On Counter Functions and Operators for Modeling Discrete-Event Dynamic Systems

Laurent Hardouin
University of Angers - France
$$
\text { May 1st } 2024
$$

Counter of events

Counters of events (cumulative value)

Function $C(t)$ gives the number of event's occurrence up to time t, e.g., $C(6)=4$ means that 4 events occurred up to time 6 .
It is a non-decreasing and non-continuous function.
The set of Counters is denoted \mathcal{C} in the sequel.

Outline

- 1. Transformations on Counter Functions and Petri nets
- 2. Algebraic setting, Idempotent semi-ring
- 3. Model and control of Timed Event Graphs (TEG)
- 4. Model for Weighted Balanced Timed Event Graphs (WBTEG)
- 5. Hadamard product and Sharing Resource Problem
- Conclusion and Open Problems

1. Transformations in $\mathcal{C}: \delta$-operator

Time Shifting of Counter

Delay in timed Petri net

$$
x_{2}(t)=x_{1}(t-3)
$$

Operator δ^{τ}, shifting of τ time unit :
$\delta^{\tau}: \mathcal{C} \rightarrow \mathcal{C}, C(t) \rightarrow C(t-\tau)$, e.g.,
$\delta^{3}: \mathcal{C} \rightarrow \mathcal{C}, C(t) \rightarrow C(t-3)$, is the mapping delaying a signal of 3 times unit, i.e., $x 2(t)=\delta^{3}\left(x_{1}(t)\right)$.

1. Transformations in $\mathcal{C}: \gamma$-operator

Event Shifting

Initial marking

$$
x_{2}(t)=x_{1}(t)+2
$$

Operator γ^{n}, shifting of n events:
$\gamma^{n}: \mathcal{C} \rightarrow \mathcal{C}, C(t) \rightarrow n+C(t)$, e.g.,
$\gamma^{2}: \mathcal{C} \rightarrow \mathcal{C}, C(t) \rightarrow 2+C(t)$, is the mapping shifting a signal of 2 events, i.e., $x 2(t)=\gamma^{2}\left(x_{1}(t)\right)$.

1. Operators composition

$$
\begin{aligned}
\delta^{\tau} & : \mathcal{C} \rightarrow \mathcal{C}, C(t) \rightarrow C(t-\tau) \\
\gamma^{n} & : \mathcal{C} \rightarrow \mathcal{C}, C(t) \rightarrow n+C(t) \\
\gamma^{n} \circ \delta^{\tau} & =\delta^{\tau} \circ \gamma^{n}
\end{aligned}
$$

Composition of operators

$x_{2}=\gamma^{2}\left(\delta^{4}\left(x_{1}\right)\right)=\delta^{4}\left(\gamma^{2}\left(x_{1}\right)\right)$

$\gamma^{n} \delta^{\tau}$ to code a counter function

1. Counter functions and Operators

Counters $C(t)$ can be coded as a union of monomial $\gamma^{n} \delta^{\tau}$

$C(\gamma, \delta)=\bigcup \gamma^{C(t)} \delta^{t}$ where γ is the event shift operator and δ is the time shift operator.

2. Idempotent semi-ring

Idempotent Semiring \mathcal{S} (Tropical Algebra (I. Simon))

- Sum \oplus, associative,commutative, zero element denoted ε,
- Product \otimes, associative, identity element denoted e,
- Product \otimes distributes with respect of sum, $(a \oplus b) \otimes c=a \otimes c \oplus b \otimes c$,
- Zero element ε is absorbing, $a \otimes \varepsilon=\varepsilon$
- The sum is idempotent, $a \oplus a=a$.
- $b \preceq a \Leftrightarrow a \oplus b=a=a \vee b \Leftrightarrow a \wedge b=b$
hence an idempotent semiring has a complete lattice structure, with (ε) as bottom element and $\left(T=\bigoplus_{x \in \mathcal{S}} x\right)$ as top element.

(min,+) algebra, $\overline{\mathbb{Z}}_{\text {min }}$

Sum \oplus is the operator min, product \otimes is classical sum,$+ \varepsilon=+\infty$, $T=-\infty$ and $e=0$, then :

$$
\begin{gathered}
1 \oplus 2=1=\min (1,2),(\text { warning } 2 \preceq 1) \\
2 \otimes 1=3=2+1 .
\end{gathered}
$$

2. Semiring $\left.\mathcal{M}_{i n}^{2 \times} \llbracket \gamma, \delta\right]$ (Cohen et al.)

Semiring of formal power series coded with γ^{n} and δ^{τ}

Sum \oplus is the \cup, product \otimes is the composition $\circ, \varepsilon=\gamma^{+\infty} \delta^{-\infty}$, $T=\gamma^{-\infty} \delta^{+\infty}$ and $e=\gamma^{0} \delta^{0}$.

2. Set of Counters \mathcal{C} and semiring

Counters $C(t)$ can be coded as a non decreasing series in $\mathcal{M}_{i n}^{a x}\lceil\gamma, \delta\rceil$ $C(\gamma, \delta)=\bigoplus \gamma^{C(t)} \delta^{t}$ where γ is a event shift operator and δ is a time shift operator, a series admits a minimal representation, e.g.,

$$
C(\gamma, \delta)=\gamma^{0} \delta^{1} \oplus \gamma^{3} \delta^{4} \oplus \gamma^{4} \delta^{8} \oplus \gamma^{6} \delta^{+\infty}
$$

2. Synchronization

Synchronization of signals

Synchronization phenomena

$$
x_{3}=x_{1} \oplus x_{2}
$$

2. Synchronization

Synchronization

Synchronization phenomena

$$
x_{3}=x_{1} \oplus x_{2}
$$

2. Elementary Operations

δ^{t} : time shifting,

$$
x_{2}=x_{1}
$$

γ^{n} : event shifting,

$$
x_{2}=x_{1}
$$

\oplus : synchronization phenomena $x_{3}=x_{1} \oplus x_{2}$

3. Model of Timed Event Graphs (TEG)

Timed Event Graphs (TEG)

are perfectly described by composition of operators γ and δ. Internal transitions are denoted x_{i} (inputs transitions u_{i}, outputs transitions y_{i}).

$$
\begin{aligned}
\binom{x_{1}}{x_{2}} & =\left(\begin{array}{cc}
\varepsilon & \gamma^{2} \delta^{4} \\
\delta^{3} & \varepsilon
\end{array}\right)\binom{x_{1}}{x_{2}} \oplus\binom{\delta^{1}}{\varepsilon} u \\
y & =\left(\begin{array}{ll}
\varepsilon & \delta^{5}
\end{array}\right)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

3. Model of Timed Event Graphs (TEG)

Standard representation in $\mathcal{M}_{\text {in }}^{a x} \llbracket \gamma, \delta \rrbracket$

with vectors of inputs trajectories $u \in \mathcal{M}_{i n}^{a x} \llbracket \gamma, \delta \rrbracket^{p}$, of internal states trajectories $x \in \mathcal{M}_{i n}^{a x} \llbracket \gamma, \delta \rrbracket^{n}$ and outputs trajectories $y \in \mathcal{M}_{i n}^{a x} \llbracket \gamma, \delta \rrbracket^{q}$), hence $A \in \mathcal{M}_{i n}^{a \times} \llbracket \gamma, \delta \rrbracket^{n \times n}, B \in \mathcal{M}_{i n}^{a \times} \llbracket \gamma, \delta \rrbracket^{n \times p}$, $C \in \mathcal{M}_{i n}^{a x} \llbracket \gamma, \delta \rrbracket^{q \times n}:$

$$
\begin{aligned}
& x=A x \oplus B u \\
& y=C x
\end{aligned}
$$

3. Transfer Relation of TEG

Fixed point equations

For non-decreasing function, $(x \preceq y \Rightarrow f(x) \preceq f(y))$, it is possible to compute fixed points $f(x)=x$.

