Set-membership State Estimation of Max-Plus Linear Systems by using Tropical Polyhedra

\author{
Guilherme Winck, Mehdi Lhommeau, Laurent Hardouin
 ```
Laboratoire Angevin de Recherche en Ingénierie des Systèmes
 LARIS - Polytech Angers, University of Angers

```
}

June 15th 2023

\section*{Problem Statement}


\section*{(max, +) Linear Systems and Timed Event Graphs}

Timed Event Graphs behavior is perfectly described by (max,+) linear systems.
The signals considered are the firing dates of each transition. Internal transitions are denoted \(x_{i}\) (inputs transitions. \(u_{i}\), outputs transitions \(\left.y_{i}\right)\).

See : http//perso-laris.univ-angers.fr/~hardouin/GET_BO.html

\section*{Problem Statement}


\section*{Uncertain (max,+) Linear Systems}

Delays are assumed to be random values belonging to intervals.

\section*{Question?}
- Is it possible to compute a state estimation \(\hat{x}\) by considering inputs \(u\) and available output measurements \(y\) ?

See :
http://perso-laris.univ-angers.fr/~hardouin/GET_BOInterval.html

\section*{Outline}
- Idempotent semi-ring and (max, +) algebra
- Geometry and (max,+) algebra
- Model of Timed Event Graphs
- State Estimation: Observer synthesis
- State Estimation : Set-membership approach
- Complexity analysis
- Conclusion

\section*{Idempotent semi-ring and (max, + ) algebra}

\section*{Idempotent Semiring \(\mathcal{T}\)}
- Sum \(\oplus\), associative,commutative, zero element denoted \(\varepsilon\),
- Product \(\otimes\), associative, identity element denoted \(e\),
- Product \(\otimes\) distributes with respect of sum, \((a \oplus b) \otimes c=a \otimes c \oplus b \otimes c\),
- Zero element \(\varepsilon\) is absorbing, \(a \otimes \varepsilon=\varepsilon\)
- The sum is idempotent, \(a \oplus a=a\).
- \(a \oplus b=a \vee b=a \Leftrightarrow b \preceq a \Leftrightarrow a \wedge b=b\)
hence an idempotent semiring has a complete lattice structure, with \((\varepsilon)\) as bottom element and \(\left(T=\bigoplus_{x \in \mathcal{S}} x\right)\) as top element.

\section*{Example :(max,+) algebra, \(\overline{\mathbb{Z}}_{\text {max }}\)}

Sum \(\oplus\) is the operator max, product \(\otimes\) is classical sum,\(+ \varepsilon=-\infty\) and \(e=0\), then :
\[
\begin{gathered}
1 \oplus 1=1=\max (1,1) \\
2 \otimes 1=3=2+1
\end{gathered}
\]

\section*{Idempotent semi-ring and (max,+) algebra}

\section*{Fixed point equations}

For order preserving (isotone) mapping, \((x \preceq y \Leftrightarrow f(x) \preceq f(y))\), it is possible to compute fixed points \(f(x)=x\).

Application : \(x=a x \oplus b\)
Theorem: Over a complete idempotent semiring \(\mathcal{T}\), the least solution to \(x=a x \oplus b\) is \(x=a^{*} b\) with \(a^{*}=\bigoplus_{i \in \mathbb{N}_{0}} a^{i}=e \oplus a \oplus a^{2} \oplus \ldots\) * is called Kleene star operator.

\section*{Idempotent semi-ring and (max,+) algebra}

\section*{Residuation Theory (Croisot 56, Blyth 05)}

A pseudo inverse exists for order preserving mapping defined over ordered sets.

\section*{Inequality \(a \otimes x \preceq b\)}

Over a complete idempotent semiring \(\mathcal{T}\), inequality \(a \otimes x \preceq b\) admits a greatest solution, denoted, \(x=a \phi b\), (i.e. \(a(a \nless b) \preceq b\) and equality is achieved, if possible).

\section*{Example : \((m a x,+)\) algebra \(\overline{\mathbb{Z}}_{\text {max }}\)}

Inequality \(3 \otimes x \preceq 5\) admits a greatest solution \(x=3 \nless 5=5-3=2\). It achieves equality in the scalar case.

\section*{Idempotent semi-ring and (max, + ) algebra}

\section*{Matrix}

Let \(A, B, C\) three matrices in \(\mathcal{T}^{n \times n}\)
- \((A \oplus B)_{i j}=A_{i j} \oplus B_{i j}\)
- \((A \otimes B)_{i k}=\bigoplus_{j=1 \ldots n}\left(A_{i j} \otimes B_{j k}\right)\)
- \((A \nmid B)_{i k}=\bigwedge_{j=1 \ldots n}\left(A_{j i} \nmid B_{j k}\right)\), where \(A \nmid B\) is the greatest matrix s.t. \(A X \preceq B\)
- \((B \phi A)_{i k}=\bigwedge_{j=1 \ldots n}\left(A_{i j} \phi B_{k j}\right)\), where \(A \phi B\) is the greatest such \(X A \preceq B\)
- \((X)_{i j}=A_{i j}^{*}\) is the greatest matrix s.t. \(X \preceq A^{*}\)

\section*{Geometry in (max,+) algebra}

\section*{Segment in \(\mathbb{R}^{n}\) vs \(\overline{\mathbb{R}}_{\text {max }}^{n}\)}

A segment \([\mathrm{A}, \mathrm{B}]\) in \(\mathbb{R}^{n}\), is
\[
\begin{aligned}
{[\mathrm{A}, \mathrm{~B}] } & =\{t \mathrm{~A}+(1-t) \mathrm{B} \mid t \in[0,1]\} \\
& =\{\lambda \mathrm{A}+\beta \mathrm{B} \mid \lambda+\beta=1, \beta \geq 0, \lambda \geq 0\}
\end{aligned}
\]

A segment \([\mathrm{C}, \mathrm{D}]\) in \(\overline{\mathbb{R}}_{\text {max }}^{n}\) is
\([\mathrm{C}, \mathrm{D}]=\{\lambda \mathrm{C} \oplus \beta \mathrm{D} \mid \lambda \oplus \beta=e, \beta \geq \varepsilon, \lambda \geq \varepsilon\}\)



