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Counter of events

L C(t)
Number of Events

L]
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Counters of events (cumulative value)

Function C(t) gives the number of event's occurrence up to time t, e.g.,
C(6) = 4 means that 4 events occurred up to time 6.

It is a non-decreasing and non-continuous function.

The set of Counters is denoted C in the sequel.
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1. Transformations on Counter Functions and Petri nets

2. Algebraic setting, ldempotent semi-ring

3. Model and control of Timed Event Graphs (TEG)

4. Model for Weighted Balanced Timed Event Graphs (WBTEG)
5. Hadamard product and Sharing Resource Problem

@ Conclusion and Open Problems
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1. Transformations in C : -operator

Time Shifting of Counter
a(t)  x(t) Delay in timed Petri net

7

6 xo(t)=x1(t —3)
s+t r

! 3

z ¥3 —[-O-~]—
1

t
12345678 91011

Operator §7, shifting of 7 time unit :

0T :C—=C, C(t) = C(t—1), eg.,
0% C -, C(t) — C(t—3), is the mapping delaying a signal of 3 times
unit, i.e., x2(t) = 5°(xq(t)).
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1. Transformations in C : y-operator

Event Shifting
B
Xz(t): X1(t')—|—2
— 4

] e e Ol g
== | |

I—ll~|)oo-l>U'IO\\l

t v

12345678 91011

v

Operator ", shifting of n events :

v :C—C,C(t) = n+ C(t), eg.,
v2:C — C,C(t) — 2+ C(t), is the mapping shifting a signal of 2 events,
i.e., x2(t) = v?(x(t)).
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1. Operators composition

. C—=C,C(t)—= C(t—7)
¥ C—C,C(t) — n+ C(t)
7”057— _ 57—0’7n

~4"0" to code a counter function
Composition of operators
C(t) +00

x0="2(0*(x1)) = 6*(v* (1))

5
4
3 2 ¢4

—00 =5+ ga
1

X
R ' / 1234567t
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1. Counter functions and Operators

Counters C(t) can be coded as a union of monomial 7”97

C(7,6) = 75t where ~ is the event shift operator and ¢ is the time
shift operator.

,7
7
6 ®
5 ’}/6(5+°°
4 ] 458
y
. wwmm
5 Y
1 ’)/0(51 5
1234567891011
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2. ldempotent semi-ring

|dempotent Semiring S (Tropical Algebra (I. Simon))

@ Sum @, associative,commutative, zero element denoted ¢ ,

Product ©, associative, identity element denoted e,

Product ® distributes with respect of sum,
(adb)®c=a®cdbRc,

Zero element ¢ is absorbing, a® e =¢

The sum is idempotent, a ® a = a.

basadbb=a=aVbsaAb=>b
hence an idempotent semiring has a complete lattice structure, with
(¢) as bottom element and (7 = €D, .5 x) as top element.

(min,+) algebra, ZLomin
Sum & is the operator min, product ® is classical sum +, € = 400,
T = —oc0 and e = 0, then :
1®2=1=min(1,2), (warning 2 < 1)
2®1=3=2+1.
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2. Semiring M2¥[, 9] (Cohen et al.)

Semiring of formal power series coded with " and ¢

Sum @ is the U, product @ is the composition o, £ = 5>,
T =767 and e = 7%4°.

+00 §—00
Y J 5 5
4 1 4
3 o 3
5 -3 1| 12 2
1 1]~06°




2. Set of Counters C and semiring

Counters C(t) can be coded as a non decreasing series in M2*[, ]

C(7,0) = P ~C(1)5t where 7 is a event shift operator and § is a time shift
operator, a series admits a minimal representation, e.g.,

C(,Y’ 5) _ 7051 @7354 @74(58 @765+oo

")/ 74
6 °
5 765+oo
4 _1_-7458
g ,.)/354
1 7051 5
1234567891011
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2. Synchronization

Synchronization of signals Synchronization phenomena

v 7 X2 X e X3=x1Dxo
6 L] i ".
5 |] '
4 P —>(->
3 —~ >|]—> e
1234567891011 0 )

v
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2. Synchronization

Synchronization Synchronization phenomena

v 7 X2 X q X3=x1Dxo
6 ® ; \:
5 |]
4 P —>(->
3 —~ >|]—> e
1234567891011 0 )

v
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2. Elementary Operations

n

o' : time shifting, ~" . event shifting ,

Xo =
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3. Model of Timed Event Graphs (TEG)

Timed Event Graphs (TEG)

are perfectly described by composition

of operators v and J.