Application : $x=a x \oplus b=f(x)$

Theorem: Over a complete idempotent semiring \mathcal{S}, the least solution to $x=a x \oplus b$ is $x=a^{*} b$ with $a^{*}=\bigoplus_{i \in \mathbb{N}_{0}} a^{i}=e \oplus a \oplus a^{2} \oplus \ldots$

* is called Kleene star operator.

State Equation :

$$
\begin{aligned}
& x=A x \oplus B u \\
& y=C x
\end{aligned}
$$

Transfer Relation :

$$
\begin{aligned}
& x=A^{*} B u \\
& y=C A^{*} B u
\end{aligned}
$$

3. Transfer relation of TEG

Transfer relation

$$
\begin{aligned}
A^{*} & =\left(\begin{array}{cc}
\left(\gamma^{2} \delta^{7}\right)^{*} & \gamma^{2} \delta^{4}\left(\gamma^{2} \delta^{7}\right)^{*} \\
\delta^{3}\left(\gamma^{2} \delta^{7}\right)^{*} & \left(\gamma^{2} \delta^{7}\right)^{*}
\end{array}\right) \\
x & =A^{*} B u=\binom{\gamma^{0} \delta^{1}\left(\gamma^{2} \delta^{7}\right)^{*}}{\gamma^{0} \delta^{4}\left(\gamma^{2} \delta^{7}\right)^{*}} u \\
y & =C A^{*} B u=\delta^{9}\left(\gamma^{2} \delta^{7}\right)^{*} u
\end{aligned}
$$

3. Ultimate Pseudo Periodic series (Cohen et al.)

A periodic series in $\mathcal{M}_{i n}^{2 x}\lceil\gamma, \delta]$
$s=p \oplus q\left(\gamma^{\nu} \delta^{\tau}\right)^{*}$ where $p=\bigoplus_{i}^{n} \gamma^{n_{i}} \delta^{t_{i}}$ and $q=\bigoplus_{j}^{m} \gamma^{n_{j}} \delta^{t_{j}}$ are polynomials and $\mathcal{C}_{\infty}(s)=\nu / \tau$ is the asymptotic slope (the throughput). Canonical form exists.

$$
\left(\delta^{1} \gamma^{1} \oplus \delta^{4} \gamma^{2}\right) \oplus\left(\delta^{5} \gamma^{4} \oplus \delta^{7} \gamma^{6}\right)\left(\delta^{4} \gamma^{3}\right)^{-} \text {and }
$$

3. Idempotent semi-ring and pseudo-inverse

Residuation Theory (Galois Connection) (Croisot et al., Blyth)

A pseudo inverse exists for non-decreasing function defined over ordered sets.

Inequality $a \otimes x \preceq b$ (Baccelli et al.)

Over a complete idempotent semi-ring, inequality $a \otimes x \preceq b$ admits a greatest solution , denoted, $x=a \nless b$, (i.e. $a(a \downarrow b) \preceq b$ and equality is achieved, if possible).

Example : $(\min ,+)$ algebra $\overline{\mathbb{Z}}_{\text {min }}$

Inequality $3 \otimes x \preceq 5$ admits a greatest solution $x=3 \nmid 5=5-3=2$. It achieves equality in the scalar case.
(warning : \preceq is the inverse order in this semi-ring)

3．Semiring of periodic series（Cohen et al．）

Operations over semi－ring of periodic series over $\mathcal{M}_{i n}^{a x} \llbracket \gamma, \delta \rrbracket$

－$s=s_{1} \oplus s_{2}$ is a periodic series，asymptotic slope

$$
\sigma_{\infty}(s)=\min \left(\sigma_{\infty}\left(s_{1}\right), \sigma_{\infty}\left(s_{2}\right)\right)
$$

－$s=s_{1} \otimes s_{2}$ is a periodic series，asymptotic slope
$\sigma_{\infty}(s)=\min \left(\sigma_{\infty}\left(s_{1}\right), \sigma_{\infty}\left(s_{2}\right)\right)$
－$s=s_{1} \wedge s_{2}$ is a periodic series，asymptotic slope
$\sigma_{\infty}(s)=\max \left(\sigma_{\infty}\left(s_{1}\right), \sigma_{\infty}\left(s_{2}\right)\right)$
－$s=s_{1} \nmid s_{2}$ is a periodic series，$\sigma_{\infty}(s)=\sigma_{\infty}\left(s_{2}\right)$ if $\sigma_{\infty}\left(s_{2}\right) \leq \sigma_{\infty}\left(s_{1}\right)$ else $s=\varepsilon$ ．

Software Tools（MinmaxGD）

Software to handle periodic series is available on ： http：／／perso－laris．univ－angers．fr／～hardouin／outils．html http：／／perso－laris．univ－angers．fr／～lhommeau／

3. Idempotent semi-ring

Matrix

Let A, B, C three matrices in $\mathcal{S}^{n \times n}$

- $(A \oplus B)_{i j}=A_{i j} \oplus B_{i j}$
- $(A \otimes B)_{i k}=\bigoplus_{j=1 \ldots n}\left(A_{i j} \otimes B_{j k}\right)$
- $(A \nmid B)_{i k}=\bigwedge_{j=1 \ldots n}\left(A_{j i} \nmid B_{j k}\right)$, where $A \nmid B$ is the greatest matrix s.t. $A X \preceq B$
- $(B \phi A)_{i k}=\bigwedge_{j=1 \ldots n}\left(A_{i j} \phi B_{k j}\right)$, where $A \phi B$ is the greatest such $X A \preceq B$
- $(X)_{i j}=A_{i j}^{*}$ is the greatest matrix s.t. $X \preceq A^{*}$

See : http://perso-laris.univ-angers.fr/~hardouin/GET_BO.html

3. Controller synthesis (Maia et al.)

System Equation :

$$
\left\{\begin{array}{l}
x=A x \oplus B u \\
y=C x=C A^{*} B u
\end{array}\right.
$$