\section*{Geometry in (max,+) algebra}

\section*{Segment in \(\overline{\mathbb{R}}_{\text {max }}^{2}\)}

A segment \(\left[\mathrm{C}, \mathrm{D}_{i}\right]\) in \(\overline{\mathbb{R}}_{\text {max }}^{2}\) is \(\left[\mathrm{C}, \mathrm{D}_{i}\right]=\left\{\lambda \mathrm{C} \oplus \beta \mathrm{D}_{i} \mid \lambda \oplus \beta=e\right\}\), actually six types \(i \in[1,6]\)



\section*{Geometry in (max,+) algebra}

\section*{Segment in \(\overline{\mathbb{R}}_{\text {max }}^{2}\)}

A segment \(\left[\mathrm{C}, \mathrm{D}_{i}\right]\) in \(\overline{\mathbb{R}}_{\text {max }}^{2}\) is \(\left[\mathrm{C}, \mathrm{D}_{i}\right]=\left\{\lambda \mathrm{C} \oplus \beta \mathrm{D}_{i} \mid \lambda \oplus \beta=e\right\}\), actually six types \(i \in[1,6]\)



\section*{Geometry in (max,+) algebra}

\section*{Segment in \(\overline{\mathbb{R}}_{\text {max }}^{2}\)}

A segment \(\left[\mathrm{C}, \mathrm{D}_{i}\right]\) in \(\overline{\mathbb{R}}_{\text {max }}^{2}\) is \(\left[\mathrm{C}, \mathrm{D}_{i}\right]=\left\{\lambda \mathrm{C} \oplus \beta \mathrm{D}_{i} \mid \lambda \oplus \beta=e\right\}\), actually six types \(i \in[1,6]\)



\section*{Geometry in (max,+) algebra}

\section*{Line in \(\overline{\mathbb{R}}_{\text {max }}^{n}\)}

A classical line is \(a_{1} x_{1}+a_{2} x_{2}+b=c_{1} x_{1}+c_{2} x_{2}+d\). \(A(\max ,+)\) line is defined as : \(a_{1} x_{1} \oplus a_{2} x_{2} \oplus b=c_{1} x_{1} \oplus c_{2} x_{2} \oplus d\). \(\ln \overline{\mathbb{R}}_{\text {max }}^{2}\) this leads to 6 types of line.



\section*{Geometry in (max,+) algebra}

\section*{Half space \(\overline{\mathbb{R}}_{\text {max }}^{n}\)}

Each line separates the space in half-space.



\section*{Geometry in (max,+) algebra}

\section*{Half space in \(\overline{\mathbb{R}}_{\text {max }}^{n}\)}

Each line separates the space in half-space.


\section*{Geometry in (max,+) algebra}

\section*{Half space in \(\overline{\mathbb{R}}_{\text {max }}^{n}\)}

Each line separates the space in half-space.


\section*{Geometry in (max,+) algebra}

\section*{Intersection of half space in \(\overline{\mathbb{R}}_{\text {max }}^{n}\)}

Intersection of half-spaces yields a max-plus polytope also called tropical polytope.


\section*{Geometry in (max,+) algebra}

\section*{Tropical polytope in \(\overline{\mathbb{R}}_{\text {max }}\), external representation or \(\mathcal{H}\)-form}

It admits an external representation representing all the constraints as the set \(\mathcal{P}=\left\{x \in \overline{\mathbb{R}}_{\text {max }}^{n} \mid A x \oplus b \preceq C x \oplus d\right\}\), with \(A, C \in \overline{\mathbb{R}}_{\text {max }}^{q \times n}\) and \(b, d \in \overline{\mathbb{R}}_{\text {max }}^{q}\). Homogeneous representation \(\mathcal{P}=\left\{z \in \overline{\mathbb{R}}_{\max }^{n+1} \mid E z \preceq F z\right\}\), where \(E=(A b)\), \(F=\left(\begin{array}{ll}C & d\end{array}\right), z=\left(x^{t}, \alpha\right)^{t}\).

\section*{Tropical polytope in \(\overline{\mathbb{R}}_{\text {max }}\), internal representation or \(\mathcal{V}\)-form}

A max-plus polytope admits also an internal representation
\(\mathcal{P}=\left\{x \mid x=\bigoplus_{i=1}^{p} \lambda_{i} v^{i}\right\}\) where \(V=\left\{v^{1}, \ldots, v^{p}\right\} \subset \overline{\mathbb{Z}}_{\text {max }}^{n}\) is a set of \(p\)
vertices, and \(\lambda_{i} \in \overline{\mathbb{R}}_{\text {max }}\).
Remark A minimal representation exists (i.e. \(p\) is minimal).

\section*{Geometry in (max,+) algebra}

\section*{Transformation: \(\mathcal{H}\)-form to \(\mathcal{V}\)-form}

Algorithms exist (Butkovic 84, Gaubert \& Allamigeon 08,13) to change from a \(\mathcal{H}\)-form to a \(\mathcal{V}\)-form, and vice-versa.
Complexity is exponential according to the size \(n\) of the state. Practically it is lower ...
Library TPLib is available :
http://www.cmap.polytechnique.fr/~allamigeon/software/

\section*{Compact tropical polytope in \(\overline{\mathbb{R}}_{\text {max }}\)}

By considering the polytope \(\mathcal{P}=\left\{x \mid x=\bigoplus_{i=1}^{p} \lambda_{i} v^{i}\right\}\) with the constraint \(\bigoplus_{i=1}^{p} \lambda_{i}=e\), the polytope is compact and then is called a compact tropical polytope denoted
\[
\operatorname{co}(V)=\left\{x \mid x=\bigoplus_{i=1}^{p} \lambda_{i} v^{i}, \text { and } \bigoplus_{i=1}^{p} \lambda_{i}=e\right\}
\]

