Set-membership State Estimation of Max-Plus Linear Systems by using Tropical Polyhedra

Guilherme Winck, Mehdi Lhommeau, Laurent Hardouin

Laboratoire Angevin de Recherche en Ingénierie des Systèmes LARIS - Polytech Angers, University of Angers

June 15th 2023

Guilherme Winck, Mehdi Lhommeau, LaurenSet-membership State Estimation of Max-Plu

June 15th 2023 1 / 80

Problem Statement

(max,+) Linear Systems and Timed Event Graphs

Timed Event Graphs behavior is perfectly described by (max,+) linear systems.

The signals considered are the firing dates of each transition. Internal transitions are denoted x_i (inputs transitions. u_i , outputs transitions y_i).

See : http//perso-laris.univ-angers.fr/~hardouin/GET_BO.html

Guilherme Winck, Mehdi Lhommeau, LaurenSet-membership State Estimation of Max-Plu

Problem Statement

Uncertain (max,+) Linear Systems

Delays are assumed to be random values belonging to intervals.

Question ?

Is it possible to compute a state estimation x̂ by considering inputs u and available output measurements y?

See: http://perso-laris.univ-angers.fr/~hardouin/GET_BOInterval.html

Outline

- Idempotent semi-ring and (max,+) algebra
- Geometry and (max,+) algebra
- Model of Timed Event Graphs
- State Estimation : Observer synthesis
- State Estimation : Set-membership approach
- Complexity analysis
- Conclusion

Idempotent semi-ring and (max,+) algebra

Idempotent Semiring ${\mathcal T}$

- Sum \oplus , associative,commutative, zero element denoted ε ,
- Product \otimes , associative, identity element denoted *e*,
- Product ⊗ distributes with respect of sum,
 (a ⊕ b) ⊗ c = a ⊗ c ⊕ b ⊗ c,
- Zero element ε is absorbing, $a \otimes \varepsilon = \varepsilon$
- The sum is idempotent, $a \oplus a = a$.
- $a \oplus b = a \lor b = a \Leftrightarrow b \preceq a \Leftrightarrow a \land b = b$

hence an idempotent semiring has a complete lattice structure, with (ε) as bottom element and $(T = \bigoplus_{x \in S} x)$ as top element.

Example :(max,+) algebra, $\overline{\mathbb{Z}}_{max}$

Sum \oplus is the operator *max*, product \otimes is classical sum +, $\varepsilon = -\infty$ and e = 0, then :

$$1 \oplus 1 = 1 = max(1, 1),$$

 $2 \otimes 1 = 3 = 2 + 1.$

Guilherme Winck, Mehdi Lhommeau, LaurenSet-membership State Estimation of Max-Plu

More

Fixed point equations

For order preserving (isotone) mapping, $(x \leq y \Leftrightarrow f(x) \leq f(y))$, it is possible to compute fixed points f(x) = x.

Application : $x = ax \oplus b$

Theorem : Over a complete idempotent semiring \mathcal{T} , the least solution to $x = ax \oplus b$ is $x = a^*b$ with $a^* = \bigoplus_{i \in \mathbb{N}_0} a^i = e \oplus a \oplus a^2 \oplus ...$

* is called Kleene star operator.

Residuation Theory (Croisot 56, Blyth 05)

A pseudo inverse exists for order preserving mapping defined over ordered sets.

Inequality $a \otimes x \preceq b$

Over a complete idempotent semiring \mathcal{T} , inequality $a \otimes x \leq b$ admits a greatest solution, denoted, $x = a \Diamond b$, (*i.e.* $a(a \Diamond b) \leq b$ and equality is achieved, if possible).

$\overline{\mathsf{Example}}$: (max,+) algebra $\overline{\mathbb{Z}}_{\mathsf{max}}$

Inequality $3 \otimes x \leq 5$ admits a greatest solution $x = 3 \sqrt{5} = 5 - 3 = 2$. It achieves equality in the scalar case.

Idempotent semi-ring and (max,+) algebra

Matrix

Let A, B, C three matrices in $\mathcal{T}^{n \times n}$

- $(A \oplus B)_{ij} = A_{ij} \oplus B_{ij}$
- $(A \otimes B)_{ik} = \bigoplus_{j=1...n} (A_{ij} \otimes B_{jk})$
- $(A \wr B)_{ik} = \bigwedge_{j=1...n} (A_{ji} \wr B_{jk})$, where $A \wr B$ is the greatest matrix s.t. $AX \preceq B$
- $(B \neq A)_{ik} = \bigwedge_{j=1...n} (A_{ij} \neq B_{kj})$, where $A \neq B$ is the greatest such $XA \leq B$
- $(X)_{ij} = A^*_{ij}$ is the greatest matrix s.t. $X \leq A^*$