Open-loop control

$$
y=C A^{*} B P v
$$

such that

$$
C A^{*} B P=C A^{*} B
$$

Optimal solution

$$
P_{\mathrm{opt}}=\operatorname{Pr}_{+}\left(\left(C A^{*} B\right) \phi\left(C A^{*} B\right)\right)
$$

3. Controller synthesis (Maia et al.)

Controlled system :

$$
\left\{\begin{array}{l}
x=A x \oplus B(v \oplus K x) \\
y=C x
\end{array}\right.
$$

Closed-loop transfer function :

$$
y=C(A \oplus B K)^{*} B v
$$

Objective :

Compute the greatest K s.t. :

$$
C(A \oplus B K)^{*} B=C A^{*} B
$$

Optimal solution
$K_{\text {opt }}=\operatorname{Pr}_{+}\left(\left(A^{*} B\right) \oint\left(C A^{*} B\right) \phi\left(C A^{*} B\right)\right.$

3. Controller synthesis (Maia et al.)

$$
\begin{aligned}
& \text { Controlled system : } \\
& \left\{\begin{array}{l}
x=A x \oplus B(v \oplus K x) \oplus P \\
y=C x
\end{array}\right.
\end{aligned}
$$

Controlled transfer function :

$$
y=C(A \oplus B K)^{*} B P v
$$

Controller $P_{o p t}$ and $K_{o p t}$:

$$
\begin{aligned}
& P_{\mathrm{opt}}=\operatorname{Pr}_{+}\left(\left(C A^{*} B\right) \phi\left(C A^{*} B\right)\right) \\
& K_{o p t}=\operatorname{Pr}_{+}\left(\left(A^{*} B\right) \phi\left(C A^{*} B\right) \phi\left(C A^{*} B\right)\right)
\end{aligned}
$$

4. Operators to Model Weights

Split

Event counter is multiplied by 2 (input weight).

Batch

Event counter is divided by 3 (output weight).

4. Operators to Model Weights (Cottenceau et al.)

Commutation

- μ_{m}, β_{b} and γ^{ν} do not commute
- μ_{m}, β_{b} and γ^{ν} commute with δ^{τ}

$$
\begin{aligned}
-\mu_{m} \gamma^{1} & =\gamma^{m} \mu_{m} \text { and } \\
\gamma^{1} \beta_{b} & =\beta_{b} \gamma^{b}
\end{aligned}
$$

4. Weights Timed Event Graph

WB-TEG model

Delays are in blue, weights in red, tokens in green.

$$
\begin{aligned}
& x=\left(\begin{array}{cc}
\varepsilon & \delta^{4} \gamma^{3} \mu_{2} \\
\delta^{3} \beta_{2} & \varepsilon
\end{array}\right) x \oplus\binom{\delta^{1} \mu_{3}}{\varepsilon} u \\
& y=\left(\begin{array}{ll}
\varepsilon & \delta^{5} \beta_{4}
\end{array}\right) x
\end{aligned}
$$

Gain of a Path

Gain of a path is the product of each weight, e.g. $u \rightarrow y$ the ratio of input weight and output weight is $3 / 1 \times 1 / 2 \times 1 / 4=3 / 8$.

Weights Balanced TEG (WB-TEG)

Each parallel path is with the same gain, this implies that each circuit is with a gain equal to 1 .

4. Weights Balanced Timed Event Graph (WB-TEG)

Semi-ring $\mathcal{E}^{*} \llbracket \delta \rrbracket$

Transfer behavior of WB-TEGs are described by rational expression over $\left\{\gamma^{\nu}, \delta^{\tau}, \mu_{m}, \beta_{b}\right\}$ in a specific semi-ring.

WB-TEG transfer in $\mathcal{E}^{*} \llbracket \delta \rrbracket$

$$
\begin{aligned}
y & =\beta_{4} \delta^{5}\left(\beta_{2} \delta^{3} \delta^{4} \gamma^{3} \mu_{2}\right)^{*} \beta_{2} \delta^{3} \delta \mu_{3} u \\
y & =\beta_{4} \delta^{5}\left(\beta_{2} \delta^{7} \gamma^{3} \mu_{2}\right)^{*} \beta_{2} \delta^{4} \mu_{3} u \\
y & =\delta^{9} \beta_{4}\left(\delta^{7} \mu_{2} \gamma^{3} \beta_{2}\right)^{*} \beta_{2} \mu_{3} u
\end{aligned}
$$

$$
\begin{aligned}
x & =A x \oplus B u \\
y & =C x \\
& \Rightarrow \\
y & =C A^{*} B u
\end{aligned}
$$

Software tools, ETVO, Canonical form exists.
http://perso-laris.univ-angers.fr/~cottenceau/etvo.html

4. Control of WB-TEG

Residuation $a \otimes x \preceq b$

Semi-ring $\mathcal{E}^{*} \llbracket \delta \rrbracket$ is complete, hence $a \otimes x \preceq b$ admits a greatest solution $x \preceq a \downarrow b$.

Optimal Neutral Controller for WB-TEG in $\left.\mathcal{E}^{*} \llbracket \delta\right]$
 Open Loop Controller

$$
P_{\mathrm{opt}}=\operatorname{Pr}_{+}\left(\left(C A^{*} B\right) \phi\left(C A^{*} B\right)\right)
$$

Closed Loop Controller
$K_{\text {opt }}=\operatorname{Pr}_{+}\left(\left(A^{*} B\right) \phi\left(C A^{*} B\right) \phi\left(C A^{*} B\right)\right)$

5. Hadamard Product and Resource Sharing Problem

Hadamard Product

Convergence of events

$$
\left.x_{3}(t)=x_{1}(t)+x_{2}(t)\right)
$$

5. Hadamard Product and Resource Sharing Problem

Hadamard Product

Convergence of events

$$
\left.x_{3}(t)=x_{1}(t)+x_{2}(t)\right)
$$

5. Hadamard Product (Hardouin et al.)

Hadamard Product

Petri Net

$$
x_{3}=x_{1} \odot x_{2}
$$

$$
\begin{aligned}
& \text { Computation in } \mathcal{M}_{i n}^{a x} \llbracket \gamma, \delta \rrbracket, x 3=x 1 \odot x 2 \\
& x 1=\gamma^{1} \delta^{3} \oplus \gamma^{3} \delta^{7} \oplus \gamma^{5} \delta^{+\infty} \text { and } x 2=\gamma^{5} \delta^{2} \oplus \gamma^{4} \delta^{+\infty} \\
& x_{3}=x_{1} \odot x_{2}=\gamma^{3} \delta^{3} \oplus \gamma^{5} \delta^{5} \oplus \gamma^{7} \delta^{7} \oplus \gamma^{9} \delta^{+\infty}
\end{aligned}
$$