Internal transitions are denoted x;
4@ """"""" (inputs transitions u;, outputs

35 5, transitions y;).
x) 53 V6% [x1 . ot ,
X2 ) € X2 €

<
Il
—
[0
>
(6;]
SN—
N
X X
~__
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3. Model of Timed Event Graphs (TEG)

Standard representation in M2¥[~, d]

with vectors of inputs trajectories

u e M[v,06]P, of internal states
trajectories x € M2<[~,0]" and outputs
trajectories y € M3¥[,0]9), hence

A € M&[~,0]™", B € M3 [~,0]"*P,

T CeMID,an
System

E‘ﬁ
v
D
o)
<
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3. Transfer Relation of TEG

Fixed point equations

For non-decreasing function, (x < y = f(x) < f(y)), it is possible to
compute fixed points f(x) = x.

Application : x = ax ® b = f(x)
Theorem : Over a complete idempotent semiring S, the least solution to

x=ax®bisx=abwitha*= P ad=e0ada’d..
i€Np

x is called Kleene star operator.

State Equation : Transfer Relation :

= Ax® Bu x = A*Bu
= Cx y = CA"Bu




3. Transfer relation of TEG

---------------------------------------- b ((7257)* 7254(7257)*>

53(7257)* (,7257)*
ﬂéOéﬂo_}—'}Oﬁﬂ x = A'Bu= (7061(7267)*> u

7054(7257)*
y = CA*Bu=6(26")u
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3. Ultimate Pseudo Periodic series (Cohen et al.)

A periodic series in M2*[, d]

s=p®q(y"07)* where p = (P 7" % and g = P]" 7Y are

polynomials and C..(s) = /7 is the asymptotic slope (the throughput).
Canonical form exists.

(311 @ 5*)

T3




3. Idempotent semi-ring and pseudo-inverse

Residuation Theory (Galois Connection) (Croisot et al., Blyth)

A pseudo inverse exists for non-decreasing function defined over ordered
sets.

Inequality a ® x < b (Baccelli et al.)

Over a complete idempotent semi-ring, inequality a ® x < b admits a
greatest solution , denoted, x = akb,
(i.e. a(ayb) = b and equality is achieved, if possible).

Example : (min,+) algebra Zmi,

Inequality 3 @ x < 5 admits a greatest solution x = 3%5 =5 -3 =2 It
achieves equality in the scalar case.
(warning : = is the inverse order in this semi-ring)
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3. Semiring of periodic series (Cohen et al.)

Operations over semi-ring of periodic series over M2¥[~, d]

@ s = 51 b sy is a periodic series, asymptotic slope
Ooo(S) = min(oso(51), 000 (52))
@ s =5 ® s, is a periodic series, asymptotic slope
Ooo(s) = min(oso(51), 000(s2))
@ s =51 A\ sy is a periodic series, asymptotic slope
Ooo(S) = max(00(51), 000(52))
@ 5 = 5185y is a periodic series, 0oo(S) = Too(52) iIf Too(52) < 00o(S1)
else s = e.

Software Tools (MinmaxGD)

Software to handle periodic series is available on :
http://perso-laris.univ-angers.fr/~hardouin/outils.html
http://perso-laris.univ-angers.fr/~1lhommeau/

ardouin (LARIS, UniOn Counter Functions and Operators for Moc


http://perso-laris.univ-angers.fr/~hardouin/outils.html
http://perso-laris.univ-angers.fr/~lhommeau/

3. ldempotent semi-ring

Let A, B, C three matrices in S"*"
° (A® B); = Aj ® Bj
o (A®B)ik= @ (Aj® Bj)

j=1l...n
® (AAB)ik = A (Aji}Bjk), where A%B is the greatest matrix s.t.
Jj=1l...n
AX < B
e (B#A)ik = N (Ajj#Byj), where A¢B is the greatest such XA < B
j=1l...n

o (X)j = Aj is the greatest matrix s.t. X < A”

See : http://perso-laris.univ-angers.fr/~hardouin/GET_BO.html
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3. Controller synthesis (Maia et al.)

System Equation :

x = Ax@® Bu
y = Cx= CA*Bu

W

Open-loop control

y = CA*BPv
such that
CA*BP = CA*B

Optimal solution

Popt - Pr+((CA*B)§(CA*B))

v
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3. Controller synthesis (Maia et al.)

Controlled system :

Ax @ B(v @ Kx)
y =

Closed-loop transfer

function :
y = C(A® BK)*Bv

Compute the greatest K s.t. :
C(A® BK)*B = CA*B

Optimal solution
Kopt = Pry((A*B)}(CA*B)#(CA"B)

V.
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3. Controller synthesis (Maia et al.)

Controlled system :

x = Ax®B(vdKx)dP
y =

<

4

i» Controlled transfer function :

y = C(A® BK)*BPv

Controller P,y and Kopt

Popt — Pr+((CA*B)§(CA*B))

Kopt = Pri((A"B)}(CA"B)#(C4"B)

V.
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4. Operators to Model Weights

EI C R

= 2><X1(t)

Event counter is muItlplled by 2
(input weight).