\section*{Geometry in (max,+) algebra}

\[
\begin{aligned}
& \mathcal{H} \text {-form } \Leftrightarrow A x \oplus b \preceq C x \oplus d \\
& \begin{aligned}
x_{2} \preceq & x 1 \oplus 2, \quad-3 x_{1} \oplus 1 \preceq x_{2}, \\
e \preceq x_{1}, & -6 x_{1} \oplus-4 x_{2} \preceq e .
\end{aligned} \\
& \Leftrightarrow
\end{aligned}
\]

\section*{\(\mathcal{V}\)-form}
\(\mathcal{P}=\left\{x \mid x=\bigoplus_{i=1}^{p} \lambda_{i} v^{i}\right\}\) with \(\bigoplus_{i=1}^{p} \lambda_{i}=e\)
\[
V=\left(\begin{array}{llll}
e & e & 4 & 6 \\
1 & 2 & 4 & 3
\end{array}\right)
\]
\[
\left(\begin{array}{cc}
\varepsilon & 1 \\
-3 & \varepsilon \\
\varepsilon & \varepsilon \\
-6 & -4
\end{array}\right)\binom{x_{1}}{x_{2}} \oplus\left(\begin{array}{l}
\varepsilon \\
1 \\
e \\
\varepsilon
\end{array}\right) \preceq\left(\begin{array}{ll}
e & \varepsilon \\
\varepsilon & e \\
\varepsilon & \varepsilon
\end{array}\right)\binom{x_{1}}{x_{2}} \oplus\left(\begin{array}{l}
2 \\
\varepsilon \\
\varepsilon \\
e
\end{array}\right)
\]

\section*{Geometry in (max,+) algebra}

\section*{Intersection of tropical polytope}

From the \(\mathcal{H}\)-form, it is directly obtained, the \(\mathcal{V}\)-form is still with an exponential complexity.


\section*{Geometry in (max, + ) algebra}

\section*{Union of tropical polytope is not a tropical polytope}

A smallest over approximation as a tropical polytope can be obtained with a polynomial complexity.


\section*{Geometry in (max, + ) algebra}

\section*{Difference Bound Matrix (DBM) is a tropical polytope}

\section*{DBM (or zone) in canonical form}

\[
\begin{aligned}
& 1 \leq x 1 \leq 5 \\
& 0 \leq x 2 \leq 4 \\
& x_{2} \leq x_{1}+1 \\
& x_{2} \geq x 1-2 \\
& \Leftrightarrow\left(\begin{array}{ccc}
0 & -1 & 0 \\
5 & 0 & 2 \\
4 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
5 & 0 & 2 \\
4 & 1 & 0
\end{array}\right)^{*}
\end{aligned}
\]

A DBM in \(\mathbb{R}_{\text {max }}^{n}\) corresponds to a tropical polytope with \(p=n+1\) generators ( \(p=3\) yellow vertices).

\section*{Geometry in (max,+) algebra}

\section*{Box is a DBM hence a tropical polytope}

\section*{Box}

\[
\begin{aligned}
& 1 \leq x 1 \leq 4 \\
& 0 \leq x 2 \leq 3
\end{aligned}
\]

The corresponding polytope is with 3 generators (3 green vertices).
\[
V=\left(\begin{array}{lll}
1 & 1 & 4 \\
3 & e & e
\end{array}\right)
\]

A box in \(\overline{\mathbb{R}}_{\text {max }}^{n}\) corresponds to a tropical polytope with \(p=n+1\) generators.

\section*{TEG Model in \(\overline{\mathbb{Z}}_{\text {max }}\)}


\section*{Firing Date [Cohen et al., IEEE TAC 85]}
\(x_{i}(k)\) : date of the firing numbered \(k\) for the transition labelled \(x_{i}\).

For each transition :
\[
\begin{aligned}
& x_{1}(k)=\max \left(1+u(k), x_{2}(k-1)\right) \\
& x_{2}(k)=3+x_{1}(k) \\
& y(k)=3+x_{2}(k)
\end{aligned}
\]
\(\ln \overline{\mathbb{Z}}_{\text {max }}\)
\[
\begin{aligned}
& x_{1}(k)=1 \otimes u(k) \oplus x_{2}(k-1) \\
& x_{2}(k)=3 \otimes x_{1}(k) \\
& y(k)=3 \otimes x_{2}(k)
\end{aligned}
\]

\section*{TEG Model in \(\overline{\mathbb{Z}}_{\text {max }}\)}


\section*{Firing Date [Cohen et al., IEEE TAC 85]}
\(x_{i}(k)\) : date of the firing numbered \(k\) for the transition labelled \(i\).

\section*{Dynamic Model}
\[
\begin{aligned}
&\binom{x_{1}(k)}{x_{2}(k)}=\left(\begin{array}{ll}
\varepsilon & \varepsilon \\
3 & \varepsilon
\end{array}\right)\binom{x_{1}(k)}{x_{2}(k)} \oplus\left(\begin{array}{ll}
\varepsilon & e \\
\varepsilon & \varepsilon
\end{array}\right)\binom{x_{1}(k-1)}{x_{2}(k-1)} \oplus\binom{1}{\varepsilon} u(k) \\
& y(k)=\left(\begin{array}{ll}
\varepsilon & 3
\end{array}\right)\binom{x_{1}(k)}{x_{2}(k)} \\
& x(k)=A_{0} x(k) \oplus A_{1} x(k-1) \oplus B u(k) \\
& y(k)=C x(k)
\end{aligned}
\]

\section*{TEG Model in \(\overline{\mathbb{Z}}_{\text {max }}\), Markovian Representation}

\section*{State extension [Cohen et al., IEEE TAC 85]}
\(x(k)=A_{0} x(k) \oplus A_{1} x(k-1) \oplus A_{2} x(k-2) \oplus B u(k)\) \(y(k)=C x(k)\)

By extending the state vector \(\tilde{x}=\left[x^{\top} x^{\top}\right]^{T}\) :
\[
\begin{aligned}
\tilde{x}(k) & =\tilde{A}_{0} \tilde{x}(k) \oplus \tilde{A}_{1} \tilde{x}(k-1) \oplus \tilde{B} u(k) \\
y(k) & =\tilde{C} \tilde{x}(k)
\end{aligned}
\]

\section*{TEG Model in \(\overline{\mathbb{Z}}_{\text {max }}\), Markovian Representation}

\section*{Implicit to Markovian Representation}

Theorem : Over a complete idempotent semiring \(\mathcal{T}\), the least solution to \(x=a x \oplus b\) is \(x=a^{*} b\) with \(a^{*}=\bigoplus_{i \in \mathbb{N}_{0}} a^{i}=e \oplus a \oplus a^{2} \oplus \ldots\)
* is called Kleene star operator.