Segment in \mathbb{R}^n vs $\overline{\mathbb{R}}_{\max}^n$

A segment [A,B] in \mathbb{R}^n , is

$$\begin{split} [A,B] &= \{ t A + (1-t) B \mid t \in [0,1] \} \\ &= \{ \lambda A + \beta B \mid \lambda + \beta = 1, \ \beta \ge 0, \lambda \ge 0 \} \end{split}$$

Segment in $\overline{\mathbb{R}}_{max}^2$

A segment $[C, D_i]$ in \mathbb{R}^2_{max} is $[C, D_i] = \{ \lambda C \oplus \beta D_i \mid \lambda \oplus \beta = e \}$, actually six types $i \in [1, 6]$

Segment in $\overline{\mathbb{R}}_{max}^2$

A segment $[C, D_i]$ in \mathbb{R}^2_{max} is $[C, D_i] = \{ \lambda C \oplus \beta D_i \mid \lambda \oplus \beta = e \}$, actually six types $i \in [1, 6]$

Segment in $\overline{\mathbb{R}}_{max}^2$

A segment $[C, D_i]$ in \mathbb{R}^2_{max} is $[C, D_i] = \{ \lambda C \oplus \beta D_i \mid \lambda \oplus \beta = e \}$, actually six types $i \in [1, 6]$

Line in $\overline{\mathbb{R}}_{max}^n$

A classical line is $a_1x_1 + a_2x_2 + b = c_1x_1 + c_2x_2 + d$. A (max,+) line is defined as : $a_1x_1 \oplus a_2x_2 \oplus b = c_1x_1 \oplus c_2x_2 \oplus d$. In $\overline{\mathbb{R}}_{\max}^2$ this leads to 6 types of line.

13 / 80

Half space $\overline{\mathbb{R}}_{\max}^n$

Each line separates the space in half-space.

Half space in $\overline{\mathbb{R}}_{\max}^n$

Each line separates the space in half-space.

Half space in $\overline{\mathbb{R}}_{\max}^n$

Each line separates the space in half-space.

Intersection of half space in $\overline{\mathbb{R}}^n_{\max}$

Intersection of half-spaces yields a max-plus polytope also called tropical polytope.

June 15th 2023 17 / 80

Tropical polytope in $\overline{\mathbb{R}}_{\text{max}}$, external representation or $\mathcal{H}\text{-}\text{form}$

It admits an external representation representing all the constraints as the set $\mathcal{P} = \{x \in \overline{\mathbb{R}}_{\max}^n | Ax \oplus b \leq Cx \oplus d\}$, with $A, C \in \overline{\mathbb{R}}_{\max}^{q \times n}$ and $b, d \in \overline{\mathbb{R}}_{\max}^q$. Homogeneous representation $\mathcal{P} = \{z \in \overline{\mathbb{R}}_{\max}^{n+1} | Ez \leq Fz\}$, where $E = (A \ b)$, $F = (C \ d), \ z = (x^t, \alpha)^t$.

Tropical polytope in $\overline{\mathbb{R}}_{\text{max}},$ internal representation or $\mathcal{V}\text{-form}$

A max-plus polytope admits also an internal representation $\mathcal{P} = \{x | x = \bigoplus_{i=1}^{p} \lambda_i v^i\}$ where $V = \{v^1, ..., v^p\} \subset \overline{\mathbb{Z}}_{\max}^n$ is a set of pvertices, and $\lambda_i \in \overline{\mathbb{R}}_{\max}$. Remark A minimal representation exists (i.e. p is minimal).

Transformation : \mathcal{H} -form to \mathcal{V} -form

Algorithms exist (Butkovic 84, Gaubert & Allamigeon 08,13) to change from a \mathcal{H} -form to a \mathcal{V} -form, and vice-versa.

Complexity is exponential according to the size n of the state. Practically it is lower ...

Library TPLib is available :

http://www.cmap.polytechnique.fr/~allamigeon/software/

Compact tropical polytope in $\mathbb{R}_{\mathsf{max}}$

By considering the polytope $\mathcal{P} = \{x | x = \bigoplus_{i=1}^{p} \lambda_i v^i\}$ with the constraint $\bigoplus_{i=1}^{p} \lambda_i = e$, the polytope is compact and then is called a compact tropical polytope denoted

$$co(V) = \{x | x = \bigoplus_{i=1}^{p} \lambda_i v^i, \text{ and } \bigoplus_{i=1}^{p} \lambda_i = e\}$$

Guilherme Winck, Mehdi Lhommeau, LaurenSet-membership State Estimation of Max-Plu

Intersection of tropical polytope

From the \mathcal{H} -form, it is directly obtained, the \mathcal{V} -form is still with an exponential complexity.

Union of tropical polytope is not a tropical polytope

A smallest over approximation as a tropical polytope can be obtained with a polynomial complexity.

