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Counters of events (cumulative value)

Function C (t) gives the number of event’s occurrence up to time t, e.g.,
C (6) = 4 means that 4 events occurred up to time 6.
It is a non-decreasing and non-continuous function.
The set of Counters is denoted C in the sequel.
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1. Transformations in C : δ-operator

Time Shifting of Counter
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x1(t) x2(t)

+3

Delay in timed Petri net

x2(t)=x1(t −3)

Operator δτ , shifting of τ time unit :

δτ : C → C, C (t)→ C (t − τ), e.g.,
δ3 : C → C, C (t)→ C (t − 3) , is the mapping delaying a signal of 3 times
unit, i.e., x2(t) = δ3(x1(t)).
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1. Transformations in C : γ-operator

Event Shifting
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+2

Initial marking

x2(t)= x1(t)+2

Operator γn, shifting of n events :

γn : C → C,C (t)→ n + C (t), e.g.,
γ2 : C → C,C (t)→ 2 + C (t), is the mapping shifting a signal of 2 events,
i.e., x2(t) = γ2(x1(t)).
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1. Operators composition

δτ : C → C,C (t)→ C (t − τ)

γn : C → C,C (t)→ n + C (t)

γn ◦ δτ = δτ ◦ γn

Composition of operators

x2= γ2(δ4(x1)) = δ4(γ2(x1))

4

γnδτ to code a counter function
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1. Counter functions and Operators

Counters C (t) can be coded as a union of monomial γnδτ

C (γ, δ) =
⋃
γC(t)δt where γ is the event shift operator and δ is the time

shift operator.
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γ6δ+∞
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2. Idempotent semi-ring

Idempotent Semiring S (Tropical Algebra (I. Simon))

Sum ⊕, associative,commutative, zero element denoted ε ,

Product ⊗, associative, identity element denoted e,

Product ⊗ distributes with respect of sum,
(a⊕ b)⊗ c = a⊗ c ⊕ b ⊗ c ,

Zero element ε is absorbing, a⊗ ε = ε

The sum is idempotent, a⊕ a = a.

b � a⇔ a⊕ b = a = a ∨ b ⇔ a ∧ b = b
hence an idempotent semiring has a complete lattice structure, with
(ε) as bottom element and (T =

⊕
x∈S x) as top element.

(min,+) algebra, Zmin More

Sum ⊕ is the operator min, product ⊗ is classical sum +, ε = +∞,
T = −∞ and e = 0, then :

1⊕ 2 = 1 = min(1, 2), (warning 2 � 1)
2⊗ 1 = 3 = 2 + 1.
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2. Semiring Max
in [[γ, δ]] (Cohen et al.)

Semiring of formal power series coded with γn and δτ

Sum ⊕ is the ∪, product ⊗ is the composition ◦, ε = γ+∞δ−∞,
T = γ−∞δ+∞ and e = γ0δ0.

ε = γ+∞δ−∞
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2. Set of Counters C and semiring

Counters C (t) can be coded as a non decreasing series in Max
in [[γ, δ]]

C (γ, δ) =
⊕
γC(t)δt where γ is a event shift operator and δ is a time shift

operator, a series admits a minimal representation, e.g.,

C (γ, δ) = γ0δ1 ⊕ γ3δ4 ⊕ γ4δ8 ⊕ γ6δ+∞
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2. Synchronization

Synchronization of signals
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2. Synchronization
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2. Elementary Operations

δt : time shifting,
x2 = δ3x1

γn : event shifting ,
x2 = γ2x1

⊕ : synchronization phenomena x3 = x1 ⊕ x2

3
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3. Model of Timed Event Graphs (TEG)

5

4

Timed Event Graphs (TEG)

are perfectly described by composition
of operators γ and δ.
Internal transitions are denoted xi
(inputs transitions ui , outputs
transitions yi ).

(
x1
x2

)
=

(
ε γ2δ4

δ3 ε

)(
x1
x2

)
⊕
(
δ1

ε

)
u

y =
(
ε δ5

)(x1
x2

)
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3. Model of Timed Event Graphs (TEG)

System

u
y

A

B C

Standard representation in Max
in [[γ, δ]]

with vectors of inputs trajectories
u ∈Max

in [[γ, δ]]p, of internal states
trajectories x ∈Max

in [[γ, δ]]n and outputs
trajectories y ∈Max

in [[γ, δ]]q), hence
A ∈Max

in [[γ, δ]]n×n, B ∈Max
in [[γ, δ]]n×p,

C ∈Max
in [[γ, δ]]q×n :

x = Ax ⊕ Bu

y = Cx
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3. Transfer Relation of TEG
Fixed point equations

For non-decreasing function, (x � y ⇒ f (x) � f (y)), it is possible to
compute fixed points f (x) = x .

Application : x = ax ⊕ b = f (x)

Theorem : Over a complete idempotent semiring S, the least solution to
x = ax ⊕ b is x = a∗b with a∗ =

⊕
i∈N0

ai = e ⊕ a⊕ a2 ⊕ ...