Application
\[
\begin{aligned}
\tilde{x}(k) & =\tilde{A}_{0} \tilde{x}(k) \oplus \tilde{A}_{1} \tilde{x}(k-1) \oplus \tilde{B} u(k) \\
y(k) & =\tilde{C} \tilde{x}(k)
\end{aligned}
\]
by considering \(A=\tilde{A}_{0}^{*} \tilde{A}_{1}\) and \(B=\tilde{A}_{0}^{*} \tilde{B}\), a Markovian standard form is obtained :
\[
\begin{aligned}
& x(k)=A x(k-1) \oplus B u(k) \\
& y(k)=C x(k)
\end{aligned}
\]

\section*{Signal in \(\overline{\mathbb{Z}}_{\max }[\gamma]\)}
\[
\begin{aligned}
& x_{i}(\gamma)=1 \gamma \oplus 5 \gamma^{3} \oplus 7 \gamma^{5} \oplus \\
& 10 \gamma^{8} \oplus 11 \gamma^{11} \oplus T \gamma^{14}
\end{aligned}
\]


\section*{\(\gamma\) transform [Cohen, Quadrat et al. IEEE TAC 89] \(\rightarrow\) More}
\(\gamma\) transform of \(x(k)\) is a formal series \(x(\gamma)=\bigoplus_{k \in \mathbb{N}} \gamma^{k} x(k)\). The set of series is a semiring denoted \(\overline{\mathbb{Z}}_{\text {max }} \llbracket \gamma \rrbracket\). A series with a finite support is called a polynomial, and a monomial if there is only one element.

\section*{TEG Model in \(\overline{\mathbb{Z}}_{\max }[\gamma]\)}


The previous system in \(\overline{\mathbb{Z}}_{\text {max }}[\gamma]\) :
\[
\begin{array}{ll}
x(\gamma)=A x(\gamma) \oplus B u(\gamma) & =\left(\begin{array}{ll}
\varepsilon & \gamma \\
3 & \varepsilon
\end{array}\right) x(\gamma) \oplus\binom{1}{\varepsilon} u(\gamma) \\
y(\gamma)=C x(\gamma) & =\left(\begin{array}{ll}
\varepsilon & 3
\end{array}\right) x(\gamma)
\end{array}
\]

Transfer relations in \(\left.\overline{\mathbb{Z}}_{\max } \llbracket \gamma\right]\) :
\[
\begin{aligned}
& x(\gamma)=A^{*} B u(\gamma)=\left(\begin{array}{cc}
(3 \gamma)^{*} & \gamma(3 \gamma)^{*} \\
3(3 \gamma)^{*} & (3 \gamma)^{*}
\end{array}\right)\binom{1}{\varepsilon} u(\gamma) \\
& y(\gamma)=C A^{*} B u(\gamma)=\left(7(3 \gamma)^{*}\right) u(\gamma)
\end{aligned}
\]

Software library MinmaxGD available :
http://perso-laris.univ-angers.fr/~hardouin/outils.html

\section*{State Estimation : Observer Synthesis}


\section*{Prediction computation :}
\[
\hat{x}(\gamma)=A x(\gamma) \oplus B u(\gamma)
\]
or
\[
\hat{x}(k)=A x(k-1) \oplus B u(k) .
\]

\section*{State Estimation : Observer Synthesis}


\section*{Objective :}

Compute the greatest observer matrix \(L\) such that
\[
\hat{x} \preceq x .
\]

\section*{State Estimation : Observer Synthesis}


\section*{System Equations :}
\[
\begin{aligned}
& x=A x \oplus B u \oplus S q=A^{*} B u \oplus A^{*} S q \\
& y=C x=C A^{*} B u \oplus C A^{*} S q .
\end{aligned}
\]

\section*{Estimated State Equations :}
\[
\begin{aligned}
\hat{x} & =A \hat{x} \oplus B u \oplus L(\hat{y} \oplus y) \\
\hat{y} & =C \hat{x} .
\end{aligned}
\]

\section*{State Estimation : Observer Synthesis}

\section*{Constraints Satisfaction :}

Compute the greatest observer matrix \(L\) such that
\[
\begin{array}{llll}
(A \oplus L C)^{*} B u & \preceq & A^{*} B u & \forall u \\
(A \oplus L C)^{*} L C A^{*} S q & \preceq & A^{*} S q & \forall q,
\end{array}
\]

\section*{Constraints Satisfaction :}

Compute the greatest matrix \(L\) such that
\[
\begin{array}{lll}
(A \oplus L C)^{*} B & \preceq & A^{*} B \Leftrightarrow L \preceq\left(A^{*} B\right) \phi\left(C A^{*} B\right) \\
(A \oplus L C)^{*} L C A^{*} S & \preceq & A^{*} S \Leftrightarrow L \preceq\left(A^{*} S\right) \phi\left(C A^{*} S\right) .
\end{array}
\]

\section*{State Estimation : Observer Synthesis}

Optimal Matrix : (Hardouin et al. IEEE TAC 2010, Hardouin et al. 2019)
\[
L_{\text {opt }}=\left(\left(A^{*} B\right) \phi\left(C A^{*} B\right)\right) \wedge\left(\left(A^{*} S\right) \phi\left(C A^{*} S\right)\right)
\]
is the greatest such that
\[
\hat{x} \preceq x .
\]

\section*{State Estimation : Observer Synthesis : Performance Analysis}

\section*{Equality of the asymptotic slope (Hardouin et al. IEEE TAC 2010)}

If matrix \(C\) linking state vector to the output is connected to all connected components of the graph then
\[
\sigma_{\infty}\left(\hat{x}_{i}\right)=\sigma_{\infty}\left(x_{i}\right) \forall i
\]

\section*{Corollary :}

If state \(x_{i}\) belongs to a connected component whose at least one transition is measured then the error \(\hat{x}_{i}-x_{i}\) is bounded.

