to illustrate the method, let us
consider the example of a freight railway station, adapted
from Correia et al. [2009]. The station has two tracks which
are used by three types of trains, as modeled in Figure 5.
Input transition uk and output transition yk represent,
respectively, the arrival and departure of a train of type

Algorithm 1: Control of TEGs with resource sharing
Data: K ∈ N, β ∈ Σ and Gk, Hk, zk ∈ Σ for 1 ≤ k ≤ K
Result: Optimal inputs uk

opt ∈ Σ respecting zk, for 1 ≤ k ≤ K

u1
opt = G1 ◦\z1; xAH = u1

opt; xRH = H1 ⊗ u1
opt;

for k = 2 to K do
x0 = sε; a = s⊤;
while x0 ̸= a do

x0 = a;
a = Hk ◦\

[(
β ◦\ (x0 ⊙ xAH)

)
⊙♯ xRH

]
∧ (Gk ◦\zk) ∧ x0;

end
uk

opt = x0;
xAH = xAH ⊙ x0; xRH = xRH ⊙ (Hk ⊗ x0);

end

u1 x1
A 4 x1

L

1

2

3

x1
R y1

u3 x3
A 4 x3

U

2

3 x3
R y3

u2 x2
A 4 x2

R y2

Figure 5. Model of freight railway station with two tracks.

k, k ∈ {1, 2, 3}. Upon arrival, a train can only enter the
station (transitions xk

A) if there is a track available. There
is a minimum delay of 3 time units between the release of
a track (transitions xk

R) and its subsequent allocation. On
each train of type 1, a container must be loaded. There
is a single loader crane which can load one container at a
time; provided this crane is available, the loading process
starts as soon as the train enters the station, and it finishes
with the firing of transition x1

L. Trains of type 2 do not
stop at this station, but need to use one of the tracks
to travel through. Trains of type 3, in turn, must unload
a container. It is assumed that there are always cranes
available for the unloading process, which starts as soon as
a train enters the station. However, the previous container
must be removed from the unloading area before a new
one can be deposited, so that an unloading operation can
only be concluded (transition x1

U) once every 2 time units.
References are given in terms of train departures and can
be encoded by the following counters: z1 = 0δ19 ⊕ 1δ27 ⊕
2δ59 ⊕ 4δ+∞; z2 = 0δ24 ⊕ 1δ40 ⊕ 2δ52 ⊕ 3δ+∞; z3 = 0δ47 ⊕
2δ+∞. They can be read as follows: κδτ ⊕ κ′δτ

′ means
a total of κ′ departures is required by time τ ⊗ 1. The
transfer functions for the subsystems are G1 = 0δ6(1δ5)∗,
G2 = 0δ4(2δ7)∗, and G3 = (0δ7 ⊕ 1δ9)(2δ10)∗. Applying
Algorithm 1, we obtain the optimal inputs u1

opt = 0δ13 ⊕
1δ21⊕2δ48⊕3δ53⊕4δ+∞, u2

opt = 0δ14⊕1δ36⊕2δ46⊕3δ+∞,
and u3

opt = 0δ28 ⊕ 1δ38 ⊕ 2δ+∞.

4.3 Control of systems with resource sharing and
output-reference update

In practice, it may be necessary to update the reference
for the output of a system during run-time, for instance

when customer demand is increased and a new production
objective must be taken into account. Consider the system
from Fig. 4 and assume every subsystem Sk is operating
optimally with respect to its own output-reference zk,
according to the priority-based strategy introduced in
Section 4.2. Now, suppose that at time T ∈ Z each Sk

has its reference zk updated to zk′ (with the possibility
that zk′ = zk for some of them). Let us now investigate
how to optimally update the inputs uk.
For the purpose of the present discussion, let us fix an
arbitrary k ∈ {1, . . . ,K}, and define the index sets Ik =
{1, . . . , k − 1} for k 6= 1, Jk = {k + 1, . . . ,K} for k 6= K,
and I1 = JK = ∅. Define also the auxiliary mapping
rT : Σ → Σ,

[rT (s)](t) =

{
s(t), if t ≤ T ;
ε , if t > T ,

and its residual

[r ♯
T (s)](t) =

{
s(t), if t ≤ T ;
s(T), if t > T .