∗ is called Kleene star operator.

State Equation :

x = Ax ⊕ Bu

y = Cx

Transfer Relation :

x = A∗Bu

y = CA∗Bu
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3. Transfer relation of TEG

5

4

Transfer relation

A∗ =

(
(γ2δ7)∗ γ2δ4(γ2δ7)∗

δ3(γ2δ7)∗ (γ2δ7)∗

)
x = A∗Bu =

(
γ0δ1(γ2δ7)∗

γ0δ4(γ2δ7)∗

)
u

y = CA∗Bu = δ9(γ2δ7)∗u
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3. Ultimate Pseudo Periodic series (Cohen et al.)

A periodic series in Max
in [[γ, δ]]

s = p ⊕ q(γνδτ )∗ where p =
⊕n

i γ
ni δti and q =

⊕m
j γ

nj δtj are
polynomials and C∞(s) = ν/τ is the asymptotic slope (the throughput).
Canonical form exists.

s =(δ1γ1 ⊕ δ4γ2) ⊕ (δ5γ4 ⊕ δ7γ6)(δ4γ3)∗ and C∞(s) = 3/4

δ

γ

5 10 15
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3

transient

periodic
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3. Idempotent semi-ring and pseudo-inverse

Residuation Theory (Galois Connection) (Croisot et al., Blyth)

A pseudo inverse exists for non-decreasing function defined over ordered
sets.

Inequality a ⊗ x � b (Baccelli et al.)

Over a complete idempotent semi-ring, inequality a⊗ x � b admits a
greatest solution , denoted, x = a◦\b,
(i .e. a(a◦\b) � b and equality is achieved, if possible).

Example : (min,+) algebra Zmin

Inequality 3⊗ x � 5 admits a greatest solution x = 3◦\5 = 5− 3 = 2. It
achieves equality in the scalar case.
(warning : � is the inverse order in this semi-ring)
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3. Semiring of periodic series (Cohen et al.)

Operations over semi-ring of periodic series over Max
in [[γ, δ]]

s = s1 ⊕ s2 is a periodic series, asymptotic slope
σ∞(s) = min(σ∞(s1), σ∞(s2))

s = s1 ⊗ s2 is a periodic series, asymptotic slope
σ∞(s) = min(σ∞(s1), σ∞(s2))

s = s1 ∧ s2 is a periodic series, asymptotic slope
σ∞(s) = max(σ∞(s1), σ∞(s2))

s = s1◦\s2 is a periodic series, σ∞(s) = σ∞(s2) if σ∞(s2) ≤ σ∞(s1)
else s = ε.

Software Tools (MinmaxGD)

Software to handle periodic series is available on :
http://perso-laris.univ-angers.fr/~hardouin/outils.html

http://perso-laris.univ-angers.fr/~lhommeau/
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3. Idempotent semi-ring

Matrix

Let A,B,C three matrices in Sn×n

(A⊕ B)ij = Aij ⊕ Bij

(A⊗ B)ik =
⊕

j=1...n
(Aij ⊗ Bjk)

(A◦\B)ik =
∧

j=1...n
(Aji ◦\Bjk), where A◦\B is the greatest matrix s.t.

AX � B

(B◦/A)ik =
∧

j=1...n
(Aij◦/Bkj), where A◦/B is the greatest such XA � B

(X )ij = A∗ij is the greatest matrix s.t. X � A∗ More

See : http://perso-laris.univ-angers.fr/~hardouin/GET_BO.html
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3. Controller synthesis (Maia et al.)

P
v

System Equation :

{
x = Ax ⊕ Bu
y = Cx = CA∗Bu

Open-loop control

y = CA∗BPv

such that

CA∗BP = CA∗B

Optimal solution

Popt = Pr+((CA∗B)◦\(CA∗B))
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3. Controller synthesis (Maia et al.)

v

K

Controlled system :{
x = Ax ⊕ B(v ⊕ Kx)
y = Cx

Closed-loop transfer
function :

y = C (A⊕ BK )∗Bv

Objective :

Compute the greatest K s.t. :

C (A⊕ BK )∗B = CA∗B

Optimal solution

Kopt = Pr+((A∗B)◦\(CA∗B)◦/(CA∗B))
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3. Controller synthesis (Maia et al.)

K

P
v

Controlled system :{
x = Ax ⊕ B(v ⊕ Kx)⊕ Pv
y = Cx

Controlled transfer function :

y = C (A⊕ BK )∗BPv

Controller Popt and Kopt :

Popt = Pr+((CA∗B)◦\(CA∗B))

Kopt = Pr+((A∗B)◦\(CA∗B)◦/(CA∗B))
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4. Operators to Model Weights

Split

2
x2(t) = 2×x1(t)

Event counter is multiplied by 2
(input weight).
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x2(t)x1(t)

2×x1(t)

Batch

3 x2(t) =
⌊x1(t)

3

⌋

Event counter is divided by 3
(output weight).
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⌋
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4. Operators to Model Weights (Cottenceau et al.)