Difference Bound Matrix (DBM) is a tropical polytope

DBM (or zone) in canonical form

Box is a DBM hence a tropical polytope

Box

 $1 \le x1 \le 4$ $0 \le x2 \le 3$

The corresponding polytope is with 3 generators (3 green vertices).

$$V = \begin{pmatrix} 1 & 1 & 4 \\ 3 & e & e \end{pmatrix}$$

A box in \mathbb{R}_{max}^{n} corresponds to a tropical polytope with p = n + 1 generators.

TEG Model in $\overline{\mathbb{Z}}_{max}$

Firing Date [Cohen et al., IEEE TAC 85]

 $x_i(k)$: date of the firing numbered k for the transition labelled x_i .

For each transition :

$$\begin{array}{rcl} x_1(k) &=& \max(1+u(k), x_2(k-1)) \\ x_2(k) &=& 3+x_1(k) \\ y(k) &=& 3+x_2(k) \end{array}$$

 $\ln \overline{\mathbb{Z}}_{max}$

$$\begin{array}{rcl} x_1(k) &=& 1 \otimes u(k) \oplus x_2(k-1) \\ x_2(k) &=& 3 \otimes x_1(k) \\ y(k) &=& 3 \otimes x_2(k) \end{array}$$

Guilherme Winck, Mehdi Lhommeau, LaurenSet-membership State Estimation of Max-Plu

► Zmax :

TEG Model in $\overline{\mathbb{Z}}_{max}$

Firing Date [Cohen et al., IEEE TAC 85]

 $x_i(k)$: date of the firing numbered k for the transition labelled *i*.

Dynamic Model

$$\begin{pmatrix} x_1(k) \\ x_2(k) \end{pmatrix} = \begin{pmatrix} \varepsilon & \varepsilon \\ 3 & \varepsilon \end{pmatrix} \begin{pmatrix} x_1(k) \\ x_2(k) \end{pmatrix} \oplus \begin{pmatrix} \varepsilon & e \\ \varepsilon & \varepsilon \end{pmatrix} \begin{pmatrix} x_1(k-1) \\ x_2(k-1) \end{pmatrix} \oplus \begin{pmatrix} 1 \\ \varepsilon \end{pmatrix} u(k)$$

$$y(k) = (\varepsilon \ 3) \begin{pmatrix} x_1(k) \\ x_2(k) \end{pmatrix}$$

$$\begin{array}{rcl} x(k) &=& A_0 x(k) \oplus A_1 x(k-1) \oplus B u(k) \\ y(k) &=& C x(k) \end{array}$$

State extension [Cohen et al., IEEE TAC 85]

$$\begin{aligned} x(k) &= A_0 x(k) \oplus A_1 x(k-1) \oplus A_2 x(k-2) \oplus Bu(k) \\ y(k) &= C x(k) \end{aligned}$$

By extending the state vector $\tilde{x} = [x^T \ x^T]^T$:

$$egin{array}{rcl} ilde{x}(k) &=& ilde{A}_0 ilde{x}(k)\oplus ilde{A}_1 ilde{x}(k-1)\oplus ilde{B}u(k) \ y(k) &=& ilde{C} ilde{x}(k) \end{array}$$

TEG Model in $\overline{\mathbb{Z}}_{max}$, Markovian Representation

Implicit to Markovian Representation

Theorem : Over a complete idempotent semiring \mathcal{T} , the least solution to $x = ax \oplus b$ is $x = a^*b$ with $a^* = \bigoplus_{i \in \mathbb{N}_0} a^i = e \oplus a \oplus a^2 \oplus ...$

* is called Kleene star operator.

Application

$$\begin{array}{lll} \tilde{x}(k) &=& \tilde{A}_0 \tilde{x}(k) \oplus \tilde{A}_1 \tilde{x}(k-1) \oplus \tilde{B}u(k) \\ y(k) &=& \tilde{C} \tilde{x}(k) \end{array}$$

by considering $A = \tilde{A}_0^* \tilde{A}_1$ and $B = \tilde{A}_0^* \tilde{B}$, a Markovian standard form is obtained :

$$\begin{array}{rcl} x(k) &=& Ax(k-1) \oplus Bu(k) \\ y(k) &=& Cx(k) \end{array}$$

Signal in $\overline{\mathbb{Z}}_{\max}\llbracket \gamma \rrbracket$

γ transform [Cohen, Quadrat et al. IEEE TAC 89] \rightarrow More

 γ transform of x(k) is a formal series $x(\gamma) = \bigoplus_{k \in \mathbb{N}} \gamma^k x(k)$. The set of series is a semiring denoted $\overline{\mathbb{Z}}_{\max}[\![\gamma]\!]$. A series with a finite support is called a polynomial, and a monomial if there is only one element.