\ x1(t)

° 12><x1(t)

N WSRO N

t
1234567891011

+0~ :
Event counter is d|V|ded by 3
(output weight).

7‘ Xl(t

: i

4 3

3

2 o

1

O t
1234567891011
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4. Operators to Model Weights (Cottenceau et al.)

. : @ [im, Bp and ¥ do not
Additive operators ji,, and 3, commute
m e N, pm: pm(C(t)) = m x C(t) @ /im, Bp and v¥ commute
be NT, By : Bp(C(t)) = [ C(t)/b] with 67
® mY! =7 pim and
Y'8p = Bpy® )
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4. Weights Timed Event Graph

P WB-TEG model

2, Delays are in blue, weights in red,
usy 1 ( (\5 54Y  tokensin green.

I]*>O—>|]->O+>|]—9©**|]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, B e e
X = (5352 B >XEB< - u

y = (€ 5554)X

Gain of a Path

Gain of a path is the product of each weight, e.g. v — y the ratio of input
weight and output weight is 3/1 x 1/2 x 1/4 = 3/8.

Weights Balanced TEG (WB-TEG)

Each parallel path is with the same gain, this implies that each circuit is
with a gain equal to 1.
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4. Weights Balanced Timed Event Graph (WB-TEG)

Semi-ring £*[0]
Transfer behavior of WB-TEGs are described by rational expression over
{7v7,07, im, Bp} in a specific semi-ring.

(4 &% WB-TEG transfer in £*[J]

u3 1 i
[IQO—>[|_>Q,L>[|_»Q+.[| .
= Cx
y = [a0°(B2036*y312)* 52030 pzu = *
Yy = Bad®(B20"7312)* Bab* pzu y = CA*Bu
y = 6°Ba(6"12y?B2)* Bapzu



http://perso-laris.univ-angers.fr/~cottenceau/etvo.html

4. Control of WB-TEG

Residuation a® x < b

Semi-ring £*[0] is complete, hence 2 @ x < b admits a greatest solution
x < ayb.

Optimal Neutral Controller for

[P
Open Loop Controller

Popt = Pr((CA*B)}(CA"B))

Closed Loop Controller

Kopt = Pri((A"B)}(CA"B)#(CA*B))

’
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5. Hadamard Product and Resource Sharing Problem

Hadamard Product

Convergence of events gt
xa(t)=xa(t)+x (1)) 5
7
6
| 5 EEEEH
:%\OQI] 4 °
,/> L. 3 O
3
|] ; ]
- i o
’ t
123456738 91011
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5. Hadamard Product and Resource Sharing Problem

Hadamard Product

Convergence of events o X2 X1 X3
x3(t)=x1(t)+x2(1)) 8
7
6
| : :
30-] ' :
[|,/> Iy ] ®
2 )
€Ty 1 |
) t
12345678 91011
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5. Hadamard Product (Hardouin et al.)

Hadamard Product

T |—~
X3=X1OX2 8
7
6
I] 5 ) o
%\O—> 4 >
[I‘/> Ty 3 ¢ ®
‘ = o)
‘ ) 4
123456 7 8 91011 ‘

4

x1 =~13 @367 ® 7561 and x2 = 156 @ A5t
x3=x1@x =738 ®1°8° ® 76 @25+




5. Hadamard Product

Hadamard product ®

Let 51 = @,z 76t and s = @, 725t be two series,

51 @ 52 _— @fysl(t)"’_SQ(t)ét

teZ

Properties of Law ®

Associative, commutative, neutral element e., = 7257
Zero element ¢ = v °°§ 7 is absorbing a © & = ¢
Distributes with respect of sum @, i.e., a® (bdc)=aG bdabd ¢

o
o
o
@ Distributes with respect of A, i.e., a® (bAc)=(a®@b)A(a® c)
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5. Hadamard Product and Residuation

Residuation of Hadamard product

S2 S1

Residuation of Hadamard

product ®f

s1 ® x = 5> admits a greatest
solution x! = 5, Of g

Substraction of Counters

so(t) — s1(t) is not a counter
(red bullet).