Additive operators µm and βb

m ∈ N+, µm : µm(C (t)) = m × C (t)

b ∈ N+, βb : βb(C (t)) = bC (t)/bc

Commutation

µm, βb and γν do not
commute

µm, βb and γν commute
with δτ

µmγ
1 = γmµm and

γ1βb = βbγ
b

2
x2(t) = µ2

(
x1(t)

)
3 x2(t) = β3

(
x1(t)

)
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4. Weights Timed Event Graph

5

4

2

2

43

WB-TEG model

Delays are in blue, weights in red,
tokens in green.

x =

(
ε δ4γ3µ2

δ3β2 ε

)
x ⊕

(
δ1µ3
ε

)
u

y =
(
ε δ5β4

)
x

Gain of a Path

Gain of a path is the product of each weight, e.g. u → y the ratio of input
weight and output weight is 3/1× 1/2× 1/4 = 3/8.

Weights Balanced TEG (WB-TEG)

Each parallel path is with the same gain, this implies that each circuit is
with a gain equal to 1.
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4. Weights Balanced Timed Event Graph (WB-TEG)

Semi-ring E∗[[δ]]

Transfer behavior of WB-TEGs are described by rational expression over
{γν , δτ , µm, βb} in a specific semi-ring.

5

4

2

2

43

y = β4δ
5(β2δ

3δ4γ3µ2)∗β2δ
3δµ3u

y = β4δ
5(β2δ

7γ3µ2)∗β2δ
4µ3u

y = δ9β4(δ7µ2γ
3β2)∗β2µ3u

WB-TEG transfer in E∗[[δ]]

x = Ax ⊕ Bu

y = Cx

⇒
y = CA∗Bu

Software tools, ETVO, Canonical form exists.

http://perso-laris.univ-angers.fr/~cottenceau/etvo.html
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4. Control of WB-TEG

Residuation a ⊗ x � b

Semi-ring E∗[[δ]] is complete, hence a⊗ x � b admits a greatest solution
x � a◦\b.

P
v

v

K

Optimal Neutral Controller for
WB-TEG in E∗[[δ]]

Open Loop Controller

Popt = Pr+((CA∗B)◦\(CA∗B))

Closed Loop Controller

Kopt = Pr+((A∗B)◦\(CA∗B)◦/(CA∗B))
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5. Hadamard Product and Resource Sharing Problem

Convergence of events

x3(t)=x1(t)+x2(t))

3

Hadamard Product
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x2 x1
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5. Hadamard Product and Resource Sharing Problem

Convergence of events

x3(t)=x1(t)+x2(t))

3

Hadamard Product
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5. Hadamard Product (Hardouin et al.)

Petri Net
x3=x1�x2

3

Hadamard Product

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

t

x2 x1 x3

Computation in Max
in [[γ, δ]], x3 = x1� x2

x1 = γ1δ3 ⊕ γ3δ7 ⊕ γ5δ+∞ and x2 = γ5δ2 ⊕ γ4δ+∞
x3 = x1 � x2 = γ3δ3 ⊕ γ5δ5 ⊕ γ7δ7 ⊕ γ9δ+∞
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5. Hadamard Product

Hadamard product �
Let s1 =

⊕
t∈Z γ

s1(t)δt and s2 =
⊕

t∈Z γ
s2(t)δt be two series,

s1 � s2 =
⊕
t∈Z

γs1(t)+s2(t)δt

Properties of Law �
Associative, commutative, neutral element e� = γ0δ+∞

Zero element ε = γ−∞δ+∞ is absorbing a� ε = ε

Distributes with respect of sum ⊕, i.e., a� (b ⊕ c) = a� b ⊕ a� c

Distributes with respect of ∧, i.e., a� (b ∧ c) = (a� b) ∧ (a� c)
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5. Hadamard Product and Residuation

Residuation of Hadamard
product �]

s1 � x � s2 admits a greatest
solution x ] = s2 �] s1

Substraction of Counters

s2(t)− s1(t) is not a counter
(red bullet).

Residuation of Hadamard product

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

t

s2 s1
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5. Hadamard Product and Residuation

Residuation of Hadamard
product �]

s1 � x � s2 admits a greatest
solution x ] = s2 �] s1

Non decreasing trajectory

the upper hull is a counter
function.
x ](t) =
max(s2(t)− s1(t), x ](t − 1))

Residuation of Hadamard Product

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

t

s2 s1
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5. Hadamard Product and Residuation

Residuation of Hadamard
product �]

s1 � x � s2 admits a greatest
solution x ] = s2 �] s1

Residuation of Hadamard product

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

t

s2 s1

Computation in Max
in [[γ, δ]], x ] = s2�] s1

s1 = γ1δ2 ⊕ γ4δ5 ⊕ γ6δ+∞ and s2 = γ5δ1 ⊕ γ7δ7 ⊕ γ9δ+∞
x ] = s2 �] s1 = γ3δ1 ⊕ γ5δ+∞
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5. Hadamard Product and Residuation