\section*{State Estimation : Set-membership approach}

\section*{Uncertain system}
\(A(k) \in[\underline{A}, \bar{A}]=[A], B(k) \in[\underline{B}, \bar{B}]=[B], C(k) \in[\underline{C}, \bar{C}]=[C]\)
Each matrices entries is supposed bounded and \(A(k), B(k), C(k)\) is a realization at step \(k\)
\[
\begin{aligned}
x(k) & =A(k) x(k-1) \oplus B(k) u(k) \\
y(k) & =C(k) x(k)
\end{aligned}
\]

In the sequel, to enlighten the notation, we assume (without lost of generality) autonomous systems, i.e., \(x(k)=A(k) x(k-1)\). Indeed we can consider \(\tilde{x}=\left(x^{t} u^{t}\right)^{t}\) and \(\tilde{A}=\left(\begin{array}{cc}A & \varepsilon \\ \varepsilon & B\end{array}\right)\)

\section*{State Estimation : Set-membership approach}

Uncertain system \(A(k) \in[\underline{A}, \bar{A}]=[A], C(k) \in[\underline{C}, \bar{C}]=[C]\)
\[
\begin{aligned}
& x(k)=A(k) x(k-1) \\
& y(k)=C(k) x(k)
\end{aligned}
\]

Q1: Assuming \(x(k-1) \in \mathcal{X}_{k-1 \mid k-1}\) a known set, is it possible to compute the set \(\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}\) ? (prediction)
Q2 : Assuming \(y(k)\) available, is it possible to compute the inverse image set \([C]^{-1}(y(k))=\{x \mid y(k)=C x, C \in[\underline{C}, \bar{C}]\}\) ? (likelihood) Q3: Is it possible to compute the intersection of the two previous sets to obtain the set \(\mathcal{X}_{k \mid k}=\mathcal{X}_{k \mid k-1} \cap[C]^{-1}(y(k))\) ? (estimation)

\section*{State Estimation : Set-membership approach}

Uncertain system \(A \in[\underline{A}, \bar{A}], C \in[\underline{C}, \bar{C}]\)
\[
\begin{aligned}
& x(k)=A(k) x(k-1) \\
& y(k)=C(k) x(k)
\end{aligned}
\]

Q1 : Assuming \(x(k-1) \in \mathcal{X}_{k-1 \mid k-1}\) a known set, is it possible to compute the set \(\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}\) ?
Assumption : \(\mathcal{X}_{k-1 \mid k-1}\) is depicted as a tropical polytope. (Lemma 2.1 PhD Guilherme Winck (University of Angers)).

\section*{State Estimation : Set-membership approach}
: Assuming \(x(k-1) \in \mathcal{X}_{k-1 \mid k-1}\) a known set, is it possible to compute the set \(\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}\) ?


\section*{State Estimation : Set-membership approach}
: Assuming \(x(k-1) \in \mathcal{X}_{k-1 \mid k-1}\) a known set, is it possible to compute the set \(\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}\) ?


\section*{State Estimation : Set-membership approach}
: Assuming \(x(k-1) \in \mathcal{X}_{k-1 \mid k-1}\) a known set, is it possible to compute the set \(\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}\) ?


\section*{State Estimation : Set-membership approach}
: Assuming \(x(k-1) \in \mathcal{X}_{k-1 \mid k-1}\) a known set, is it possible to compute the set \(\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}\) ?


\section*{State Estimation : Set-membership approach}

\section*{Uncertain system \(A \in[\underline{A}, \bar{A}], C \in[\underline{C}, \bar{C}]\)}
\[
\begin{aligned}
& x(k)=A(k) x(k-1) \\
& y(k)=C(k) x(k)
\end{aligned}
\]

Q2 : Assuming \(y(k)\) available, is it possible to compute the inverse image set \([C]^{-1}(y(k))=\{x \mid y(k)=C x, C \in[\underline{C}, \bar{C}]\}\) ?
The set can be written as \([C]^{-1}(y(k))=\{x \mid \underline{C} x \preceq y(k) \preceq \bar{C} x\}\), which can be decomposed in two sets :
\[
\mathcal{X}=\overline{\mathcal{X}} \cap \underline{\mathcal{X}}
\]
where \(\overline{\mathcal{X}}=\{x \mid \underline{C} x \preceq y(k)\}\) and \(\underline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} x\}\)
Renato Cândido et al., " An Algorithm to Compute the Inverse Image of a Point with Respect to a Nondeterministic Max Plus Linear System", in IEEE TAC, 2021.

\section*{State Estimation : Set-membership approach}

Computation \(\overline{\mathcal{X}}=\{x \mid \underline{C} x \preceq y(k)\} \Leftrightarrow \overline{\mathcal{X}}=\{x \mid x \preceq \underline{C} \downarrow y(k)\}\)


\section*{State Estimation : Set-membership approach}

Computation \(\underline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} \times\}\)


\section*{State Estimation : Set-membership approach}

Computation \(\underline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} \times\}\)


\section*{State Estimation : Set-membership approach}

Computation \(\underline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} \times\}\)


\section*{State Estimation : Set-membership approach}
: Computation \([C]^{-1}(y(k))=\overline{\mathcal{X}} \cap \underline{\mathcal{X}}\)


\section*{State Estimation : Set-membership approach}

\section*{Q3 : Is it possible to obtain the intersection \(\mathcal{X}_{k \mid k}=[C]^{-1}(y(k)) \cap \mathcal{X}_{k \mid k-1}\)}


\section*{State Estimation : Set-membership approach}

\section*{Q3 : Is it possible to obtain the intersection \(\mathcal{X}_{k \mid k}=[C]^{-1}(y(k)) \cap \mathcal{X}_{k \mid k-1}\)}