5. Hadamard Product

Hadamard product \odot

Let $s_{1}=\bigoplus_{t \in \mathbb{Z}} \gamma^{s_{1}(t)} \delta^{t}$ and $s_{2}=\bigoplus_{t \in \mathbb{Z}} \gamma^{s_{2}(t)} \delta^{t}$ be two series,

$$
s_{1} \odot s_{2}=\bigoplus_{t \in \mathbb{Z}} \gamma^{s_{1}(t)+s_{2}(t)} \delta^{t}
$$

Properties of Law \odot

- Associative, commutative, neutral element $e_{\odot}=\gamma^{0} \delta^{+\infty}$
- Zero element $\varepsilon=\gamma^{-\infty} \delta^{+\infty}$ is absorbing a $\odot \varepsilon=\varepsilon$
- Distributes with respect of sum \oplus, i.e., $a \odot(b \oplus c)=a \odot b \oplus a \odot c$
- Distributes with respect of \wedge, i.e., $a \odot(b \wedge c)=(a \odot b) \wedge(a \odot c)$

5. Hadamard Product and Residuation

Residuation of Hadamard product

> Residuation of Hadamard product \odot^{\sharp}
> $s_{1} \odot x \preceq s_{2}$ admits a greatest solution $x^{\sharp}=s_{2} \odot s_{1}$
> $s_{2}(t)-s_{1}(t)$ is not a counter (red bullet).

5. Hadamard Product and Residuation

Residuation of Hadamard product \odot^{\sharp}

$s_{1} \odot x \preceq s_{2}$ admits a greatest solution $x^{\sharp}=s_{2} \odot{ }^{\sharp} s_{1}$

Non decreasing trajectory

the upper hull is a counter function.

$$
\begin{aligned}
& x^{\sharp}(t)= \\
& \max \left(s_{2}(t)-s_{1}(t), x^{\sharp}(t-1)\right)
\end{aligned}
$$

Residuation of Hadamard Product

5. Hadamard Product and Residuation

Residuation of Hadamard product

Residuation of Hadamard product \odot^{\sharp}
$s_{1} \odot x \preceq s_{2}$ admits a greatest solution $x^{\sharp}=s_{2} \odot^{\sharp} s_{1}$

Computation in $\mathcal{M}_{i n}^{a x} \llbracket \gamma, \delta \rrbracket, x^{\sharp}=s 2 \odot^{\sharp} s 1$

$$
\begin{aligned}
& s 1=\gamma^{1} \delta^{2} \oplus \gamma^{4} \delta^{5} \oplus \gamma^{6} \delta^{+\infty} \text { and } s 2=\gamma^{5} \delta^{1} \oplus \gamma^{7} \delta^{7} \oplus \gamma^{9} \delta^{+\infty} \\
& x^{\sharp}=s_{2} \odot s_{1}^{\sharp}=\gamma^{3} \delta^{1} \oplus \gamma^{5} \delta^{+\infty}
\end{aligned}
$$

5. Hadamard Product and Residuation

Residuation of Hadamard product

$s_{1} \odot x \preceq s_{2}$ admits a greatest solution $x^{\sharp}=s_{2} \odot^{\sharp} s_{1}$ then $s_{1} \odot x^{\sharp}=s_{2} \preceq s_{2}$ is the (purple) trajectory as close as possible from above to the trajectory s_{2}

Residuation of Hadamard product

Computation in $\mathcal{M}_{i n}^{a x} \llbracket \gamma, \delta \rrbracket$, s1 $\odot x^{\sharp}$
$\left(\gamma^{1} \delta^{2} \oplus \gamma^{4} \delta^{5} \oplus \gamma^{6} \delta^{+\infty}\right) \odot\left(\gamma^{3} \delta^{1} \oplus \gamma^{5} \delta^{+\infty}\right)=\gamma^{5} \delta^{1} \oplus \gamma^{7} \delta^{2} \oplus \gamma^{5} \delta^{9} \oplus \gamma^{1} 1 \delta^{+\infty}$

5. Hadamard Product and Residuation

Petri Net

$$
\begin{gathered}
x_{2}=x_{1} \odot x^{\sharp} \preceq x_{2} \\
x^{\sharp}=x_{2} \odot x_{1}
\end{gathered}
$$

Residuation of Hadamard product

Interpretation of x^{\sharp}

x_{2} and x_{1} being given, x^{\sharp} is the minimum number of token to add s.t. x_{2} serves more token than the desired quantity depicted by x_{2}.

5. Hadamard Product and Residuation

Dual Residuation of Hadamard product

Dual Residuation of Hadamard product \odot^{b}
$s_{1} \odot x \succeq s_{2}$ admits a smallest solution $x^{b}=s_{2} \odot^{b} s_{1}$

Substraction of Counters
$s_{2}(t)-s_{1}(t)$ is not a counter (red bullet).

5. Hadamard Product and Resource Sharing

Dual Residuation of

 Hadamard product $\odot^{b}$$s_{1} \odot x \succeq s_{2}$ admits a smallest solution $x^{b}=s_{2} \odot^{b} s_{1}$

Non decreasing trajectory the lower hull is a counter $x^{b}(t)=$ $\min \left(s_{2}(t)-s_{1}(t), x^{b}(t+1)\right)$

Dual Residuation of Hadamard Product

5. Hadamard Product and Residuation

Dual Residuation of

 Hadamard product $\odot^{b}$$s_{1} \odot x \succeq s_{2}$ admits a smallest solution $x^{b}=s_{2} \odot^{b} s_{1}$

Residuation of Hadamard product

Computation in $\mathcal{M}_{i n}^{a x} \llbracket \gamma, \delta \rrbracket, x^{b}=s 2 \odot^{b} s 1$

$$
\begin{aligned}
& s 2=\gamma^{5} \delta^{1} \oplus \gamma^{7} \delta^{7} \oplus \gamma^{9} \delta^{+\infty} \text { and } s 1=\gamma^{1} \delta^{2} \oplus \gamma^{4} \delta^{5} \oplus \gamma^{6} \delta^{+\infty} \\
& x^{b}=s_{2} \odot^{b} s_{1}=\gamma^{7} \delta^{1} \oplus \gamma^{3} \delta^{+\infty}
\end{aligned}
$$

5. Hadamard Product and Residuation

Dual Residuation of Hadamard product

> Dual Residuation of Hadamard product
> $s_{1} \odot x \succeq s_{2}$ admits a smallest solution $x^{b}=s_{2} \odot^{b} s_{1}$ then $s_{1} \odot x^{b}=s_{2} \succeq s_{2}$ is the (purple) trajectory as close as possible from below to the trajectory s_{2}

Computation in $\mathcal{M}_{\text {in }}^{a x} \llbracket \gamma, \delta \rrbracket$, s1 $\odot x^{b}$

$$
\left(\gamma^{1} \delta^{2} \oplus \gamma^{4} \delta^{5} \oplus \gamma^{6} \delta^{+\infty}\right) \odot\left(\gamma^{7} \delta^{1} \oplus \gamma^{3} \delta^{+\infty}\right)=\gamma^{3} \delta^{2} \oplus \gamma^{5} \delta^{5} \oplus \gamma^{7} \delta^{7} \oplus \gamma^{9} \delta^{+\infty}
$$

5. Hadamard Product and Residuation

Petri Net

$$
\begin{gathered}
x_{1}(t)=x_{3}(t)+x_{2}(t) \\
x_{1}=x_{3} \odot x_{2}
\end{gathered}
$$

$$
\begin{gathered}
x_{1} \preceq x_{3} \odot x_{2} \\
x_{3}^{b}=x_{1} \odot \odot^{b} x_{3} \\
x_{2} \odot x_{3}^{b}=x_{1} \succeq x_{1}
\end{gathered}
$$

Dual Residuation of Hadamard Product

Interpretation of x^{b}

x_{1} and x_{2} being given, x_{3}^{b} is the maximum number of token you can consume by ensuring that x_{2} is still satisfied.