As in Section 4.2, we seek the input uk
opt
′ which leads

to an output as close as possible to zk′ while observing
the priority scheme. This implies the combined, already
updated allocation and release schedules of higher-priority
subsystems (i.e., of all Si with i ∈ Ik) must be taken as a
hard restriction. These can be expressed by the terms

Hk
A =

⊙
i∈Ik

xi
Aopt
′ and Hk

R =
⊙
i∈Ik

xi
Ropt
′ .

Furthermore, we require minimum interference from lower-
priority subsystems (i.e., all Sj with j ∈ Jk). This means
we have to respect past inputs (and consequent resource
allocations) in these subsystems, but may ignore future
ones. Recall that uj

opt(t) is the accumulated number of
firings originally scheduled for uj up to time t. Respecting
the past means that the firings which have already oc-
curred by time T (when the new references are received)
cannot be revoked. These firings are relevant because the
resulting resource releases may take place after T , thus
influencing the availability of the resource. On the other
hand, the prospective input firings that have not taken
place by time T can still be postponed and hence, from the
point of view of Sk, ignored. So, for the sake of determining
the new optimal input uk

opt
′ with minimum interference

from Sj , j ∈ Jk, we set uj(t) = uj
opt(t) for t ≤ T and

uj(t) = uj
opt(T) for t > T , which is precisely captured by

the counter r ♯
T (u

j
opt). Since uj

opt is a just-in-time input,
under the assumptions in place we have uj

opt = xj
Aopt .

The combined resource allocations and releases by lower-
priority subsystems resulting from the inputs r ♯

T (u
j
opt),

j ∈ Jk, can then be expressed respectively by the terms
Lk
A =

⊙
j∈Jk

r ♯
T (x

j
Aopt) and Lk

R =
⊙
j∈Jk

(
Hj⊗ r ♯

T (x
j
Aopt)

)
.

Thus, based on (5) and on the foregoing discussion,
the conditions for the updated allocation schedule xk

A —
namely, respecting the performance of higher-priority sub-
systems and ensuring minimum interference from lower-
priority ones — can be expressed as

β ⊗
(
Hk

R � (Hk⊗ xk
A)� Lk

R

)
� Hk

A� xk
A � Lk

A . (7)

Note that, as we look for a just-in-time input for Sk, we
can in fact replace xk

A with uk in (7). Then, defining the
mapping Ψk : Σ → Σ,
Ψk(uk) = Hk◦\

[(
β◦\(Hk

A� uk � Lk
A)
)
�♯ (Hk

R � Lk
R)
]
,

through straightforward manipulations one can see that
(7) is equivalent to uk � Ψk(uk).
One last condition is that the past inputs of Sk itself must
also be preserved, which amounts to requiring rT (u

k) =
rT (u

k
opt). The problem of determining the new optimal

input uk
opt
′ (= xk

Aopt
′) with respect to a reference zk′ given at

time T can then be formulated as follows: find the greatest
element of the set
Fk′ =

{
uk ∈ Σ |Gk⊗ uk � zk′ and uk � Ψk(uk) and

rT (u
k) = rT (u

k
opt)

}
.

However, set Fk′ may turn out to be empty, meaning
the new reference zk′ is too demanding and needs to be
relaxed. In Schafaschek et al. [2020], it has been shown
that there exists a least counter uk satisfying uk � Ψk(uk)
and rT (u

k) = rT (u
k
opt). This least counter can be obtained

thanks to the dual residual of the Hadamard product; it
is the least fixed point of mapping Υk : Σ → Σ,
Υk(uk) =

[(
β ⊗

(
Hk

R � (Hk⊗ uk)� Lk
R

))
�♭ (Hk

A� Lk
A)
]

⊕ rT (u
k
opt) ⊕ uk .

Based thereon, the least zk′′ � zk′ such that the set Fk′′

(defined as Fk′, only replacing zk′ with zk′′) is nonempty
is

zk′′ = zk′ ⊕ (Gk ⊗ uk) .