\section*{State Estimation : Set-membership approach}

Filtering algorithm :
Require : \(\mathcal{X}_{k-1 \mid k-1}, y(k)\)
Ensure : \(\mathcal{X}_{k \mid k}\)
\[
\begin{array}{ll}
\mathcal{X}_{k \mid k-1}=[\underline{A}, \bar{A}] \mathcal{X}_{k-1 \mid k-1} & \text { (prediction) } \\
\underline{\mathcal{X}}=\{x \mid x \preceq \underline{C} \nmid y(k)\} & \\
\overline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} x\} & \text { (likelihood) } \\
{[C]^{-1}(y(k))=\underline{\mathcal{X}} \cap \overline{\mathcal{X}}} & \text { (estimation) } \\
\mathcal{X}_{k \mid k}=\mathcal{X}_{k \mid k-1} \cap[C]^{-1}(y(k)) &
\end{array}
\]

\section*{State Estimation : Set-membership approach}

Filtering algorithm :
Require: \(\mathcal{X}_{k-1 \mid k-1}, y(k)\)
\(n, N, q\)
Ensure : \(\mathcal{X}_{k \mid k}\)
\[
\begin{align*}
& \mathcal{X}_{k \mid k-1}=[\underline{A}, \bar{A}] \mathcal{X}_{k-1 \mid k-1}  \tag{2}\\
& \underline{\mathcal{X}}=\{x \mid x \preceq \underline{C} \nmid y(k)\}  \tag{nq}\\
& \overline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} x\}  \tag{nq}\\
& {[C]^{-1}(y(k))=\underline{\mathcal{X}} \cap \overline{\mathcal{X}}} \\
& \mathcal{X}_{k \mid k}=\mathcal{X}_{k \mid k-1} \cap[C]^{-1}(y(k)) \tag{n}
\end{align*}
\]

\section*{State Estimation : Set-membership approach}

Alternative approaches: Decomposition in PWA (Adzkiya et al.
Automatica 2015)


\section*{State Estimation : Set-membership approach}

Alternative approaches : Decomposition in PWA (Adzkiya et al.
Automatica 2015)


\section*{State Estimation : Set-membership approach}

\section*{Alternative approaches : Interval analysis (Winck PhD 2022)}


\section*{State Estimation : Set-membership approach}

\section*{Alternative approaches : Interval analysis (Winck PhD 2022)}


\section*{State Estimation : Set-membership approach}

\section*{Alternative approaches : Interval analysis (Winck PhD 2022)}


\section*{State Estimation : Set-membership approach}

\section*{Alternative approaches : Interval analysis (Winck PhD 2022)}


\section*{State Estimation : Set-membership approach}

\section*{Performances comparison}
- Using tropical polytope approach, the set of all possible solution is obtained, the complexity is \(\mathcal{O}\left(n^{n}\right)\).
- Using DBM the same set is obtained (Adzkiya et al. Automatica 2015), with an exponential complexity also, but practically worst.
- Using Box an overapproximation is obtained with a polynomial complexity (Winck, PhD 2022).
- Using SMT (Satisfability Modulo theory) solver (e.g., z3 solver) (Mufid et al. IEEE TAC, 2022) is equivalent to keep the \(\mathcal{H}\)-form of the tropical polytope. This is suitable when a point included in the estimation set is desired (check a solution). But needs to keep all the constraints on the horizon of estimation, which growth at each step.

\section*{State Estimation : Set-membership approach}

Where is the estimation given by the observer?


Observer computed off line with a polynomial complexity
\begin{tabular}{llllll} 
& & & \\
\hline\(=1\) & 5 & 10 & 15 & 20
\end{tabular}

\section*{Conclusion}

\section*{State Estimation}
- An efficient observer exists, the greatest possible solution is obtained
- A set-membership approach based on max-plus polytope is the most efficient to obtain the set of all possible solutions, even if the complexity is still exponential.
- Interval analysis yields an over estimation of the solution set with a polynomial complexity

\section*{Conclusion}

\section*{Open problems to address}
- Developing an interval observer to compute on-line an upper bound
- Developing more efficient algorithms to compute intersection of max-plus polytope
- Developing method to obtain underestimation set (set included in the solution set), (Barnhill et al., arxiv.org, 2023).
- Selecting a point in the solution set (support) by considering stochastic approach (Santos-Mendes et al. IEEE TAC, 2019, Winck et al. IEEE TAC 2022).
- Considering only \(\mathcal{H}\)-form to avoid the costly transposition to \(\mathcal{V}\)-form.
- Developing state estimation method for systems involving resource sharing (Schafaschek et al. 2020).

\section*{References}
- L. Hardouin, B. Cottenceau, Y. Shang, J. Raisch "Control and State Estimation for max-plus Linear Systems" Journal on Foundations and Trends in Systems and Control 2019 http ://dx.doi.org/10.1561/2600000013
- G. Espindola-Winck, R. Santos-Mendes, M. Lhommeau, and L. Hardouin, "Stochastic filtering scheme of implicit forms of Uncertain Max-plus linear systems", IEEE TAC, 2022, DOI : 10.1109/TAC.2022.3176841
- Rafael Santos-Mendes, Laurent Hardouin, Mehdi Lhommeau "Stochastic Filtering of Max-plus Linear Systems with Bounded Disturbances" , IEEE TAC, september 2019, doi :10.1109/TAC.2018.2887353
- David Barnhill R. Yoshida K. Miura, "Maximum Inscribed and Minimum Enclosing Tropical Balls of Tropical Polytopes and Applications to Volume Estimation and Uniform Sampling", https ://arxiv.org/pdf/2303.02539.pdf.
- G. Schafaschek, S. Moradi, L. Hardouin, J. Raisch
"Optimal Control of Timed Event Graphs with Resource Sharing and Output-Reference Update", WODES, Rio De Janeiro, 2020

\section*{References 1 :}

\section*{(Cohen et al. IEEE TAC 85)}
author=G. Cohen and D. Dubois and J.P. Quadrat and M. Viot, title=A linear system theoretic view of discrete event processes and its use for performance evaluation in manufacturing, journal=IEEE Trans. on Automatic Control, volume \(=A C-30\),
pages \(=210-220\), year \(=1985\)