5. Resource Sharing (Moradi et al.)

MinmaxGD

Thanks to D. Zorzenon (Wodes '22), this product and residuation is included in software MinmaxGD.

Resource Sharing Problem (Moradi et al.)

$$
\begin{aligned}
& x_{1} \odot x_{3}\left(\gamma^{3} \delta^{2}\right) \otimes x_{2} \odot x_{4} \\
& x \preceq A x \oplus B u A^{*} B u \text { and } y=C x \\
& x \preceq A x \oplus B u \preceq A^{*} B u \text { and } y=C x
\end{aligned}
$$

5. Resource Sharing (Moradi et al.)

Resource Sharing

$$
\begin{aligned}
&\left(\gamma^{3} \delta^{2}\right) \otimes x_{2} \odot x_{4} \preceq x_{1} \odot x_{3} \\
& x \preceq A x \oplus B u \preceq A^{*} B u \text { and } y=C x \\
& x \preceq A x \oplus B u \preceq A^{*} B u \text { and } y=C x
\end{aligned}
$$

$$
\binom{x_{1}}{x_{2}} \preceq\left(\begin{array}{cc}
\varepsilon & \gamma^{3} \delta^{2} \\
\delta^{5} & \varepsilon
\end{array}\right)\binom{x_{1}}{x_{2}} \oplus\binom{\delta^{1}}{\varepsilon} u_{1} \text { and } y_{1}=\left(\begin{array}{ll}
\varepsilon & \delta^{6}
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

5. Resource Sharing (Moradi et al.)

Resource Sharing

$$
\begin{aligned}
&\left(\gamma^{3} \delta^{2}\right) \otimes x_{2} \odot x_{4} \preceq x_{1} \odot x_{3} \\
& x \preceq A x \oplus B u \preceq A^{*} B u \text { and } y=C x \\
& x \preceq A x \oplus B u \preceq A^{*} B u \text { and } y=C x
\end{aligned}
$$

$$
\binom{x_{3}}{x_{4}} \preceq\left(\begin{array}{cc}
\varepsilon & \gamma^{3} \delta^{2} \\
\delta^{3} & \varepsilon
\end{array}\right)\binom{x_{3}}{x_{4}} \oplus\binom{\delta^{8}}{\varepsilon} u_{2} \text { and } y_{2}=\left(\begin{array}{ll}
\varepsilon & \delta^{7}
\end{array}\right)\binom{x_{3}}{x_{4}}
$$

5. Resource Sharing (Moradi et al.)

Resource Sharing

$$
\begin{aligned}
& \left(\gamma^{3} \delta^{2}\right) \otimes x_{2} \odot x_{4} \preceq x_{1} \odot x_{3} \\
& \binom{x_{1}}{x_{2}} \preceq\binom{\delta^{1}\left(\gamma^{3} \delta^{7}\right)^{*}}{\delta^{6}\left(\gamma^{3} \delta^{7}\right)^{*}} u_{1} \text { and } y_{1}=\delta^{12}\left(\gamma^{3} \delta^{7}\right)^{*} u_{1} \\
& \binom{x_{3}}{x_{4}} \preceq\binom{\delta^{8}\left(\gamma^{3} \delta^{5}\right)^{*}}{\delta^{11}\left(\gamma^{3} \delta^{5}\right)^{*}} u_{2} \text { and } y_{2}=\delta^{18}\left(\gamma^{3} \delta^{5}\right)^{*} u_{2} \\
& \text { (}
\end{aligned}
$$

5. Resource Sharing (Moradi et al.)

$$
\begin{aligned}
&\left(\gamma^{3} \delta^{2}\right) \otimes x_{2} \odot x_{4} \preceq x_{1} \odot x_{3} \\
& x \preceq A x \oplus B u \preceq A^{*} B u \text { and } y=C x \\
& x \preceq A x \oplus B u \preceq A^{*} B u \text { and } y=C x
\end{aligned}
$$

Optimal Control for Red Line (Highest Priority)

A desired output z_{1} is supposed known, i.e., the objective is $y_{1} \preceq z_{1}$:

$$
\begin{aligned}
u_{1}^{o p t} & =\left(C A^{*} B\right) \phi z_{1} \\
C A^{*} B u_{1}^{\text {opt }} & \preceq z_{1} \\
\left(x_{1}^{\text {opt }} \quad x_{2}^{\text {opt }}\right)^{T}=A^{*} B u_{1}^{\text {opt }} & =\left(\left(A^{*} B u_{1}^{o p t}\right)_{1} \quad\left(A^{*} B u_{1}^{o p t}\right)_{2}\right)^{T}
\end{aligned}
$$

5. Resource Sharing (Moradi et al.)

Constraint for Blue Line, (Lowest Priority)

$$
\begin{aligned}
\left(\gamma^{3} \delta^{2}\right) \otimes x_{2}^{\text {opt }} \odot x_{4} & \preceq x_{1}^{\text {opt }} \odot x_{3} \\
\left(\gamma^{3} \delta^{2}\right) \otimes x_{2}^{\text {opt }} \odot\left(A^{*} B\right)_{2} \otimes u_{2} & \preceq x_{1}^{\text {opt }} \odot\left(A^{*} B\right)_{1} \otimes u_{2}
\end{aligned}
$$

Constraint on U_{2}

$$
u_{2} \preceq\left(A^{*} B\right)_{2} \oint\left(\left(x_{1}^{o p t} \odot\left(A^{*} B\right)_{1} \otimes u_{2}\right) \odot^{\sharp}\left(\left(\gamma^{3} \delta^{2}\right) \otimes x_{2}^{o p t}\right)\right)
$$

5. Resource Sharing (Moradi et al.)

Optimal Control for Blue Line, (Lowest Priority)

A desired output z_{2} is supposed known, i.e., $y_{2} \preceq z_{2}$:
$u_{2} \preceq\left(C A^{*} B\right) \phi z_{2}$
$u_{2} \preceq\left(\left(C A^{*} B\right) \phi z_{2}\right) \wedge\left(\left(A^{*} B\right)_{2} \phi\left(\left(x_{1}^{o p t} \odot\left(A^{*} B\right)_{1} \otimes u_{2}\right) \odot^{\sharp}\left(\left(\gamma^{3} \delta^{2}\right) \otimes x_{2}^{o p t}\right)\right) \wedge u_{2}\right.$ $u_{2} \preceq \Phi\left(u_{2}\right)$

Optimal Control

A greatest fixed point of $u_{2} \preceq \Phi\left(u_{2}\right)$ exists and it is the optimal control $u_{2}^{\text {opt }}$, i.e., the greatest control respecting the constraints.