Note that, if Fk′ 6= ∅, we have Gk ⊗ uk � zk′ and hence
zk′′ = zk′.
In conclusion, the sought optimal input uk

opt
′ can be ob-

tained as the greatest fixed point of Γk : Σ → Σ,
Γk(uk) = Gk◦\zk′′ ∧ Ψk(uk) ∧ r ♯

T (u
k
opt) ∧ uk . (8)

The method is realized by Algorithm 2.

Example 11. For the railway station from Example 10,
suppose the demand for trains of type 1 is updated at
time T = 30; more specifically, one additional departure is
required by time 60, i.e., z1′ = 0δ19 ⊕ 1δ27 ⊕ 2δ59 ⊕ 5δ+∞

(whereas z2′ = z2 and z3′ = z3). We apply Algorithm 2
to obtain the updated inputs u1

opt
′ = 0δ13 ⊕ 1δ21 ⊕ 2δ43 ⊕

3δ48 ⊕ 4δ53 ⊕ 5δ+∞, u2
opt
′ = 0δ14 ⊕ 1δ36 ⊕ 2δ41 ⊕ 3δ+∞,

u3
opt
′ = 0δ28 ⊕ 1δ57 ⊕ 2δ+∞. In this case, z1′ and z2′ are

feasible, but z3′ is not and must be relaxed to z3′′ = 0δ47⊕
1δ64 ⊕ 2δ+∞.

5. PERFORMANCE EVALUATION

The following tests were performed in order to assess
the computational time for solving optimal-control prob-
lems on TEGs with resource sharing, using our recently-
developed C++ functions, available at Zorzenon et al.
[2022b]. We consider K TEG subsystems that share a
resource with capacity m. The internal dynamics of each
subsystem Sk, k ∈ {1, . . . ,K}, is randomly generated
as Hk = 0δtk ⊕ 1δtk+ωk,1 ⊕ 2δtk+ωk,1+ωk,2(1δτk)∗, where

Algorithm 2: Control of TEGs with resource sharing
and output-reference update
Data: K ∈ N, T ∈ Z, β ∈ Σ and Hk, Gk, zk′, xk

Aopt
∈ Σ for

1 ≤ k ≤ K
Result: New optimal inputs uk

opt
′ ∈ Σ respecting zk′ (or zk′′),

for 1 ≤ k ≤ K
Hk

A = Hk
R = LK

A = LK
R = 0δ+∞;

for k = K − 1 to 1 do
Lk
A = Lk+1

A ⊙ r ♯
T (xk+1

Aopt
);

Lk
R = Lk+1

R ⊙ (Hk+1 ⊗ r ♯
T (xk+1

Aopt
));

end
for k = 1 to K do

x0 = s⊤; a = sε;
while x0 ̸= a do

x0 = a;
a = rT (xk

Aopt
)⊕ x0 ⊕[(

β ⊗
(
Hk

R ⊙ (Hk ⊗ x0)⊙ Lk
R

))
⊙♭
(
Hk

A ⊙ Lk
A

)]
;

end
if Gk ⊗ x0 ≼ zk′ then z = zk′ ;
else z = zk′ ⊕ (Gk ⊗ x0) ;
x0 = sε; a = s⊤;
while x0 ̸= a do

x0 = a;
Ψ = Gk ◦\z ∧
Hk ◦\

[(
β ◦\ (Hk

A ⊙ x0 ⊙ Lk
A)
)
⊙♯ (Hk

R ⊙ Lk
R)
]
;

a = x0 ∧Ψ ∧ r♯T (xk
Aopt

);
end
uk

opt
′ = x0; Hk

A = Hk
A ⊙ x0; Hk

R = Hk
R ⊙ (Hk ⊗ x0);

end

0 5 10 15 20 25 30 35 40

0510152025303540
0

500
1000
1500
2000
2500
3000
3500
4000

Number of subsystems, KCapacity of the resource, m

C
om

p
u
ta
ti
on
al

ti
m
e
(m

s) Without output-reference update
With output-reference update

Figure 6. Computational time for solving the optimal-
control problem for TEGs with resource sharing and
with or without output-reference update.