Guilherme Winck, Mehdi Lhommeau, LaurenSet-membership State Estimation of Max-Plu

June 15th 2023 29 / 80

TEG Model in $\overline{\mathbb{Z}}_{\max}\llbracket \gamma \rrbracket$

The previous system in $\overline{\mathbb{Z}}_{\max}\llbracket \gamma \rrbracket$:

$$\begin{aligned} x(\gamma) &= Ax(\gamma) \oplus Bu(\gamma) &= \begin{pmatrix} \varepsilon & \gamma \\ 3 & \varepsilon \end{pmatrix} x(\gamma) \oplus \begin{pmatrix} 1 \\ \varepsilon \end{pmatrix} u(\gamma) \\ y(\gamma) &= Cx(\gamma) &= (\varepsilon & 3) x(\gamma) \end{aligned}$$

Transfer relations in $\overline{\mathbb{Z}}_{\max}[\gamma]$:

$$\begin{aligned} x(\gamma) &= A^* B u(\gamma) &= \begin{pmatrix} (3\gamma)^* & \gamma(3\gamma)^* \\ 3(3\gamma)^* & (3\gamma)^* \end{pmatrix} \begin{pmatrix} 1 \\ \varepsilon \end{pmatrix} u(\gamma) \\ y(\gamma) &= CA^* B u(\gamma) &= (7(3\gamma)^*) u(\gamma) \end{aligned}$$

Software library MinmaxGD available : http://perso-laris.univ-angers.fr/~hardouin/outils.html

More

State Estimation : Observer Synthesis

Prediction computation :

 $\hat{x}(\gamma) = Ax(\gamma) \oplus Bu(\gamma).$

or

$$\hat{x}(k) = Ax(k-1) \oplus Bu(k).$$

Guilherme Winck, Mehdi Lhommeau, LaurenSet-membership State Estimation of Max-Plu

June 15th 2023 31 / 80

= nar

.∃ →

< 4 → <

State Estimation : Observer Synthesis

Objective :

Compute the greatest observer matrix *L* such that

 $\hat{x} \leq x$.

State Estimation : Observer Synthesis

System Equations :

 $x = Ax \oplus Bu \oplus Sq = A^*Bu \oplus A^*Sq$ $y = Cx = CA^*Bu \oplus CA^*Sq.$

Estimated State Equations :

 $\hat{x} = A\hat{x} \oplus Bu \oplus L(\hat{y} \oplus y)$ $\hat{y} = C\hat{x}.$

Constraints Satisfaction :

Compute the greatest matrix *L* such that

 $\begin{array}{rcl} (A \oplus LC)^*B & \preceq & A^*B \Leftrightarrow L \preceq (A^*B) \not (CA^*B) \\ (A \oplus LC)^*LCA^*S & \preceq & A^*S \Leftrightarrow L \preceq (A^*S) \not (CA^*S). \end{array}$

Optimal Matrix : (Hardouin et al. IEEE TAC 2010, Hardouin et al. 2019)

$$L_{opt} = ((A^*B) \not (CA^*B)) \land ((A^*S) \not (CA^*S))$$

is the greatest such that

 $\hat{x} \preceq x$.

State Estimation : Observer Synthesis : Performance Analysis

Equality of the asymptotic slope (Hardouin et al. IEEE TAC 2010)

If matrix C linking state vector to the output is connected to all connected components of the graph then

$$\sigma_{\infty}(\hat{x}_i) = \sigma_{\infty}(x_i) \; \forall i$$

Corollary :

If state x_i belongs to a connected component whose at least one transition is measured then the error $\hat{x}_i - x_i$ is bounded.

Uncertain system $A(k) \in [\underline{A}, \overline{A}] = [A], B(k) \in [\underline{B}, \overline{B}] = [B], C(k) \in [\underline{C}, \overline{C}] = [C]$

Each matrices entries is supposed bounded and A(k), B(k), C(k) is a realization at step k

$$\begin{array}{rcl} x(k) &=& A(k)x(k-1) \oplus B(k)u(k) \\ y(k) &=& C(k)x(k) \end{array}$$

In the sequel, to enlighten the notation, we assume (without lost of generality) autonomous systems, i.e., x(k) = A(k)x(k-1).