[
.—ArI;w-hcnox\loouo
@

t
12345678 91011

y
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5. Hadamard Product and Residuation

Residuation of Hadamard Product

1Sp) S1

42
o
@

Residuation of Hadamard

product &*

51 ® x = 5> admits a greatest
solution x¥ = 5, Of

&~ 1O N o ©

| \

Non decreasing trajectory

the upper hull is a counter e o o e o o0 o
function. —

xH(t) = 1
max(s>(t) — s1(t), x(t — 1))

t
/ 12345678 91011

vy
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5. Hadamard Product and Residuation

Residuation of Hadamard product

L) S1

A

Residuation of Hadamard

9

8

7

product ©F 6

s1 ® x = 5, admits a greatest Z
solution x! = 5, ®f 5 —3

+—I
1

t
12345678 91011

v

Computation in M [y, ], x* = s2 ®* s1

s1 =182 @ 4465 @ 7551 and 52 = 1261 © 7767 @ 25T
xt=s50ls = 7351 S 75(5+°C
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5. Hadamard Product and Residuation

Residuation of Hadamard product

i — -
product 8
s1 ® x = 5o admits a greatest 7
solution x* = 5, ®% 5 then 6 o
s10xt =5 < 5 is the 5 o
(purple) trajectory as close as 4
possible from above to the —3 |
—
1

trajectory s

t
1234567891011

4

Computation in M2[y, 4], s1 ® x*

in

(7152 @7455 @7654—00) ® (7351 @755—&—00) _ 7551 @7752 EB’YECSQ @7115—&-00
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5. Hadamard Product and Residuation

Residuation of Hadamard product

x=x10x" < x> 9 l
xF=x00x 8
7
6 °
@ 4
siad|
i / 1

A

|

t
1 2 3 45 6 7 891011

Interpretation of x*

x> and x1 being given, x% is the minimum number of token to add s.t. x>
serves more token than the desired quantity depicted by x.
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5. Hadamard Product and Residuation
Dual Residuation of Hadamard
product

Dual Residuation of 5 s1
Hadamard product &’

$1 ® x = s> admits a smallest
solution x” = 5, @ &

(.I'IO\\IOOKO

Substraction of Counters

@
w
@

s»(t) — s1(t) is not a counter e ¢ o o

(red bullet).

ol

t
12345678 91011

.
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5. Hadamard Product and Resource Sharing
Dual Residuation of Hadamard
Product

L2 S

B

Dual Residuation of
Hadamard product &’

s1 ® x = s> admits a smallest
solution x” = 5, P s1

LI'IO\\IOO@

| \

Non decreasing trajectory
the lower hull is a counter
X(t) =

min(s,(t) — s1(t), x"(t + 1))

@
w
@

-

t
12345678 91011

v

v
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5. Hadamard Product and Residuation

Residuation of Hadamard product
52

A S1

9

Dual Residuation of

51 ® x = s> admits a smallest

b

solution x” = 5, @ s

8
7 [
Hadamard product &’ 6 _l S
_5_
4
3 [_'
+

H

t
12345678 91011

v

Computation in M2[y,d], x” = s2 @’ sl
s2 — 75(\‘1 mn 77(\‘7 @ 79(3‘7& and s1 = ,7152 @’7455 @765—%00
3 = 5 @ 51 = 778L @ 36+
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5. Hadamard Product and Residuation
Dual Residuation of Hadamard
product

A2 S1

SEEE)
S

Dual Residuation of

Hadamard product :

51 ® x = s> admits a smallest 7
solution x” = 5, ®” 51 then 6

510X =3 = 5 is the 5

(purple) trajectory as close as 4 —I
possible from below to the —Z'«-:I
trajectory s -2

A\
n

t
1234567 8 91011

v

Computation in M2[v, 4], s1 ® x°
(7152 ® 7455 ) 765+<>o) o (7751 ® 735+oo) _ 73(52 ® 75(55 ® 7757 ® 795+oo
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5. Hadamard Product and Residuation
Dual Residuation of Hadamard
=x3(t)+x2(t) Product
s1

=Xx3OX2
@
il N

9
8
7
6
1
e ———————— e’ o +
-+:j
=x30x2

xgz @bX3 "
X OX = x1 = 1234567891011

n

Interpretation of x°

and x» being given, xg is the maximum number of token you can

consume by ensuring that x> is still satisfied.
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5. Resource Sharing (Moradi et al.)

Thanks to D. Zorzenon (Wodes '22), this product and residuation is
included in software MinmaxGD.

Resource Sharing Problem (Moradi et al.)

x10x3= (1302)@xOxs
X 2 Ax @ Bu =< A*Bu and y = Cx
X R Ax @ Bu =% A*Bu and y = Cx

Z

|]—>O—>[|§07 —>O—>|] |
ﬂ*Ofﬂ/O}ﬂ*O*ﬂ "
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5. Resource Sharing (Moradi et al.)