5. Resource Sharing (Schafaschek et al.)

With updating of the reference output z_{i}

- Many resource and many priorities
- Updating reference input z_{i} (receding horizon, MPC approach)

Conclusion

- Model TEG (γ and δ operators)
- Model WBTEG (γ, μ, β and δ operators)
- Open and closed loop controllers synthesis of the both (off line computation)
- Optimal control when resources are shared, on receding horizon (on line computation)

Open Problems

Complexity

Algorithms to manipulate periodic series are polynomial according to the size of the series not to the number of states.

The canonical representation can be large

- Two internal transitions
- A transient pattern with 6 monomials $\left(\gamma^{3} \delta^{3}\right)^{*}\left(\gamma^{7} \delta^{7}\right)^{*}=$ $\left(\gamma^{0} \delta^{0} \oplus \gamma^{3} \delta^{3} \oplus \gamma^{6} \delta^{6} \oplus \gamma^{7} \delta^{7} \oplus \gamma^{9} \delta^{9} \oplus \gamma^{10} \delta^{10}\right) \oplus\left(\gamma^{12} \delta^{12}\right)\left(\gamma^{1} \delta^{1}\right)^{*}$

Open Problems

Alternative : Legendre-Fenchel Transform

$$
\mathcal{L}(C)=\bigoplus_{t \in \mathbb{R}}(t . s-C(t))
$$

Series $\left(\gamma^{0} \delta^{0} \oplus \gamma^{2} \delta^{5}\right) \oplus\left(\gamma^{6} \delta^{6}\right)\left(\gamma^{1} \delta^{1}\right)^{*}$ and its approximation

Open Problems

Alternative : Legendre-Fenchel Transform

$$
\mathcal{L}(C)=\bigoplus_{t \in \mathbb{R}}(t . s-C(t))
$$

Series $\left(\gamma^{0} \delta^{0} \oplus \gamma^{2} \delta^{5}\right) \oplus\left(\gamma^{6} \delta^{6}\right)\left(\gamma^{1} \delta^{1}\right)^{*}$ and its approximation (E. Le Corronc)

Open Problems

An artificial neuron (P. Maragos et al.)

$$
y=\varphi\left(\Sigma_{i}\left(w_{i} x_{i}\right)\right)
$$

where φ is the activation function. Rectifier (ReLu) is an activation function such as : $\max (0, x)$, hence $y=\max \left(0, \sum_{i}\left(w_{i} x_{i}\right)\right)$

Equation of an artificial neuron in idempotent semi-ring

$$
y=e \oplus \bigodot_{i} \mu_{w_{i}}\left(x_{i}\right)
$$

The reachable set is a max-plus polyhedron.

Open Problems

Log semi-ring (Maslov et al.)

$$
\begin{gathered}
a \oplus b=\log \left(e^{a}+e^{b}\right) \\
a \otimes b=a+b
\end{gathered}
$$

Useful to address some problems of filtering in stochastic context (Analogous to Kalman filter, see G. Winck et al.).

Thank you for your attention.

Tropical Geometry

A max-plus polyhedron

State Estimation : Observer Synthesis

Prediction computation :

$$
\hat{x}(\gamma)=A x(\gamma) \oplus B u(\gamma)
$$

or

$$
\hat{x}(k)=A x(k-1) \oplus B u(k) .
$$

State Estimation : Observer Synthesis

Objective :

Compute the greatest observer matrix L such that

$$
\hat{x} \preceq x .
$$

State Estimation : Observer Synthesis

System Equations :

$$
\begin{aligned}
& x=A x \oplus B u \oplus S q=A^{*} B u \oplus A^{*} S q \\
& y=C x=C A^{*} B u \oplus C A^{*} S q
\end{aligned}
$$

Estimated State Equations:

$$
\begin{aligned}
\hat{x} & =A \hat{x} \oplus B u \oplus L(\hat{y} \oplus y) \\
\hat{y} & =C \hat{x} .
\end{aligned}
$$

State Estimation : Observer Synthesis

Constraints Satisfaction :

Compute the greatest observer matrix L such that

$$
\begin{array}{llll}
(A \oplus L C)^{*} B u & \preceq & A^{*} B u & \forall u \\
(A \oplus L C)^{*} L C A^{*} S q & \preceq & A^{*} S q & \forall q,
\end{array}
$$

Constraints Satisfaction :

Compute the greatest matrix L such that

$$
\begin{array}{lll}
(A \oplus L C)^{*} B & \preceq & A^{*} B \Leftrightarrow L \preceq\left(A^{*} B\right) \phi\left(C A^{*} B\right) \\
(A \oplus L C)^{*} L C A^{*} S & \preceq & A^{*} S \Leftrightarrow L \preceq\left(A^{*} S\right) \phi\left(C A^{*} S\right) .
\end{array}
$$

State Estimation : Observer Synthesis

Optimal Matrix : (Hardouin et al. IEEE TAC 2010, Hardouin et al. 2019)

$$
L_{o p t}=\left(\left(A^{*} B\right) \phi\left(C A^{*} B\right)\right) \wedge\left(\left(A^{*} S\right) \phi\left(C A^{*} S\right)\right)
$$

is the greatest such that

$$
\hat{x} \preceq x .
$$

State Estimation : Observer Synthesis : Performance Analysis

Equality of the asymptotic slope (Hardouin et al. IEEE TAC 2010)

If matrix C linking state vector to the output is connected to all connected components of the graph then

$$
\sigma_{\infty}\left(\hat{x}_{i}\right)=\sigma_{\infty}\left(x_{i}\right) \forall i
$$

Corollary :

If state x_{i} belongs to a connected component whose at least one transition is measured then the error $\hat{x}_{i}-x_{i}$ is bounded.