Residuation of Hadamard
product

s1 � x � s2 admits a greatest
solution x ] = s2 �] s1 then
s1 � x ] = s2 � s2 is the
(purple) trajectory as close as
possible from above to the
trajectory s2

Residuation of Hadamard product

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

t

Computation in Max
in [[γ, δ]], s1� x ]

(γ1δ2⊕γ4δ5⊕γ6δ+∞)� (γ3δ1⊕γ5δ+∞) = γ5δ1⊕γ7δ2⊕γ5δ9⊕γ11δ+∞
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5. Hadamard Product and Residuation

Petri Net

x2=x1�x ]� x2
x ]=x2�]x1

2

Residuation of Hadamard product

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

t

Interpretation of x ]

x2 and x1 being given, x ] is the minimum number of token to add s.t. x2
serves more token than the desired quantity depicted by x2.
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5. Hadamard Product and Residuation

Dual Residuation of
Hadamard product �[

s1 � x � s2 admits a smallest
solution x [ = s2 �[ s1

Substraction of Counters

s2(t)− s1(t) is not a counter
(red bullet).

Dual Residuation of Hadamard
product

1 2 3 4 5 6 7 8 9 10 11

1
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t

s2 s1
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5. Hadamard Product and Resource Sharing

Dual Residuation of
Hadamard product �[

s1 � x � s2 admits a smallest
solution x [ = s2 �[ s1

Non decreasing trajectory

the lower hull is a counter
x [(t) =
min(s2(t)− s1(t), x [(t + 1))

Dual Residuation of Hadamard
Product

1 2 3 4 5 6 7 8 9 10 11

1
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8

9

t

s2 s1
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5. Hadamard Product and Residuation

Dual Residuation of
Hadamard product �[

s1 � x � s2 admits a smallest
solution x [ = s2 �[ s1

Residuation of Hadamard product

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

t

s2 s1

Computation in Max
in [[γ, δ]], x [ = s2�[ s1

s2 = γ5δ1 ⊕ γ7δ7 ⊕ γ9δ+∞ and s1 = γ1δ2 ⊕ γ4δ5 ⊕ γ6δ+∞
x [ = s2 �[ s1 = γ7δ1 ⊕ γ3δ+∞
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5. Hadamard Product and Residuation

Dual Residuation of
Hadamard product

s1 � x � s2 admits a smallest
solution x [ = s2 �[ s1 then
s1 � x [ = s2 � s2 is the
(purple) trajectory as close as
possible from below to the
trajectory s2

Dual Residuation of Hadamard
product

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

t

s2 s1

Computation in Max
in [[γ, δ]], s1� x [

(γ1δ2 ⊕ γ4δ5 ⊕ γ6δ+∞)� (γ7δ1 ⊕ γ3δ+∞) = γ3δ2 ⊕ γ5δ5 ⊕ γ7δ7 ⊕ γ9δ+∞
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5. Hadamard Product and Residuation

Petri Net

x1(t)=x3(t)+x2(t)
x1=x3�x2

3

x1�x3�x2
x [3 = x1 �[ x3

x2 � x [3 = x1 � x1

Dual Residuation of Hadamard
Product

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

t

s2 s1

Interpretation of x [

x1 and x2 being given, x [3 is the maximum number of token you can
consume by ensuring that x2 is still satisfied.
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5. Resource Sharing (Moradi et al.)

MinmaxGD

Thanks to D. Zorzenon (Wodes ’22), this product and residuation is
included in software MinmaxGD.

Resource Sharing Problem (Moradi et al.)

x1�x3� (γ3δ2)⊗x2�x4
x � Ax ⊕ Bu � A∗Bu and y = Cx
x � Ax ⊕ Bu � A∗Bu and y = Cx

3

2

5

3

y

y

u

u 4

61

78
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5. Resource Sharing (Moradi et al.)

Resource Sharing

(γ3δ2)⊗x2 �x4� x1�x3
x � Ax ⊕ Bu � A∗Bu and y = Cx
x � Ax ⊕ Bu � A∗Bu and y = Cx

3

2

5

3

y

y

u

u 4

61

78
2

2

(
x1
x2

)
�
(
ε γ3δ2

δ5 ε

)(
x1
x2

)
⊕
(
δ1

ε

)
u1 and y1 =

(
ε δ6

)(x1
x2

)
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5. Resource Sharing (Moradi et al.)

Resource Sharing

(γ3δ2)⊗x2 �x4� x1�x3
x � Ax ⊕ Bu � A∗Bu and y = Cx
x � Ax ⊕ Bu � A∗Bu and y = Cx

3

2

5

3

y

y

u

u 4

61

78
2

2

(
x3
x4

)
�
(
ε γ3δ2

δ3 ε

)(
x3
x4

)
⊕
(
δ8

ε

)
u2 and y2 =

(
ε δ7

)(x3
x4

)
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5. Resource Sharing (Moradi et al.)