Resource Sharing

(7362)@x Oxa= x10x3
X 2 Ax @ Bu < A*Bu and y = Cx
X X Ax @ Bu =% A*Bu and y = Cx

ﬂlo»uz{o \u»o»u

[|+O+|]/O O
L @

()= ) () () unmn=t ()
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5. Resource Sharing (Moradi et al.)

Resource Sharing

(7362)@x Oxa= x10x3
X 2 Ax @ Bu < A*Bu and y = Cx
X X Ax @ Bu =% A*Bu and y = Cx

|]i>Q—>[|z{Q \” No I
_>O—>|]</ O _>Q—>|] . ’
W, 8 @

()= ) (e () mmin=t 0 ()
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5. Resource Sharing (Moradi et al.)

Resource Sharing

( 362)®X2 Ox3= x1OXx3
1

< > = <§6€I 738 7§*> up and y1 = 612(7367)*uy
°(y

<x4) = <5181( 33%55))*) U and y» = 518(7355)“’2
O-KQ @}u»o»u

|]->Q_>|]/ S\ +O+|] ,

u, 8

2
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5. Resource Sharing (Moradi et al.)

(7?6%)@x2 Oxa= x1Ox3
x X Ax® Bu < A*Bu and y = Cx
x<AxEBBu<A*Bu and y = Cx

ﬂllo»uz{o SN |
»o»ﬂ/ )]»o»ﬂ

”

..................................................

Optimal Control for Red Line (nghest Priority)

A desired output z; is supposed known, i.e., the objective is y; = z; :

ugP* (CA*B)yz
CA*BuOPt <

(47 x5 = ABu = ((ABu)y (A"Bu)a)

auren Hardouin (LARIS, UniOn Counter Functions and Operators for Moc

45 / 96



5. Resource Sharing (Moradi et al.)

ﬂl@uz{o \u»@u

Constraint for Blue Line, (Lowest Priority)

( 352) ® Opt@X4 opt ® x3
(7%6%) ® x5 © (A"B)2 ® w2 °”t © (AB)1 ® u

Constraint on uy

u2 % (A" B)R((x"™ © (A*B)1 ® up) &F ((1°6%) ® %,™))

LA A
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5. Resource Sharing (Moradl et al.)

........

ﬂio»uz{o \ﬁ»o»u
ﬂ%{d}ﬂ@»ﬂ

Optimal Control for Blue Line, (Lowest Priority)

S
]
'

u28

A desired output 7> is supposed known, i.e., y» <X 7 :
u = (CA*B)y»
((CA*B)¥2:) A ((A*B)2X((x"" © (A*B)1 ® up) OF ((v°6%) © x5™)) A w2

=
< O(w)

Optimal Control

| A\

A greatest fixed point of uy < ®(u) exists and it is the optimal control
ugpt, i.e., the greatest control respecting the constraints.

douin (LARIS, UniOn Counter Functions and Operators for Moc




5. Resource Sharing (Schafaschek et al.)

* PP B AT T,
 PEPI SRR m SE |,

xT x

@ TN,

‘e

) QH//AH% _>”_>—>//—> ”7—) 137>
3 <_\> iﬂ».»:

E

@ Many resource and many priorities

e Updating reference input z (receding horizon, MPC approach)
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Conclusion

@ Model TEG (y and 6 operators)

e Model WBTEG (v, i, 8 and § operators)

@ Open and closed loop controllers synthesis of the both (off line
computation)

e Optimal control when resources are shared, on receding horizon (on

line computation)
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Open Problems

Algorithms to manipulate periodic series are polynomial according to the
size of the series not to the number of states.

-

3 7

© 2
e E%O%ﬂ 2o, |

YRR
R S,

The canonical representation can be large

@ Two internal transitions

@ A transient pattern with 6 monomials (7363)*(7/67)* =
(ﬁ‘ 12(512)(7 1()‘1):~
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Open Problems

Alternative : Legendre-Fenchel Transform

L(C) = P(t.s - (1))

teR

J

=2 2 4 6 8 1012




Open Problems

Alternative : Legendre-Fenchel Transform

Series (7°0° & v26°) @ (7°6°)(716%)* and its approximation (E. Le
Corronc)

12
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=N B~ O 0

21 246 81012 0

R T
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Open Problems

An artificial neuron (P. Maragos et al.)
:"1|]—>@ .
O~ ¢ |»]
e

y = o(Zi(wixi))

where ¢ is the activation function. Rectifier (ReLu) is an activation
function such as : max(0, x), hence y = max(0, > ;(w;x;))

Equation of an artificial neuron in idempotent semi-ring

y=eo® @/LW,'(XI')

The reachable set is a max-plus polyhedron.
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Open Problems

Log semi-ring (Maslov et al. )

a® b= log(e® + eb)
a®b=a+b

Useful to address some problems of filtering in stochastic context
(Analogous to Kalman filter, see G. Winck et al.).
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Thank you for your attention.
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Tropical Geometry

A max-plus polyhedron

15 X2
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State Estimation : Observer Synthesis

éz ® Bu® Sq y

X

C

3
Simulator

Prediction computation :

X(v) = Ax(7) ® Bu(y).