\section*{(Cohen, Quadrat et al. IEEE TAC 89)}
author=G. Cohen and P. Moller and J.P. Quadrat and M. Viot, title=Algebraic Tools for the Performance Evaluation of Discrete Event Systems, journal=IEEE Proceedings : Special issue on Discrete Event Systems, volume \(=77\), pages \(=39-58\),

\section*{References 2 :}

\section*{(Renato Cândido et al., 2021)}

Renato Cândido, L. Hardouin, M. Lhommeau and R. Santos Mendes IEEE Trans. Automatic Control, 2021, 10.1109/TAC.2020.2998726

\section*{(Mufid et al. 2022)}

Muhammad Syifa'ul Mufid, Dieky Adzkiya and Alessandro Abate SMT-Based Reachability Analysis of High Dimensional Interval Max-Plus Linear Systems,
IEEE Trans. on Automatic Control, 2022

\section*{References 3 :}

\section*{(Hardouin et al. IEEE TAC 2010)}
author \(=\mathrm{L}\). Hardouin and C.A. Maia and B. Cottenceau and M.
Lhommeau, year \(=2010\), month \(=\) February,
volume \(=55-2\),
title \(=\) Observer Design for (max,plus) Linear Systems, journal =IEEE Transactions on Automatic Control, note=istia.univ-angers.fr/~hardouin/Observer.html

\section*{Adzkiya et al. 2015}
author=D. Adzkiya, B. De Schutter and A. Abate, title=Computational techniques for reachability analysis of Max-Plus-Linear systems, note \(=\) Automatica, year \(=2015\),

Semiring of periodic series (Cohen, Quadrat et al. IEEE TAC 89)
A periodic series in
\(s=p \oplus q\left(\tau \gamma^{\nu}\right)^{*}\) where \(p=\bigoplus_{i} t_{i} \gamma^{n_{i}}\) and \(q=\bigoplus_{j} t_{j} \gamma^{n_{j}}\) are polynomials and \(\sigma_{\infty}(s)=\nu / \tau\) is the asymptotic slope (the throughput).


Semiring of periodic series (Cohen, Quadrat et al. IEEE TAC 89)
A periodic series in
\(s=p \oplus q\left(\tau \gamma^{\nu}\right)^{*}\) where \(p=\bigoplus_{i} t_{i} \gamma^{n_{i}}\) and \(q=\bigoplus_{j} t_{j} \gamma^{n_{j}}\) are polynomials and \(\sigma_{\infty}(s)=\nu / \tau\) is the asymptotic slope (the throughput).


\section*{Semiring of periodic series (Cohen, Quadrat et al. IEEE TAC 89)}

\section*{Operations over semiring of periodic series over}
- \(s=s_{1} \oplus s_{2}\) is a periodic series, asymptotic slope
\(\sigma_{\infty}(s)=\min \left(\sigma_{\infty}\left(s_{1}\right), \sigma_{\infty}\left(s_{2}\right)\right)\)
- \(s=s_{1} \otimes s_{2}\) is a periodic series, asymptotic slope
\(\sigma_{\infty}(s)=\min \left(\sigma_{\infty}\left(s_{1}\right), \sigma_{\infty}\left(s_{2}\right)\right)\)
- \(s=s_{1} \wedge s_{2}\) is a periodic series, asymptotic slope
\(\sigma_{\infty}(s)=\max \left(\sigma_{\infty}\left(s_{1}\right), \sigma_{\infty}\left(s_{2}\right)\right)\)
- \(s=s_{1} \oint s_{2}\) is a periodic series, \(\sigma_{\infty}(s)=\sigma_{\infty}\left(s_{2}\right)\) if \(\sigma_{\infty}\left(s_{2}\right) \leq \sigma_{\infty}\left(s_{1}\right)\) else \(s=\varepsilon\).

\section*{Software Tools}

Software to handle periodic series is available on :
http://perso-laris.univ-angers.fr/~hardouin/outils.html

\section*{Second order theory (MAXPLUS, IEEE CDC 91)}

\section*{Counter associated to a series}

Let \(s=\bigoplus_{k \in \mathbb{Z}} s(k) \gamma^{k}\) be a series and \(\mathcal{C}_{s}\) the counter function associated to \(s\) defined by \(s=\bigoplus_{t \in \mathbb{Z}} t \gamma^{\mathcal{C}_{s}(t)}\).

Distance in the event domain between 2 series (Santos Mendes et al. ETFA 05)
Let \(s_{1}\) and \(s_{2}\) be two series, the distance in the event domain is denoted \(\Delta_{s_{1} S_{2}}\) and defined by
\[
\Delta_{s_{1} s_{2}}=\max \left\{\left|\mathcal{C}_{s_{1}}(t)-\mathcal{C}_{s_{2}}(t)\right| \text { s.t. } t \in \mathbb{Z}\right\}
\]
it can be evaluated by considering
\(\Delta_{s_{1} s_{2}}=\mathcal{C}_{d_{12}}(0)\) where \(d_{12}=\left(s_{1} \wedge s_{2}\right) \phi\left(s_{1} \oplus s_{2}\right)\)

Distance in the event domain (Santos Mendes et al. ETFA 05)

Illustration : practical computation of the distance
Let \(s_{1}=2 \oplus 3 \gamma^{4} \oplus 8 \gamma^{5} \oplus 10 \gamma^{8}\left(2 \gamma^{2}\right)^{*}\) and
\(s_{2}=1 \gamma \oplus 4 \gamma^{2} \oplus 5 \gamma^{4} \oplus 7 \gamma^{6} \oplus 9 \gamma^{7}\left(2 \gamma^{2}\right)^{*}\) be two series. Series \(d_{12}=\left(s_{1} \wedge s_{2}\right) \phi\left(s_{1} \oplus s_{2}\right)=-2 \gamma \oplus-1 \gamma \oplus 0 \gamma^{3} \oplus 1 \gamma^{4} \oplus 3 \gamma^{5}(1 \gamma)^{*}\) and the associated counter \(\Delta_{s_{1} s_{2}}=\mathcal{C}_{d_{12}}(0)=3\).