State Estimation : Set-membership approach

Uncertain system
$A(k) \in[\underline{A}, \bar{A}]=[A], B(k) \in[\underline{B}, \bar{B}]=[B], C(k) \in[\underline{C}, \bar{C}]=[C]$
Each matrices entries is supposed bounded and $A(k), B(k), C(k)$ is a realization at step k

$$
\begin{aligned}
& x(k)=A(k) x(k-1) \oplus B(k) u(k) \\
& y(k)=C(k) x(k)
\end{aligned}
$$

In the sequel, to enlighten the notation, we assume (without lost of generality) autonomous systems, i.e., $x(k)=A(k) x(k-1)$. Indeed we can consider $\tilde{x}=\left(x^{t} u^{t}\right)^{t}$ and $\tilde{A}=\left(\begin{array}{cc}A & \varepsilon \\ \varepsilon & B\end{array}\right)$

State Estimation : Set-membership approach

Uncertain system $A(k) \in[\underline{A}, \bar{A}]=[A], C(k) \in[\underline{C}, \bar{C}]=[C]$

$$
\begin{aligned}
x(k) & =A(k) x(k-1) \\
y(k) & =C(k) x(k)
\end{aligned}
$$

Q1: Assuming $x(k-1) \in \mathcal{X}_{k-1 \mid k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}$? (prediction)
Q2 : Assuming $y(k)$ available, is it possible to compute the inverse image set $[C]^{-1}(y(k))=\{x \mid y(k)=C x, C \in[\underline{C}, \bar{C}]\}$? (likelihood) Q3: Is it possible to compute the intersection of the two previous sets to obtain the set $\mathcal{X}_{k \mid k}=\mathcal{X}_{k \mid k-1} \cap[C]^{-1}(y(k))$? (estimation)

State Estimation : Set-membership approach

Uncertain system $A \in[\underline{A}, \bar{A}], C \in[\underline{C}, \bar{C}]$

$$
\begin{aligned}
& x(k)=A(k) x(k-1) \\
& y(k)=C(k) x(k)
\end{aligned}
$$

Q1 : Assuming $x(k-1) \in \mathcal{X}_{k-1 \mid k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}$?
Assumption : $\mathcal{X}_{k-1 \mid k-1}$ is depicted as a tropical polytope. (Lemma 2.1 PhD Guilherme Winck (University of Angers)).

State Estimation : Set-membership approach

: Assuming $x(k-1) \in \mathcal{X}_{k-1 \mid k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}$?

$$
15 \uparrow^{x_{2}}[\underline{A}, \bar{A}]=\left(\begin{array}{cc}
{[7,9]} & {[9,10]} \\
{[5,7]} & {[5,7]}
\end{array}\right)
$$

State Estimation : Set-membership approach

: Assuming $x(k-1) \in \mathcal{X}_{k-1 \mid k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}$?

State Estimation : Set-membership approach

: Assuming $x(k-1) \in \mathcal{X}_{k-1 \mid k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}$?

State Estimation : Set-membership approach

: Assuming $x(k-1) \in \mathcal{X}_{k-1 \mid k-1}$ a known set, is it possible to compute the set $\mathcal{X}_{k \mid k-1}=\left\{A x \mid A \in[\underline{A}, \bar{A}], x \in \mathcal{X}_{k-1 \mid k-1}\right\}$?

State Estimation : Set-membership approach

Uncertain system $A \in[\underline{A}, \bar{A}], C \in[\underline{C}, \bar{C}]$

$$
\begin{aligned}
x(k) & =A(k) x(k-1) \\
y(k) & =C(k) x(k)
\end{aligned}
$$

Q2 : Assuming $y(k)$ available, is it possible to compute the inverse image set $[C]^{-1}(y(k))=\{x \mid y(k)=C x, C \in[\underline{C}, \bar{C}]\}$?
The set can be written as $[C]^{-1}(y(k))=\{x \mid \underline{C} x \preceq y(k) \preceq \bar{C} x\}$, which can be decomposed in two sets :

$$
\mathcal{X}=\overline{\mathcal{X}} \cap \underline{\mathcal{X}}
$$

where $\overline{\mathcal{X}}=\{x \mid \underline{C} x \preceq y(k)\}$ and $\underline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} x\}$
Renato Cândido et al., " An Algorithm to Compute the Inverse Image of a Point with Respect to a Nondeterministic Max Plus Linear System", in IEEE TAC, 2021.

State Estimation : Set-membership approach

Computation $\overline{\mathcal{X}}=\{x \mid \underline{C} x \preceq y(k)\} \Leftrightarrow \overline{\mathcal{X}}=\{x \mid x \preceq \underline{C} \nmid y(k)\}$

State Estimation : Set-membership approach

Computation $\underline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} \times\}$

State Estimation : Set-membership approach

Computation $\underline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} \times\}$

State Estimation : Set-membership approach

Computation $\underline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} \times\}$

State Estimation : Set-membership approach

: Computation $[C]^{-1}(y(k))=\overline{\mathcal{X}} \cap \underline{\mathcal{X}}$

State Estimation : Set-membership approach

Q3 : Is it possible to obtain the intersection $\mathcal{X}_{k \mid k}=[C]^{-1}(y(k)) \cap \mathcal{X}_{k \mid k-1}$

State Estimation : Set-membership approach

Q3 : Is it possible to obtain the intersection $\mathcal{X}_{k \mid k}=[C]^{-1}(y(k)) \cap \mathcal{X}_{k \mid k-1}$

State Estimation : Set-membership approach

Filtering algorithm :
Require : $\mathcal{X}_{k-1 \mid k-1}, y(k)$
Ensure : $\mathcal{X}_{k \mid k}$

$$
\begin{array}{ll}
\mathcal{X}_{k \mid k-1}=[\underline{A}, \bar{A}] \mathcal{X}_{k-1 \mid k-1} & \text { (prediction) } \\
\underline{\mathcal{X}}=\{x \mid x \preceq \underline{C} \nmid y(k)\} & \\
\overline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} x\} & \text { (likelihood) } \\
{[C]^{-1}(y(k))=\underline{\mathcal{X}} \cap \overline{\mathcal{X}}} & \text { (estimation) } \\
\mathcal{X}_{k \mid k}=\mathcal{X}_{k \mid k-1} \cap[C]^{-1}(y(k)) &
\end{array}
$$

State Estimation : Set-membership approach

Filtering algorithm :
Require: $\mathcal{X}_{k-1 \mid k-1}, y(k)$
n, N, q
Ensure : $\mathcal{X}_{k \mid k}$

$$
\begin{align*}
& \mathcal{X}_{k \mid k-1}=[\underline{A}, \bar{A}] \mathcal{X}_{k-1 \mid k-1} \tag{2}\\
& \underline{\mathcal{X}}=\{x \mid x \preceq \underline{C} \nmid y(k)\} \tag{nq}\\
& \overline{\mathcal{X}}=\{x \mid y(k) \preceq \bar{C} x\} \tag{nq}\\
& {[C]^{-1}(y(k))=\underline{\mathcal{X}} \cap \overline{\mathcal{X}}} \\
& \mathcal{X}_{k \mid k}=\mathcal{X}_{k \mid k-1} \cap[C]^{-1}(y(k)) \tag{n}
\end{align*}
$$

State Estimation : Set-membership approach

Alternative approaches: Decomposition in PWA (Adzkiya et al.
Automatica 2015)

State Estimation : Set-membership approach

Alternative approaches : Decomposition in PWA (Adzkiya et al.
Automatica 2015)

State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)

State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)

State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)

State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)

State Estimation : Set-membership approach

Performances comparison

- Using tropical polytope approach, the set of all possible solution is obtained, the complexity is $\mathcal{O}\left(n^{n}\right)$.
- Using DBM the same set is obtained (Adzkiya et al. Automatica 2015), with an exponential complexity also, but practically worst.
- Using Box an overapproximation is obtained with a polynomial complexity (Winck, PhD 2022).
- Using SMT (Satisfability Modulo theory) solver (e.g., z3 solver) (Mufid et al. IEEE TAC, 2022) is equivalent to keep the \mathcal{H}-form of the tropical polytope. This is suitable when a point included in the estimation set is desired (check a solution). But needs to keep all the constraints on the horizon of estimation, which growth at each step.