R(k) = Ax(k — 1) ® Bu(k).
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State Estimation : Observer Synthesis

Az dBu®Sq | Y
Ca

Simulator

Observer

Objective :
Compute the greatest observer matrix L such that

X < x.
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State Estimation : Observer Synthesis

Ax © Bu® Sq
Ca

——
S
([

€Z

S

P Cri

c 4
L |
Simulator

Obsen/er
System Equations : » Matrix §

= Ax® Bu® Sq= A*Bu® A*Sq
y = Cx= CA*Bu® CA*Sq.

Estimated State Equations :

A

X = ARDBudlL(ydy)
y = Cx
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State Estimation : Observer Synthesis

Constraints Satisfaction :
Compute the greatest observer matrix L such that

A*Bu Yu
A*Sq vq,

(A& LC)*Bu

=<
(A® LC)*LCA*Sq =<

v

Constraints Satisfaction

Compute the greatest matrix L such that

(A® LC)*B < A*B < L < (A*B)J(CA*B)
(A® LC)*LCA*S = A*S < L < (A*S)§(CA*S).

aurent Hardouin (LARIS, UniOn Counter Functions and Operators for Moc 60 / 96



State Estimation : Observer Synthesis

Optimal Matrix : (Hardouin et al. IEEE TAC 2010, Hardouin et al.

2019)
Lopt = ((A*B)#(CA*B)) A ((A*S)¢(CA*S))

is the greatest such that
X =< x.
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State Estimation : Observer Synthesis : Performance

Analysis

Equality of the asymptotic slope (Hardouin et al. IEEE TAC 2010)

If matrix C linking state vector to the output is connected to all connected
components of the graph then

O'OC()?,') = O'OO(X,') Vi

Corollary :

If state x; belongs to a connected component whose at least one transition
is measured then the error X; — x; is bounded.
.
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State Estimation : Set-membership approach

Uncertain system

A(k) € [A, A = [A], B(k) € [B, B] = [B], C(k) € [C, C] = [C]
Each matrices entries is supposed bounded and A(k), B(k), C(k) is a
realization at step k

x(k) = A(K)x(k —1) @ B(k)u(k)
y(k) = C(k)x(k)

In the sequel, to enlighten the notation, we assume (without lost of
generality) autonomous systems, i.e., x(k) = A(k)x(k — 1).

Indeed we can consider % = (x'u’)t and A = ’;\ ;
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State Estimation : Set-membership approach

Uncertain system A(k) € [A, A] = [A], C(k) € [C, C] = [C]

x(k) = A(k)x(k —1)
y(k) = C(k)x(k)

Q1 : Assuming x(k — 1) € X _1)k—1 a known set, is it possible to compute
the set X1 = {Ax | A€ [AA],x € Xk71|k71} ? (prediction)

Q2 : Assuming y(k) available, is it possible to compute the inverse image

set [C]7*(y(k)) = {x | y(k) = Cx, C € [C, C]} ? (likelihood)

Q3 : Is it possible to compute the intersection of the two previous sets to

obtain the set X, = Xyk—1 N[C] 7 (y(k))? (estimation)
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State Estimation : Set-membership approach

Uncertain system A € [A, A], C € [C, C]

x(k) = A(K)x(k—1)
y(k) = C(k)x(k)

Q1 : Assuming x(k — 1) € &) 1,1 a known set, is it possible to compute
the set Xy_1 = {Ax | A€ [A Al x € Xy_q_1}?

Assumption : X}, is depicted as a tropical polytope.

(Lemma 2.1 PhD Guilherme Winck (University of Angers)).
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State Estimation : Set-membership approach

: Assuming x(k — 1) € Xi—1/k—1 a known set, is it possible to
compute the set X1 = {Ax | A€ [A A],x € Xi_1pu_1}?

15+ X2
— _ ([7,9] [9,10]
[A’A]‘<[5,71 [5,71>

10

]

o= [ 10 10 11
1
[A, AlV* with <6 8 6)

o 0

L
O

* Xy 11 = co(V) with v_<1 S| 3>_(v ZIRVERRVE

= 5 10 15 20

X1
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State Estimation : Set-membership approach

: Assuming x(k — 1) € Xi—1/k—1 a known set, is it possible to
compute the set X1 = {Ax | A€ [A A],x € Xi_1pu_1}?