Indeed we can consider $\tilde{x} = (x^t u^t)^t$ and $\tilde{A} = \begin{pmatrix} A & \varepsilon \\ \varepsilon & B \end{pmatrix}$

Uncertain system $A(k) \in [\underline{A}, \overline{A}] = [A], C(k) \in [\underline{C}, \overline{C}] = [C]$

 $\begin{array}{rcl} x(k) &=& A(k)x(k-1)\\ y(k) &=& C(k)x(k) \end{array}$

Q1 : Assuming $x(k-1) \in \mathcal{X}_{k-1|k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k|k-1} = \{Ax \mid A \in [\underline{A}, \overline{A}], x \in \mathcal{X}_{k-1|k-1}\}$? (prediction) Q2 : Assuming y(k) available, is it possible to compute the inverse image set $[C]^{-1}(y(k)) = \{x \mid y(k) = Cx, C \in [\underline{C}, \overline{C}]\}$? (likelihood) Q3 : Is it possible to compute the intersection of the two previous sets to obtain the set $\mathcal{X}_{k|k} = \mathcal{X}_{k|k-1} \cap [C]^{-1}(y(k))$? (estimation)

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 国 ▶ ● ○ ○

Uncertain system $A \in [\underline{A}, \overline{A}], C \in [\underline{C}, \overline{C}]$

 $\begin{array}{rcl} x(k) &=& A(k)x(k-1) \\ y(k) &=& C(k)x(k) \end{array}$

Q1 : Assuming $x(k-1) \in \mathcal{X}_{k-1|k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k|k-1} = \{Ax \mid A \in [\underline{A}, \overline{A}], x \in \mathcal{X}_{k-1|k-1}\}$? Assumption : $\mathcal{X}_{k-1|k-1}$ is depicted as a tropical polytope. (Lemma 2.1 PhD Guilherme Winck (University of Angers)).

Q1 : Assuming $x(k-1) \in \mathcal{X}_{k-1|k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k|k-1} = \{Ax \mid A \in [\underline{A}, \overline{A}], x \in \mathcal{X}_{k-1|k-1}\}$?

Q1 : Assuming $x(k-1) \in \mathcal{X}_{k-1|k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k|k-1} = \{Ax \mid A \in [\underline{A}, \overline{A}], x \in \mathcal{X}_{k-1|k-1}\}$?

Q1 : Assuming $x(k-1) \in \mathcal{X}_{k-1|k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k|k-1} = \{Ax \mid A \in [\underline{A}, \overline{A}], x \in \mathcal{X}_{k-1|k-1}\}$?

Q1 : Assuming $x(k-1) \in \mathcal{X}_{k-1|k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k|k-1} = \{Ax \mid A \in [\underline{A}, \overline{A}], x \in \mathcal{X}_{k-1|k-1}\}$?

Uncertain system $A \in [\underline{A}, \overline{A}], C \in [\underline{C}, \overline{C}]$

 $\begin{array}{rcl} x(k) &=& A(k)x(k-1) \\ y(k) &=& C(k)x(k) \end{array}$

Q2 : Assuming y(k) available, is it possible to compute the inverse image set $[C]^{-1}(y(k)) = \{x \mid y(k) = Cx, C \in [\underline{C}, \overline{C}]\}$? The set can be written as $[C]^{-1}(y(k)) = \{x \mid \underline{C}x \leq y(k) \leq \overline{C}x\}$, which can be decomposed in two sets :

$$\mathcal{X} = \overline{\mathcal{X}} \cap \underline{\mathcal{X}}$$

where $\overline{\mathcal{X}} = \{x | \underline{C}x \leq y(k)\}$ and $\underline{\mathcal{X}} = \{x | y(k) \leq \overline{C}x\}$

Renato Cândido et al., "An Algorithm to Compute the Inverse Image of a Point with Respect to a Nondeterministic Max Plus Linear System", in IEEE TAC, 2021.

State Estimation : Set-membership approach Computation $\overline{\mathcal{X}} = \{x | \underline{C}x \preceq y(k)\} \Leftrightarrow \overline{\mathcal{X}} = \{x | x \preceq \underline{C} \setminus y(k)\}$

State Estimation : Set-membership approach Computation $\underline{\mathcal{X}} = \{x | y(k) \preceq \overline{C}x\}$

State Estimation : Set-membership approach Computation $\underline{\mathcal{X}} = \{x | y(k) \preceq \overline{C}x\}$

State Estimation : Set-membership approach Computation $\underline{\mathcal{X}} = \{x | y(k) \preceq \overline{C}x\}$

Q2 : Computation $[C]^{-1}(y(k)) = \overline{\mathcal{X}} \cap \underline{\mathcal{X}}$

Q3 : Is it possible to obtain the intersection $\mathcal{X}_{k|k} = [\mathcal{C}]^{-1}(y(k)) \cap \mathcal{X}_{k|k-1}$

Q3 : Is it possible to obtain the intersection $\mathcal{X}_{k|k} = [\mathcal{C}]^{-1}(y(k)) \cap \mathcal{X}_{k|k-1}$