tk, τk, ωk,i are drawn from the discrete uniform distribu-
tion U(1, 20) for i = 1, 2. The dynamics of the resource
is simply taken as β = mδ1, which corresponds to a
single place with m initial tokens and unitary holding time.
References zk = 0δTk ⊕1δ+∞ and zk′ = 0δT

′
k ⊕1δT

′
k+Ωk,1⊕

2δT
′
k+Ωk,1+Ωk,2⊕3δ+∞ are taken as polynomials consisting

of two and four monomials respectively, and parameters
Tk, T

′
k,Ωk,i are generated from the distribution U(1, 20) for

i = 1, 2. At time T = 20, the output references z1, . . . , zK

are updated to z1′, . . . , zK ′. Note that transfer functions
Gk can be computed from Hk and β.
The results of the tests, performed both with and without
updating the output references and considering different
values of K and m (between 1 and 40), are shown in

Figure 6. From the plot, we can draw the following con-
siderations. The algorithms converge more rapidly to the
solution when the capacity of the resource is large; this
should not be surprising, since it is the scarcity of resources
that forces low-priority subsystems to change their inputs
in order to accommodate the optimal behavior of subsys-
tems with higher priority. If the capacity of the resource is
infinite, the system acts as K independent TEGs; hence,
the optimal inputs can simply be computed using (4). The
output-reference update introduces additional computa-
tional costs, that are even more pronounced at low resource
capacity: in this case, the worst computational time (3717
ms) is achieved for K = 40 and m = 1, whereas for K = 40
and m = 40 the optimal-control problem is solved in less
than one tenth of the time (245 ms).

REFERENCES
Addad, B., Amari, S., and Lesage, J.J. (2010). Linear time-

varying (max,+) representation of conflicting timed
event graphs. IFAC Proceedings Volumes, 43(12), 300–
305. doi:https://doi.org/10.3182/20100830-3-DE-4013.
00050. 10th IFAC Workshop on Discrete Event Systems.

Baccelli, F., Cohen, G., Olsder, G.J., and Quadrat, J.P.
(1992). Synchronization and linearity: an algebra for
discrete event systems. John Wiley & Sons Ltd.

Correia, A., Abbas-Turki, A., Bouyekhf, R., and
El Moudni, A. (2009). A dioid model for invariant
resource sharing problems. IEEE Transactions on Sys-
tems, Man, and Cybernetics - Part A: Systems and
Humans, 39(4), 770–781. doi:10.1109/TSMCA.2009.
2019867.

Cottenceau, B., Hardouin, L., and Trunk, J. (2020). A C++

toolbox to handle series for event-variant/time-variant
(max,+) systems.

Hardouin, L., Cottenceau, B., Lagrange, S., and Le Cor-
ronc, E. (2008). Performance analysis of linear systems
over semiring with additive inputs. In 2008 9th Inter-
national Workshop on Discrete Event Systems, 43–48.
doi:10.1109/WODES.2008.4605920.

Hardouin, L., Cottenceau, B., Shang, Y., and Raisch, J.
(2018). Control and state estimation for max-plus linear
systems. Foundations and Trends® in Systems and
Control, 6(1), 1–116.

Moradi, S., Hardouin, L., and Raisch, J. (2017). Optimal
control of a class of timed discrete event systems with
shared resources, an approach based on the hadamard
product of series in dioids. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), 4831–4838.
IEEE.

Schafaschek, G., Hardouin, L., and Raisch, J. (2020). Opti-
mal control of timed event graphs with resource sharing
and output-reference update. at - Automatisierungstech-
nik, 68(7), 512–528. doi:doi:10.1515/auto-2020-0051.
URL https://doi.org/10.1515/auto-2020-0051.

Zorzenon, D., Schafaschek, G., Tirpák, D., Moradi, S.,
Hardouin, L., and Raisch, J. (2022a). Algorithms for the
hadamard product, its residual, and its dual residual in
the dioid of counters. Sumbitted to arxiv.

Zorzenon, D., Schafaschek, G., Tirpák, D., Moradi, S.,
Hardouin, L., and Raisch, J. (2022b). Hadamard
product for counters. URL https://github.com/
davidezorzenon/Hadamard_product_counters.