\section*{Distance in the event domain (Santos Mendes et al. ETFA 05)}

Application : bound computation for the difference between firing of two transitions subject to the same inputs
Let \(x_{1}=s_{1} u\) and \(x_{2}=s_{2} u\) two series describing the behavior of two states. The distance between these trajectories can be computed by considering \(d u_{12}=\left(s_{1} u \wedge s_{2} u\right) \phi\left(s_{1} u \oplus s_{2} u\right)=\left(x_{1} \wedge x_{2}\right) \phi\left(x_{1} \oplus x_{2}\right)\). We can prove that \(d u_{12} \succeq\left(s_{1} \wedge s_{2}\right) \phi\left(s_{1} \oplus s_{2}\right)=d_{12}\), hence \(\mathcal{C}_{d u_{12}}(0) \leq \mathcal{C}_{d_{12}}(0) \forall u\) and consequently
\[
\Delta_{x_{1} x_{2}} \leq \mathcal{C}_{d_{12}}(0) \forall u
\]

\section*{Corollary}

Extension in the matrix case is straight forward, the bound for the event difference between two transitions will be the maximum for each entry.

\section*{Idempotent semi-ring and (max,+) algebra}

\section*{Sum of matrices} with entries in
\[
\left(\begin{array}{ll}
2 & 5 \\
3 & 7
\end{array}\right) \oplus\left(\begin{array}{ll}
e & 8 \\
1 & 3
\end{array}\right)=\left(\begin{array}{ll}
2 & 8 \\
3 & 7
\end{array}\right)
\]

Product of matrices \(A \otimes B=C\) with entries in
\[
\left(\begin{array}{ll}
2 & 5 \\
\varepsilon & 3 \\
1 & 8
\end{array}\right) \otimes\binom{e}{1}=\left(\begin{array}{l}
2 \otimes e \oplus 5 \otimes 1 \\
\varepsilon \otimes e \oplus 3 \otimes 1 \\
1 \otimes e \oplus 8 \otimes 1
\end{array}\right)=\left(\begin{array}{l}
6 \\
4 \\
9
\end{array}\right)
\]

Residuation of matrices \(A, B\) is the greatest solution of \(A\)
\[
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right) \phi\left(\begin{array}{c}
8 \\
9 \\
10
\end{array}\right)=\binom{(1 \nmid 8) \wedge(3 \downarrow 9) \wedge(5 \downarrow 10)}{(2 \nmid 8) \wedge(4 \emptyset 9) \wedge(6 \downarrow 10)}=\binom{5}{4}
\]

\section*{TEG Model in \(\overline{\mathbb{Z}}_{\text {max }}\)}

\section*{\(\overline{\mathbb{Z}}_{\text {max }}\) is the (max, + ) algebra}
\(\overline{\mathbb{Z}}_{\text {max }}=(\mathbb{Z} \cup\{-\infty,+\infty\}, \max ,+)\) is an idempotent semiring, i.e., sum \(\oplus\) is the operator max, product \(\otimes\) is classical sum + , the neutral element of the sum is denoted \(\varepsilon=-\infty\) and the neutral element of the product is de noted \(e=0\). The sum is idempotent :
\[
\left(\forall a \in \overline{\mathbb{Z}}_{\max }, a \oplus a=a\right)
\]

Example :,
\[
\begin{gathered}
1 \oplus 1=1=\max (1,1) \\
2 \otimes 1=3=2+1 \\
a \oplus \varepsilon=a=\max (a,-\infty) \\
a \otimes e=a=a+0 \\
\varepsilon \otimes a=\varepsilon=-\infty+a=-\infty
\end{gathered}
\]

\section*{Signal in \(\overline{\mathbb{Z}}_{\max }[\gamma]\)}

\section*{Series in \(\overline{\mathbb{Z}}_{\text {max }}\lfloor\gamma\rceil\)}

A series : \(s=\bigoplus_{k \in \mathbb{Z}} s(k) \gamma^{k}\) codes a non decreasing trajectory. The set of series is a semiring denoted \(\overline{\mathbb{Z}}_{\max } \llbracket \gamma \rrbracket\). A series with a finite support is called a polynomial, and a monomial if there is only one element.
\[
s=1 \gamma \oplus 4 \gamma^{2} \oplus 5 \gamma^{4} \oplus 7 \gamma^{6} \oplus \ldots
\]

Time


\section*{State Estimation : Observer Synthesis}


\section*{Matrix \(S\) and input \(q\) :}
- vector \(q\) represents a vector of exogenous uncontrollable inputs (disturbances, disabling the firing) which act on the system through matrix \(S\).
- When matrix \(S\) is equal to identity matrix and \(q=x_{0}\) they may represent the initial state of the system.

\section*{State Estimation : Observer Synthesis}


\section*{Matrix \(S\) and input}
- vector \(q\) can depict uncertain delay. E.g., by choosing \(q_{3}=t x_{2}\) with \(t \in[6,12]\)

\section*{Idempotent semi-ring and (max, + ) algebra}


> Sandwiches Algebra [Cohen et al. ]
> 1 piece of Bread +1 slice of ham +
> 1 slice of cheese is equal to 1
> sandwich. Another way of counting!

\section*{TEG Model in \(\overline{\mathbb{Z}}_{\text {max }}[\gamma]\)}

A periodic series in
\(s=p \oplus q\left(\tau \gamma^{\nu}\right)^{*}\) where \(p=\bigoplus_{i} t_{i} \gamma^{n_{i}}\) and \(q=\bigoplus_{j} t_{j} \gamma^{n_{j}}\) are polynomials and \(\sigma_{\infty}(s)=\nu / \tau\) is the throughput.

\section*{\(\left(1 \gamma \oplus 4 \gamma^{2}\right)\) \\ \(\left(5 \gamma^{4} \oplus 7 \gamma^{6}\right)\left(4 \gamma^{3}\right)\) and} s)
```