Resource Sharing

(γ3δ2)⊗x2 �x4� x1�x3(
x1
x2

)
�
(
δ1(γ3δ7)∗

δ6(γ3δ7)∗

)
u1 and y1 = δ12(γ3δ7)∗u1(

x3
x4

)
�
(
δ8(γ3δ5)∗

δ11(γ3δ5)∗

)
u2 and y2 = δ18(γ3δ5)∗u2

3

2

5

3

y

y

u

u 4

61

78
2

2
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5. Resource Sharing (Moradi et al.)

(γ3δ2)⊗x2 �x4� x1�x3
x � Ax ⊕ Bu � A∗Bu and y = Cx
x � Ax ⊕ Bu � A∗Bu and y = Cx

3

2

5

3

y

y

u

u 4

61

78
2

2

Optimal Control for Red Line (Highest Priority)

A desired output z1 is supposed known, i.e., the objective is y1 � z1 :

uopt1 = (CA∗B)◦\z1
CA∗Buopt1 � z1(

xopt1 xopt2

)T
= A∗Buopt1 =

(
(A∗Buopt1 )1 (A∗Buopt1 )2

)T
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5. Resource Sharing (Moradi et al.)

3

2

5

3

y

y

u

u 4

61

78
2

2

Constraint for Blue Line, (Lowest Priority)

(γ3δ2)⊗ xopt2 � x4 � xopt1 � x3

(γ3δ2)⊗ xopt2 � (A∗B)2 ⊗ u2 � xopt1 � (A∗B)1 ⊗ u2

Constraint on u2

u2 � (A∗B)2◦\((xopt1 � (A∗B)1 ⊗ u2)�] ((γ3δ2)⊗ xopt2 ))
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5. Resource Sharing (Moradi et al.)

3

2

5

3

y

y

u

u 4

61

78
2

2

Optimal Control for Blue Line, (Lowest Priority)

A desired output z2 is supposed known, i.e., y2 � z2 :
u2 � (CA∗B) ◦\z2
u2 � ((CA∗B) ◦\z2) ∧ ((A∗B)2 ◦\((xopt1 � (A∗B)1 ⊗ u2)�] ((γ3δ2)⊗ xopt2 )) ∧ u2

u2 � Φ(u2)

Optimal Control

A greatest fixed point of u2 � Φ(u2) exists and it is the optimal control
uopt2 , i.e., the greatest control respecting the constraints.
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5. Resource Sharing (Schafaschek et al.)

H11
H12 H13

H23H22
H21

H11
H12 H13

H23H22
H21

y

y

H11
H12 H13

H23H22
H21

y

y

H11
H12 H13

H23H22
H21

u

u

3

4

u

u

3

4

� �

�

�

�

With updating of the reference output zi
Many resource and many priorities

Updating reference input zi (receding horizon, MPC approach)

Laurent Hardouin (LARIS, University of Angers)On Counter Functions and Operators for Modeling Discrete-Event Dynamic SystemsMay 1st 2024 48 / 96



Conclusion

Model TEG (γ and δ operators)

Model WBTEG (γ, µ, β and δ operators)

Open and closed loop controllers synthesis of the both (off line
computation)

Optimal control when resources are shared, on receding horizon (on
line computation)
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Open Problems

Complexity

Algorithms to manipulate periodic series are polynomial according to the
size of the series not to the number of states.

3

y

7

u

The canonical representation can be large

Two internal transitions

A transient pattern with 6 monomials (γ3δ3)∗(γ7δ7)∗ =
(γ0δ0 ⊕ γ3δ3 ⊕ γ6δ6 ⊕ γ7δ7 ⊕ γ9δ9 ⊕ γ10δ10)⊕ (γ12δ12)(γ1δ1)∗
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Open Problems

Alternative : Legendre-Fenchel Transform

L(C ) =
⊕
t∈R

(t.s − C (t))

Series (γ0δ0 ⊕ γ2δ5)⊕ (γ6δ6)(γ1δ1)∗ and its approximation

−2 2 4 6 8 10 12

1
2

4

6

8

10

12

δ

γ

Laurent Hardouin (LARIS, University of Angers)On Counter Functions and Operators for Modeling Discrete-Event Dynamic SystemsMay 1st 2024 51 / 96



Open Problems

Alternative : Legendre-Fenchel Transform

L(C ) =
⊕
t∈R

(t.s − C (t))

Series (γ0δ0 ⊕ γ2δ5)⊕ (γ6δ6)(γ1δ1)∗ and its approximation (E. Le
Corronc)

−2 2 4 6 8 10 12

1
2

4

6

8

10

12

δ

γ
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Open Problems

An artificial neuron (P. Maragos et al.)

w1

w2

w33

�
y

�

y = ϕ(Σi (wixi ))

where ϕ is the activation function. Rectifier (ReLu) is an activation
function such as : max(0, x), hence y = max(0,