15+%2  n—+ 1 generators for each generator of the original set

e}

A, AV

| I DIHW[ZA’Z} r

o o0 [A7Z]V1

L
O

* Xy 11 = co(V) with v_<1 S| 3>_(v ZIRVERRVE

= 5 10 15 20

X1
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State Estimation : Set-membership approach

: Assuming x(k — 1) € Xi—1/k—1 a known set, is it possible to
compute the set X1 = {Ax | A€ [A A],x € Xi_1pu_1}?

15+%2  Concatenation and removing redundant generators

v LW I3 @ 15N ]
17\l6 13 9 11

o
10 Ll

L
O

° | 1 1 4 6
oXk_llk_l = CO(V) Wlth V = <1 5 4 3>

= 5 10 15 20

X1
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State Estimation : Set-membership approach

: Assuming x(k — 1) € Xi—1/k—1 a known set, is it possible to
compute the set X1 = {Ax | A€ [A A],x € Xi_1pu_1}?

15+%2  Concatenation and removing redundant generators

VoL (1013 14 15
17\l6 13 9 11

10
Xijk—1 = co(V1)

L
O

° | 1 1 4 6
oXk_llk_l = CO(V) Wlth V = <1 5 4 3>

= 5 10 15 20

X1
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State Estimation : Set-membership approach

Uncertain system A € [A, A], C € [C, C]

x(k) = A(k)x(k—1)
y(k) = C(k)x(k)

Q2 : Assuming y(k) available, is it possible to compute the inverse image
set [C]7H(y(k)) = {x | y(k) = Cx,C€[C,C]}?

The set can be written as [C]~*(y(k)) = {x|Cx =< y(k) = Cx}, which can
be decomposed in two sets :

X=XNnX

where X = {x|Cx < y(k)} and X = {x|y(k) < Cx}
Renato Candido et al., " An Algorithm to Compute the Inverse Image of a

Point with Respect to a Nondeterministic Max Plus Linear System”, in
IEEE TAC, 2021.
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State Estimation : Set-membership approach

Computation X = {x|Cx < y(k)} & X = {x|x < Cky(k)}

(2) E (18§§2200AA6§§1122> B (g) 1

o

10

x1 = 6 and

xo =9




State Estimation : Set-membership approach

Computation X = {x|y(k) = Cx}

20 —: (9 16
X2 == =
sy = (i ;)
x1=20-9 or x=20-16
x1=12-8 or Jpr12-4
10
X1i].10|’X2t4
5
X1
=1 5 10 15 20
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State Estimation : Set-membership approach

Computation X = {x|y(k) = Cx}

- 20 —: (9 16
X2 == —
tspe = () am T (5 %)

xi=20—-9 or x=20—16
xi=12-8 or Jo>x12-4
10 :
x1 7~ 4orx 8
5
X1
=1 5 10 15 20
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State Estimation : Set-membership approach

Computation X = {x|y(k) = Cx}

i 20 —: (9 16
X2 == =
1 = () ek (g 1)

x}=20-9 or x=20-16
xii=12-8 or jor-12—4
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15

X2

10
[C] My (k) % {x|Cx < y(k) = Cx}

5
-1 5 10 15 20

State Estimation : Set-membership approach

: Computation [C]}(y(k)) =X NX
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State Estimation : Set-membership approach

. Is it possible to obtain the intersection
Xk = [CI7H(y (k) N Xigea

1;:,\X2
5 J L [T (14 {15 13
1=\6 9 11 13

on




State Estimation : Set-membership approach

. Is it possible to obtain the intersection
Xk = [CI7H(y (k) N Xigea

10
5
10 10 11 13
V‘(s 9 6 8)
X1
A 5 10 15 20
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State Estimation : Set-membership approach

Filtering algorithm :

Require : X} _1,_1,y(k)
Ensure : X«
Xijk—1 = [A Al X 1jk—1
X = {x|x < Cyy(k)}
X = {x]y(k) = Cx}
[CIH(y(k) =xnX
Xk = Xie—1 N[C] (v (K))

(prediction)

(likelihood)

(estimation)
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State Estimation : Set-membership approach

Filtering algorithm :

Require : X _14_1,y(k) n,N,q
Ensure : Xk|k
Xijk—1 = [A Al X1 k-1 O(2Nn)
X = {x|x = Cyy(k)} O(nq)
X = {x]y(k) = Cx} O(nq)
[l y(K) =xNnX
Xk = Xiko1 N[C (v (K)) O(n")
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State Estimation : Set-membership approach

Alternative approaches : Decomposition in PWA (Adzkiya et al.
Automatica 2015)

10 Xk

X1

= 5 10 15 20
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State Estimation : Set-membership approach