Filtering algorithm : **Require** : $\mathcal{X}_{k-1|k-1}, y(k)$ Ensure : $\mathcal{X}_{k|k}$ $\mathcal{X}_{k|k-1} = [\underline{A}, \overline{A}]\mathcal{X}_{k-1|k-1}$ (prediction) $\mathcal{X} = \{x | x \preceq C \forall y(k)\}$ $\overline{\mathcal{X}} = \{x | y(k) \preceq \overline{C}x\}$ $[C]^{-1}(y(k)) = \mathcal{X} \cap \overline{\mathcal{X}}$ (likelihood) $\mathcal{X}_{k|k} = \mathcal{X}_{k|k-1} \cap [C]^{-1}(y(k))$ (estimation)

Filtering algorithm :	
Require : $\mathcal{X}_{k-1 k-1}, y(k)$	n, N, q
Ensure : $\mathcal{X}_{k k}$	
$\mathcal{X}_{k k-1} = [\underline{A}, \overline{A}] \mathcal{X}_{k-1 k-1}$	$\mathcal{O}(2Nn^2)$
$\underline{\mathcal{X}} = \{x x \preceq \underline{C} \forall y(k)\}$	$\mathcal{O}(nq)$
$\overline{\mathcal{X}} = \{x y(k) \preceq \overline{C}x\}$	$\mathcal{O}(nq)$
$[C]^{-1}(y(k)) = \underline{\mathcal{X}} \cap \overline{\mathcal{X}}$	
$\mathcal{X}_{k k} = \mathcal{X}_{k k-1} \cap [C]^{-1}(y(k))$	$\mathcal{O}(n^n)$

Alternative approaches : Decomposition in PWA (Adzkiya et al. Automatica 2015)

Alternative approaches : Decomposition in PWA (Adzkiya et al. Automatica 2015)

Alternative approaches : Interval analysis (Winck PhD 2022)

Alternative approaches : Interval analysis (Winck PhD 2022)

Alternative approaches : Interval analysis (Winck PhD 2022)

Alternative approaches : Interval analysis (Winck PhD 2022)

Performances comparison

- Using tropical polytope approach, the set of all possible solution is obtained, the complexity is $\mathcal{O}(n^n)$.
- Using DBM the same set is obtained (Adzkiya et al. Automatica 2015), with an exponential complexity also, but practically worst.
- Using Box an overapproximation is obtained with a polynomial complexity (Winck, PhD 2022).
- Using SMT (Satisfability Modulo theory) solver (e.g., z3 solver) (Mufid et al. IEEE TAC, 2022) is equivalent to keep the *H*-form of the tropical polytope. This is suitable when a point included in the estimation set is desired (check a solution). But needs to keep all the constraints on the horizon of estimation, which growth at each step.

Where is the estimation given by the observer?

State Estimation

- An efficient observer exists, the greatest possible solution is obtained
- A set-membership approach based on max-plus polytope is the most efficient to obtain the set of all possible solutions, even if the complexity is still exponential.
- Interval analysis yields an over estimation of the solution set with a polynomial complexity

Open problems to address

- Developing an interval observer to compute on-line an upper bound
- Developing more efficient algorithms to compute intersection of max-plus polytope
- Developing method to obtain underestimation set (set included in the solution set), (Barnhill et al., arxiv.org, 2023).
- Selecting a point in the solution set (support) by considering stochastic approach (Santos-Mendes et al. IEEE TAC, 2019, Winck et al. IEEE TAC 2022).
- Considering only \mathcal{H} -form to avoid the costly transposition to \mathcal{V} -form.
- Developing state estimation method for systems involving resource sharing (Schafaschek et al. 2020).

References

- L. Hardouin, B. Cottenceau, Y. Shang, J. Raisch "Control and State Estimation for max-plus Linear Systems" Journal on Foundations and Trends in Systems and Control 2019 http://dx.doi.org/10.1561/2600000013
- G. Espindola-Winck, R. Santos-Mendes, M. Lhommeau, and L. Hardouin, "Stochastic filtering scheme of implicit forms of Uncertain Max-plus linear systems", IEEE TAC, 2022, DOI: 10.1109/TAC.2022.3176841
- Rafael Santos-Mendes, Laurent Hardouin, Mehdi Lhommeau "Stochastic Filtering of Max-plus Linear Systems with Bounded Disturbances", IEEE TAC, september 2019, doi :10.1109/TAC.2018.2887353
- David Barnhill R. Yoshida K. Miura, "Maximum Inscribed and Minimum Enclosing Tropical Balls of Tropical Polytopes and Applications to Volume Estimation and Uniform Sampling", https://arxiv.org/pdf/2303.02539.pdf.
- G. Schafaschek, S. Moradi, L. Hardouin, J. Raisch "Optimal Control of Timed Event Graphs with Resource Sharing and Output-Reference Update", WODES, Rio De Janeiro, 2020

ELE SOC

(Cohen et al. IEEE TAC 85)

author=G. Cohen and D. Dubois and J.P. Quadrat and M. Viot, title=A linear system theoretic view of discrete event processes and its use for performance evaluation in manufacturing, journal=IEEE Trans. on Automatic Control, volume=AC-30, pages=210-220, year=1985