∑
i (wixi ))

Equation of an artificial neuron in idempotent semi-ring

y = e ⊕
⊙
i

µwi (xi )

The reachable set is a max-plus polyhedron.
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Open Problems

Log semi-ring (Maslov et al. )

a⊕ b = log(ea + eb)

a⊗ b = a + b

Useful to address some problems of filtering in stochastic context
(Analogous to Kalman filter, see G. Winck et al.).
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Thank you for your attention.
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Tropical Geometry

A max-plus polyhedron

x1

x2

−1 5 10 15 20−1

5

10

15

Xk|k
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State Estimation : Observer Synthesis

Sq

Simulator

Prediction computation :

x̂(γ) = Ax(γ)⊕ Bu(γ).

or
x̂(k) = Ax(k − 1)⊕ Bu(k).
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State Estimation : Observer Synthesis

Observer

Sq

Simulator

Objective :

Compute the greatest observer matrix L such that

x̂ � x .
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State Estimation : Observer Synthesis

Observer

Sq

Simulator

System Equations : Matrix S

x = Ax ⊕ Bu ⊕ Sq = A∗Bu ⊕ A∗Sq

y = Cx = CA∗Bu ⊕ CA∗Sq.

Estimated State Equations :

x̂ = Ax̂ ⊕ Bu ⊕ L(ŷ ⊕ y)

ŷ = Cx̂ .
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State Estimation : Observer Synthesis

Constraints Satisfaction :

Compute the greatest observer matrix L such that

(A⊕ LC )∗Bu � A∗Bu ∀u
(A⊕ LC )∗LCA∗Sq � A∗Sq ∀q,

Constraints Satisfaction :

Compute the greatest matrix L such that

(A⊕ LC )∗B � A∗B ⇔ L � (A∗B)◦/(CA∗B)
(A⊕ LC )∗LCA∗S � A∗S ⇔ L � (A∗S)◦/(CA∗S).
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State Estimation : Observer Synthesis

Optimal Matrix : (Hardouin et al. IEEE TAC 2010, Hardouin et al.
2019)

Lopt = ((A∗B)◦/(CA∗B)) ∧ ((A∗S)◦/(CA∗S))

is the greatest such that
x̂ � x .
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State Estimation : Observer Synthesis : Performance
Analysis

Equality of the asymptotic slope (Hardouin et al. IEEE TAC 2010)

If matrix C linking state vector to the output is connected to all connected
components of the graph then

σ∞(x̂i ) = σ∞(xi ) ∀i

.i.e., asymptotically the estimation x̂i behaves like the real xiCorollary :

If state xi belongs to a connected component whose at least one transition
is measured then the error x̂i − xi is bounded.
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State Estimation : Set-membership approach

Uncertain system
A(k) ∈ [A,A] = [A],B(k) ∈ [B ,B] = [B],C (k) ∈ [C ,C ] = [C ]

Each matrices entries is supposed bounded and A(k),B(k),C (k) is a
realization at step k

x(k) = A(k)x(k − 1)⊕ B(k)u(k)
y(k) = C (k)x(k)

In the sequel, to enlighten the notation, we assume (without lost of
generality) autonomous systems, i.e., x(k) = A(k)x(k − 1).

Indeed we can consider x̃ = (x tut)t and Ã =

(
A ε
ε B

)
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State Estimation : Set-membership approach

Uncertain system A(k) ∈ [A,A] = [A],C (k) ∈ [C ,C ] = [C ]

x(k) = A(k)x(k − 1)
y(k) = C (k)x(k)

Q1 : Assuming x(k − 1) ∈ Xk−1|k−1 a known set, is it possible to compute

the set Xk|k−1 =
{
Ax | A ∈ [A,A], x ∈ Xk−1|k−1

}
? (prediction)

Q2 : Assuming y(k) available, is it possible to compute the inverse image
set [C ]−1(y(k)) =

{
x | y(k) = Cx ,C ∈ [C ,C ]

}
? (likelihood)

Q3 : Is it possible to compute the intersection of the two previous sets to
obtain the set Xk|k = Xk|k−1 ∩ [C ]−1(y(k)) ? (estimation)
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State Estimation : Set-membership approach

Uncertain system A ∈ [A,A],C ∈ [C ,C ]

x(k) = A(k)x(k − 1)
y(k) = C (k)x(k)

Q1 : Assuming x(k − 1) ∈ Xk−1|k−1 a known set, is it possible to compute

the set Xk|k−1 =
{
Ax | A ∈ [A,A], x ∈ Xk−1|k−1

}
?

Assumption : Xk−1|k−1 is depicted as a tropical polytope.
(Lemma 2.1 PhD Guilherme Winck (University of Angers)).