State Estimation : Set-membership approach

Where is the estimation given by the observer?

Observer computed off line with a polynomial complexity

$=1$	5	10	15
20			

Conclusion

State Estimation

- An efficient observer exists, the greatest possible solution is obtained
- A set-membership approach based on max-plus polytope is the most efficient to obtain the set of all possible solutions, even if the complexity is still exponential.
- Interval analysis yields an over estimation of the solution set with a polynomial complexity

Conclusion

Open problems to address

- Developing an interval observer to compute on-line an upper bound
- Developing more efficient algorithms to compute intersection of max-plus polytope
- Developing method to obtain underestimation set (set included in the solution set), (Barnhill et al., arxiv.org, 2023).
- Selecting a point in the solution set (support) by considering stochastic approach (Santos-Mendes et al. IEEE TAC, 2019, Winck et al. IEEE TAC 2022).
- Considering only \mathcal{H}-form to avoid the costly transposition to \mathcal{V}-form.
- Developing state estimation method for systems involving resource sharing (Schafaschek et al. 2020).

References

- L. Hardouin, B. Cottenceau, Y. Shang, J. Raisch "Control and State Estimation for max-plus Linear Systems" Journal on Foundations and Trends in Systems and Control 2019 http ://dx.doi.org/10.1561/2600000013
- G. Espindola-Winck, R. Santos-Mendes, M. Lhommeau, and L. Hardouin, "Stochastic filtering scheme of implicit forms of Uncertain Max-plus linear systems", IEEE TAC, 2022, DOI : 10.1109/TAC.2022.3176841
- Rafael Santos-Mendes, Laurent Hardouin, Mehdi Lhommeau "Stochastic Filtering of Max-plus Linear Systems with Bounded Disturbances" , IEEE TAC, september 2019, doi :10.1109/TAC.2018.2887353
- G. Schafaschek, S. Moradi, L. Hardouin, J. Raisch "Optimal Control of Timed Event Graphs with Resource Sharing and Output-Reference Update", Doi :j.ifacol.2021.04.057 WODES, Rio De Janeiro, 2020

References

- Germano Schafaschek, Laurent Hardouin, Joerg Raisch "A Novel Approach for the Modeling and Control of Timed Event Graphs with Partial Synchronization", WODES 2022,
Prague,Doi :j.ifacol.2022.10.344
- Davide Zorzenon, Germano Schafaschek, Dominik Tirpák, Soraia Moradi, Laurent Hardouin, Jörg Raisch
"Implementation of procedures for optimal control of timed event graphs with resource sharing", WODES 2022
- Bertrand Cottenceau, Laurent Hardouin, Johannes Trunk "Weight-Balanced Timed Event Graphs to Model Periodic Phenomena in Manufacturing Systems" IEEE Transactions on Automation Science and Engineering, 2017, doi : 10.1109/TASE.2017.2729894
- Soraia Moradi, Laurent Hardouin, Joerg Raisch
"Optimal Control of a Class of Timed Discrete Event Systems with Shared Resources, An Approach Based on the Hadamard Product of Series in Dioids" , CDC'17, Melbourne, Australia, December 2017.

References

- Le Corronc E., Cottenceau B., Hardouin L. "Container of (min,+)-linear systems", Journal of Discrete Event Dynamic Systems (2014), vol. 24-1,pp 24-52.
- Hardouin Laurent, Cottenceau B. , Lagrange S., Le Corronc E. Performance Analysis of Linear Systems over Semiring with Additive Inputs Worksop On Discrete Event Systems WODES 08, Goteborg May 2008.
- Soraia Moradi, Laurent Hardouin, Joerg Raisch "Modeling and Control of Resource Sharing Problems in Dioids" , WODES 16,13th International Workshop on Discrete Event Systems Xi'an, China, 2016.
- B. Cottenceau, L. Hardouin, J.L. Boimond "Modeling and Control of Weight-Balanced Timed Event Graphs in Dioids", IEEE TAC, Trans. Automatic Control 59 :5, (2014),10.1109/TAC.2013.2294822.
- L. Hardouin, O. Boutin, B. Cottenceau, T. Brunsch, J. Raisch "Discrete-Event Systems in a Dioid Framework: Control Theory", in Control of Discrete-Event Systems, Springer, Lecture Notes in Control

References 1 :

(Cohen et al. IEEE TAC 85)

author=G. Cohen and D. Dubois and J.P. Quadrat and M. Viot, title=A linear system theoretic view of discrete event processes and its use for performance evaluation in manufacturing, journal=IEEE Trans. on Automatic Control, volume $=A C-30$,
pages $=210-220$, year $=1985$

(Cohen, Quadrat et al. IEEE TAC 89)

author=G. Cohen and P. Moller and J.P. Quadrat and M. Viot, title=Algebraic Tools for the Performance Evaluation of Discrete Event Systems, journal=IEEE Proceedings : Special issue on Discrete Event Systems, volume $=77$, pages $=39-58$,

References 2 :

(Renato Cândido et al., 2021)

Renato Cândido, L. Hardouin, M. Lhommeau and R. Santos Mendes IEEE Trans. Automatic Control, 2021, 10.1109/TAC.2020.2998726

(Mufid et al. 2022)

Muhammad Syifa'ul Mufid, Dieky Adzkiya and Alessandro Abate SMT-Based Reachability Analysis of High Dimensional Interval Max-Plus Linear Systems,
IEEE Trans. on Automatic Control, 2022

References 3 :

(Hardouin et al. IEEE TAC 2010)

author $=\mathrm{L}$. Hardouin and C.A. Maia and B. Cottenceau and M.
Lhommeau, year $=2010$, month $=$ February,
volume $=55-2$,
title $=$ Observer Design for (max,plus) Linear Systems, journal =IEEE Transactions on Automatic Control, note=istia.univ-angers.fr/~hardouin/Observer.html

Adzkiya et al. 2015

author=D. Adzkiya, B. De Schutter and A. Abate, title=Computational techniques for reachability analysis of Max-Plus-Linear systems, note $=$ Automatica, year $=2015$,

2. Idempotent semi-ring

> Sandwiches Algebra [Cohen et al.]
> 1 piece of Bread +1 slice of ham +
> 1 slice of cheese is equal to 1
> sandwich. Another way of counting!