(Cohen, Quadrat et al. IEEE TAC 89)

author=G. Cohen and P. Moller and J.P. Quadrat and M. Viot,

title=Algebraic Tools for the Performance Evaluation of Discrete Event Systems,

 $\label{eq:source} \begin{array}{l} \mbox{journal}{=}\mbox{IEEE Proceedings}: \mbox{Special issue on Discrete Event Systems,} \\ \mbox{volume}{=}\mbox{77,} \end{array}$

pages=39-58,

(Renato Cândido et al., 2021)

Renato Cândido, L. Hardouin, M. Lhommeau and R. Santos Mendes IEEE Trans. Automatic Control, 2021, 10.1109/TAC.2020.2998726

(Mufid et al. 2022)

Muhammad Syifa'ul Mufid, Dieky Adzkiya and Alessandro Abate SMT-Based Reachability Analysis of High Dimensional Interval Max-Plus Linear Systems, IEEE Trans. on Automatic Control,

2022

(Hardouin et al. IEEE TAC 2010)

author =L. Hardouin and C.A. Maia and B. Cottenceau and M. Lhommeau, year =2010, month=February, volume=55-2, title =Observer Design for (max,plus) Linear Systems, journal =IEEE Transactions on Automatic Control, note=istia.univ-angers.fr/~hardouin/Observer.html

Adzkiya et al. 2015

author=D. Adzkiya, B. De Schutter and A. Abate, title=Computational techniques for reachability analysis of Max-Plus-Linear systems, note=Automatica, year= 2015,

Semiring of periodic series (Cohen, Quadrat et al. IEEE TAC 89)

 $s = p \oplus q(\tau \gamma^{\nu})^*$ where $p = \bigoplus_i t_i \gamma^{n_i}$ and $q = \bigoplus_j t_j \gamma^{n_j}$ are polynomials and $\sigma_{\infty}(s) = \nu/\tau$ is the asymptotic slope (the throughput).

Back

Semiring of periodic series (Cohen, Quadrat et al. IEEE TAC 89)

 $s = p \oplus q(\tau \gamma^{\nu})^*$ where $p = \bigoplus_i t_i \gamma^{n_i}$ and $q = \bigoplus_j t_j \gamma^{n_j}$ are polynomials and $\sigma_{\infty}(s) = \nu/\tau$ is the asymptotic slope (the throughput).

Back

Semiring of periodic series (Cohen, Quadrat et al. IEEE TAC 89)

Operations over semiring of periodic series over $\mathbb{Z}_{max}[\gamma]$

- $s = s_1 \oplus s_2$ is a periodic series, asymptotic slope $\sigma_{\infty}(s) = \min(\sigma_{\infty}(s_1), \sigma_{\infty}(s_2))$
- $s = s_1 \otimes s_2$ is a periodic series, asymptotic slope $\sigma_{\infty}(s) = \min(\sigma_{\infty}(s_1), \sigma_{\infty}(s_2))$
- $s = s_1 \wedge s_2$ is a periodic series, asymptotic slope $\sigma_{\infty}(s) = max(\sigma_{\infty}(s_1), \sigma_{\infty}(s_2))$
- $s = s_1 \forall s_2$ is a periodic series, $\sigma_{\infty}(s) = \sigma_{\infty}(s_2)$ if $\sigma_{\infty}(s_2) \le \sigma_{\infty}(s_1)$ else $s = \varepsilon$.

イロト 不得下 イヨト イヨト

ELE SOC

70 / 80

Software Tools

Software to handle periodic series is available on : http://perso-laris.univ-angers.fr/~hardouin/outils.html

Second order theory (MAXPLUS, IEEE CDC 91)

Counter associated to a series

Let $s = \bigoplus_{k \in \mathbb{Z}} s(k) \gamma^k$ be a series and C_s the counter function associated to s defined by $s = \bigoplus_{t \in \mathbb{Z}} t \gamma^{C_s(t)}$.

Distance in the event domain between 2 series (Santos Mendes et al. ETFA 05)

Let s_1 and s_2 be two series, the distance in the event domain is denoted $\Delta_{s_1s_2}$ and defined by

$$\Delta_{s_1s_2} = max\{|\mathcal{C}_{s_1}(t) - \mathcal{C}_{s_2}(t)| ext{ s.t. } t \in \mathbb{Z}\}$$

it can be evaluated by considering $\Delta_{s_1s_2} = C_{d_{12}}(0) \text{ where } d_{12} = (s_1 \wedge s_2) \not \circ (s_1 \oplus s_2)$

Distance in the event domain (Santos Mendes et al. ETFA 05)

Illustration : practical computation of the distance

Let $s_1 = 2 \oplus 3\gamma^4 \oplus 8\gamma^5 \oplus 10\gamma^8 (2\gamma^2)^*$ and $s_2 = 1\gamma \oplus 4\gamma^2 \oplus 5\gamma^4 \oplus 7\gamma^6 \oplus 9\gamma^7 (2\gamma^2)^*$ be two series. Series $d_{12} = (s_1 \wedge s_2) \not = (s_1 \oplus s_2) = -2\gamma \oplus -1\gamma \oplus 0\gamma^3 \oplus 1\gamma^4 \oplus 3\gamma^5 (1\gamma)^*$ and the associated counter $\Delta_{s_1s_2} = C_{d_{12}}(0) = 3$.