Laurent Hardouin (LARIS, University of Angers)On Counter Functions and Operators for Modeling Discrete-Event Dynamic SystemsMay 1st 2024 65 / 96



State Estimation : Set-membership approach

Q1 : Assuming x(k − 1) ∈ Xk−1|k−1 a known set, is it possible to

compute the set Xk|k−1 =
{
Ax | A ∈ [A,A], x ∈ Xk−1|k−1

}
?

x1

x2

−1 5 10 15 20−1

5

10

15

[A,A]V 1 with

(
10 10 11
6 8 6

)

Xk−1|k−1 = co(V ) with V =

(
1 1 4 6
1 2 4 3

)
=
(
V 1 V 2 V 3 V 4

)

[A,A] =

(
[7, 9] [9, 10]
[5, 7] [5, 7]

)
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State Estimation : Set-membership approach

Q1 : Assuming x(k − 1) ∈ Xk−1|k−1 a known set, is it possible to

compute the set Xk|k−1 =
{
Ax | A ∈ [A,A], x ∈ Xk−1|k−1

}
?

x1

x2

−1 5 10 15 20−1

5

10

15

[A,A]V 1

[A,A]V 2

[A,A]V 3

[A,A]V 4

n + 1 generators for each generator of the original set

Xk−1|k−1 = co(V ) with V =

(
1 1 4 6
1 2 4 3

)
=
(
V 1 V 2 V 3 V 4

)
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State Estimation : Set-membership approach

Q1 : Assuming x(k − 1) ∈ Xk−1|k−1 a known set, is it possible to

compute the set Xk|k−1 =
{
Ax | A ∈ [A,A], x ∈ Xk−1|k−1

}
?

x1

x2

−1 5 10 15 20−1

5

10

15 Concatenation and removing redundant generators

Xk−1|k−1 = co(V ) with V =

(
1 1 4 6
1 2 4 3

)

V1 =

(
10 13 14 15
6 13 9 11

)
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State Estimation : Set-membership approach

Q1 : Assuming x(k − 1) ∈ Xk−1|k−1 a known set, is it possible to

compute the set Xk|k−1 =
{
Ax | A ∈ [A,A], x ∈ Xk−1|k−1

}
?

x1

x2

−1 5 10 15 20−1

5

10

15 Concatenation and removing redundant generators

Xk|k−1 = co(V1)

Xk−1|k−1 = co(V ) with V =

(
1 1 4 6
1 2 4 3

)

V1 =

(
10 13 14 15
6 13 9 11

)
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State Estimation : Set-membership approach

Uncertain system A ∈ [A,A],C ∈ [C ,C ]

x(k) = A(k)x(k − 1)
y(k) = C (k)x(k)

Q2 : Assuming y(k) available, is it possible to compute the inverse image
set [C ]−1(y(k)) =

{
x | y(k) = Cx ,C ∈ [C ,C ]

}
?

The set can be written as [C ]−1(y(k)) = {x |Cx � y(k) � Cx}, which can
be decomposed in two sets :

X = X ∩ X

where X = {x |Cx � y(k)} and X = {x |y(k) � Cx}
Renato Cândido et al., ”An Algorithm to Compute the Inverse Image of a
Point with Respect to a Nondeterministic Max Plus Linear System”, in
IEEE TAC, 2021.
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State Estimation : Set-membership approach

Computation X = {x |Cx � y(k)} ⇔ X = {x |x � C ◦\y(k)}

x1

x2

−1 5 10 15 20−1

5

10

15 y(k) =

(
20
12

)
and C =

(
8 10
6 3

)
(
x1
x2

)
�
(

8◦\20 ∧ 6◦\12
10◦\20 ∧ 3◦\12

)
=

(
6
9

)
x2 = 10

x2 = 9

x1 = 12x1 = 6

x1 � 6 and

x2 � 9
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State Estimation : Set-membership approach

Computation X = {x |y(k) � Cx}

x1

x2

−1 5 10 15 20−1

5

10

15 y(k) =

(
20
12

)
and C =

(
9 16
8 4

)
(
x1 � 20− 9 or x2 � 20− 16
x1 � 12− 8 or x2 � 12− 4

)

x1 � 11 or x2 � 4
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State Estimation : Set-membership approach

Computation X = {x |y(k) � Cx}

x1

x2

−1 5 10 15 20−1

5

10

15 y(k) =

(
20
12

)
and C =

(
9 16
8 4

)
(
x1 � 20− 9 or x2 � 20− 16
x1 � 12− 8 or x2 � 12− 4

)

x1 � 4 or x2 � 8
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State Estimation : Set-membership approach

Computation X = {x |y(k) � Cx}

x1

x2

−1 5 10 15 20−1

5

10

15 y(k) =

(
20
12

)
and C =

(
9 16
8 14

)
(
x1 � 20− 9 or x2 � 20− 16
x1 � 12− 8 or x2 � 12− 4

)

x1 � 11 or x2 � 4

and

x1 � 4 or x2 � 8
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State Estimation : Set-membership approach

Q2 : Computation [C ]−1(y(k)) = X ∩ X

x1

x2

−1 5 10 15 20−1

5

10

15

V =

(
6 4 ε ε
4 4 8 9

)