Distance in the event domain (Santos Mendes et al. ETFA 05)

Application : bound computation for the difference between firing of two transitions subject to the same inputs

Let $x_1 = s_1 u$ and $x_2 = s_2 u$ two series describing the behavior of two states. The distance between these trajectories can be computed by considering $du_{12} = (s_1 u \land s_2 u) \not e(s_1 u \oplus s_2 u) = (x_1 \land x_2) \not e(x_1 \oplus x_2)$. We can prove that $du_{12} \succeq (s_1 \land s_2) \not e(s_1 \oplus s_2) = d_{12}$, hence $C_{du_{12}}(0) \le C_{d_{12}}(0) \forall u$ and consequently

 $\Delta_{x_1x_2} \leq \mathcal{C}_{d_{12}}(0) \ \forall u.$

Corollary

Extension in the matrix case is straight forward, the bound for the event difference between two transitions will be the maximum for each entry.

EL OQO

Idempotent semi-ring and (max,+) algebra

Sum of matrices $A \oplus B = C$ with entries in \mathbb{Z}_{max}

$$\begin{pmatrix} 2 & 5 \\ 3 & 7 \end{pmatrix} \oplus \begin{pmatrix} e & 8 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 8 \\ 3 & 7 \end{pmatrix}$$

Residuation of matrices $A \setminus B$ is the greatest solution of $A \otimes X \prec B$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \diamond \begin{pmatrix} 8 \\ 9 \\ 10 \end{pmatrix} = \begin{pmatrix} (1 \diamond 8) \land (3 \diamond 9) \land (5 \diamond 10) \\ (2 \diamond 8) \land (4 \diamond 9) \land (6 \diamond 10) \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

Guilherme Winck, Mehdi Lhommeau, LaurenSet-membership State Estimation of Max-Plu

Back

$\mathbb{Z}_{\mathsf{max}}$ is the (max,+) algebra

 $\overline{\mathbb{Z}}_{\max} = (\mathbb{Z} \cup \{-\infty, +\infty\}, \max, +)$ is an idempotent semiring, *i.e.*, sum \oplus is the operator \max , product \otimes is classical sum +, the neutral element of the sum is denoted $\varepsilon = -\infty$ and the neutral element of the product is de noted e = 0. The sum is idempotent :

$$(\forall a \in \overline{\mathbb{Z}}_{\max}, a \oplus a = a)$$

Signal in $\overline{\mathbb{Z}}_{\max}\llbracket \gamma \rrbracket$

Series in $\overline{\mathbb{Z}}_{\max}\llbracket \gamma \rrbracket$

Back

A series : $s = \bigoplus_{k \in \mathbb{Z}} s(k) \gamma^k$ codes a non decreasing trajectory. The set of series is a semiring denoted $\overline{\mathbb{Z}}_{\max}[\![\gamma]\!]$. A series with a finite support is called a polynomial, and a monomial if there is only one element.

State Estimation : Observer Synthesis

Matrix **S** and input **q** :

- vector *q* represents a vector of exogenous uncontrollable inputs (disturbances, disabling the firing) which act on the system through matrix *S*.
- When matrix S is equal to identity matrix and $q = x_0$ they may represent the initial state of the system.

Back

State Estimation : Observer Synthesis

June 15th 2023 78 / 80

Idempotent semi-ring and (max,+) algebra

Sandwiches Algebra [Cohen et al.]

1 piece of Bread + 1 slice of ham + 1 slice of cheese is equal to 1 sandwich. Another way of counting !

TEG Model in $\overline{\mathbb{Z}}_{\max}\llbracket \gamma \rrbracket$

A periodic series in $\mathbb{Z}_{\max}[\gamma]$

 $s = p \oplus q(\tau \gamma^{\nu})^*$ where $p = \bigoplus_i t_i \gamma^{n_i}$ and $q = \bigoplus_j t_j \gamma^{n_j}$ are polynomials and $\sigma_{\infty}(s) = \nu/\tau$ is the throughput.

 $s = (1\gamma \oplus 4\gamma^2) \oplus (5\gamma^4 \oplus 7\gamma^6)(4\gamma^3)^*$ and $\sigma_{\infty}(s) = 3/4$