[C ]−1(y(k)) = {x |Cx � y(k) � Cx}
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State Estimation : Set-membership approach

Q3 : Is it possible to obtain the intersection
Xk|k = [C ]−1(y(k)) ∩ Xk|k−1

x1

x2

−1 5 10 15 20−1

5

10

15

V =

(
11 13 ε ε
4 4 8 9

)
Xk|k

Xk|k−1

[C ]−1(y(k))

V1 =

(
10 14 15 13
6 9 11 13

)
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State Estimation : Set-membership approach

Q3 : Is it possible to obtain the intersection
Xk|k = [C ]−1(y(k)) ∩ Xk|k−1

x1

x2

−1 5 10 15 20−1

5

10

15

V =

(
10 10 11 13
8 9 6 8

)
Xk|k
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State Estimation : Set-membership approach

Filtering algorithm :

Require : Xk−1|k−1, y(k)

Ensure : Xk|k

Xk|k−1 = [A,A]Xk−1|k−1 (prediction)

X = {x |x � C ◦\y(k)}
X = {x |y(k) � Cx}
[C ]−1(y(k)) = X ∩ X (likelihood)

Xk|k = Xk|k−1 ∩ [C ]−1(y(k)) (estimation)
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State Estimation : Set-membership approach

Filtering algorithm :

Require : Xk−1|k−1, y(k) n,N, q

Ensure : Xk|k

Xk|k−1 = [A,A]Xk−1|k−1 O(2Nn2)

X = {x |x � C ◦\y(k)} O(nq)

X = {x |y(k) � Cx} O(nq)

[C ]−1(y(k)) = X ∩ X
Xk|k = Xk|k−1 ∩ [C ]−1(y(k)) O(nn)
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State Estimation : Set-membership approach

Alternative approaches : Decomposition in PWA (Adzkiya et al.
Automatica 2015)

x1

x2

−1 5 10 15 20−1

5

10

15
R1 R2 R3

Xk|k
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State Estimation : Set-membership approach

Alternative approaches : Decomposition in PWA (Adzkiya et al.
Automatica 2015)

x1

x2

−1 5 10 15 20−1

5

10

15

Complexity O(2nn)

Xk|k

R1 R2 R3

Laurent Hardouin (LARIS, University of Angers)On Counter Functions and Operators for Modeling Discrete-Event Dynamic SystemsMay 1st 2024 81 / 96



State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)

x1

x2

−1 5 10 15 20−1

5

10

15

V =

(
11 13 ε ε
4 4 8 9

)
Xk|k

Xk|k−1

[C ]−1(y(k))

V1 =

(
10 14 15 13
6 9 11 13

)
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State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)
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State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)
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State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)

x1

x2

−1 5 10 15 20−1

5

10

15

V =

(
13 ε ε
6 6 9

)
Xk|k

Xk|k−1

[C ]−1(y(k))

V1 =

(
10 10 15
6 13 6

)

Complexity O(n3)
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State Estimation : Set-membership approach

Performances comparison

Using tropical polytope approach, the set of all possible solution is
obtained, the complexity is O(nn).

Using DBM the same set is obtained (Adzkiya et al. Automatica
2015),with an exponential complexity also, but practically worst.

Using Box an overapproximation is obtained with a polynomial
complexity (Winck, PhD 2022).

Using SMT (Satisfability Modulo theory) solver (e.g., z3 solver)
(Mufid et al. IEEE TAC, 2022) is equivalent to keep the H-form of
the tropical polytope. This is suitable when a point included in the
estimation set is desired (check a solution). But needs to keep all the
constraints on the horizon of estimation, which growth at each step.
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State Estimation : Set-membership approach

Where is the estimation given by the observer ?

x1

x2

−1 5 10 15 20−1

5

10

15

Xk|k

Xk|k−1

[C ]−1(y(k))

Observer computed off line with a polynomial complexity

Estimation given by the Observer
Real state
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Conclusion

State Estimation

An efficient observer exists, the greatest possible solution is obtained

A set-membership approach based on max-plus polytope is the most
efficient to obtain the set of all possible solutions, even if the
complexity is still exponential.

Interval analysis yields an over estimation of the solution set with a
polynomial complexity
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Conclusion

Open problems to address

Developing an interval observer to compute on-line an upper bound

Developing more efficient algorithms to compute intersection of
max-plus polytope

Developing method to obtain underestimation set (set included in the
solution set), (Barnhill et al., arxiv.org, 2023).

Selecting a point in the solution set (support) by considering
stochastic approach (Santos-Mendes et al. IEEE TAC, 2019, Winck et
al. IEEE TAC 2022).

Considering only H-form to avoid the costly transposition to V-form.

Developing state estimation method for systems involving resource
sharing (Schafaschek et al. 2020).
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2. Idempotent semi-ring

Back

Sandwiches Algebra [Cohen et al. ]

1 piece of Bread + 1 slice of ham +
1 slice of cheese is equal to 1
sandwich. Another way of counting !
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