Alternative approaches : Decomposition in PWA (Adzkiya et al.
Automatica 2015)

10 Xk

Complexity O(2n")

X1

= 5 10 15 20
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State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)

15172 oL (10 14 15 13
....1.: 6 9 11 13
","’XH k—%
10 :.0 :‘0
* —1 : 0‘
[C] (v (k) e
5
11 13 ¢ ¢
V_<4 4 8 9)
X1
=1 5 10 15 20
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State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)

15172 Lo (10 10 15
17 \6 13 6
..""Xk|k—]
10 -
| L
[T (k) m:
5
11 13 ¢ ¢
V‘<4 4 8 9)
X1
-1 5 10 15 20
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State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)

15172 Vo _ (10 10 15
1=\6 13 6
,0"’Xk|k—1
10 &
A (G (7 09) ..:agk%‘,a
: 4
13 ¢ ¢
V16 5 9)
X1
-1 5 10 15 20
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State Estimation : Set-membership approach

Alternative approaches : Interval analysis (Winck PhD 2022)

15172 Vo _ (10 10 15
'~ \6 13 6
..""Xk|k—]
10 -
o 70) ORI T
z !
13 ¢ ¢
V_<6 6 9)
Complexity O(n?)
X1
Iy 5 10 15 20
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State Estimation : Set-membership approach

Performances comparison

@ Using tropical polytope approach, the set of all possible solution is
obtained, the complexity is O(n").

@ Using DBM the same set is obtained (Adzkiya et al. Automatica
2015),with an exponential complexity also, but practically worst.

@ Using Box an overapproximation is obtained with a polynomial
complexity (Winck, PhD 2022).

e Using SMT (Satisfability Modulo theory) solver (e.g., z3 solver)
(Mufid et al. IEEE TAC, 2022) is equivalent to keep the #H-form of
the tropical polytope. This is suitable when a point included in the
estimation set is desired (check a solution). But needs to keep all the
constraints on the horizon of estimation, which growth at each step.

v
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State Estimation : Set-membership approach

Where is the estimation given by the observer ?

1512 @ Real state
O Estimation given by the Observer

*

*
*
*
o Xklk—1
o o

10 - 5
A (SRR €7 () o)
ol |
5
(o] O
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Conclusion

State Estimation

@ An efficient observer exists, the greatest possible solution is obtained

@ A set-membership approach based on max-plus polytope is the most
efficient to obtain the set of all possible solutions, even if the
complexity is still exponential.

@ Interval analysis yields an over estimation of the solution set with a
polynomial complexity
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Conclusion

Open problems to address

@ Developing an interval observer to compute on-line an upper bound

@ Developing more efficient algorithms to compute intersection of
max-plus polytope

@ Developing method to obtain underestimation set (set included in the
solution set), (Barnhill et al., arxiv.org, 2023).

@ Selecting a point in the solution set (support) by considering
stochastic approach (Santos-Mendes et al. IEEE TAC, 2019, Winck et
al. IEEE TAC 2022).

o Considering only H-form to avoid the costly transposition to VV-form.

@ Developing state estimation method for systems involving resource
sharing (Schafaschek et al. 2020).

ardouin (LARIS, UniOn Counter Functions and Operators for Moc



References

auren

L. Hardouin, B. Cottenceau, Y. Shang, J. Raisch

" Control and State Estimation for max-plus Linear Systems”
Journal on Foundations and Trends in Systems and Control 2019
http ://dx.doi.org/10.1561/2600000013

G. Espindola-Winck, R. Santos-Mendes, M. Lhommeau, and L. Hardouin,
"Stochastic filtering scheme of implicit forms of Uncertain Max-plus linear
systems”, IEEE TAC, 2022, DOI : 10.1109/TAC.2022.3176841

Rafael Santos-Mendes, Laurent Hardouin, Mehdi Lhommeau " Stochastic
Filtering of Max-plus Linear Systems with Bounded Disturbances” , IEEE
TAC, september 2019, doi :10.1109/TAC.2018.2887353

G. Schafaschek, S. Moradi, L. Hardouin, J. Raisch

"Optimal Control of Timed Event Graphs with Resource Sharing and
Output-Reference Update”, Doi :j.ifacol.2021.04.057 WODES, Rio De
Janeiro, 2020

Hardaouin (LARIS, UniOn Counter Functions and Operators for Moc 90 / 96



References

auren

Germano Schafaschek, Laurent Hardouin, Joerg Raisch

"A Novel Approach for the Modeling and Control of Timed Event Graphs
with Partial Synchronization”, WODES 2022,

Prague,Doi :j.ifacol.2022.10.344

Davide Zorzenon, Germano Schafaschek, Dominik Tirpak, Soraia Moradi,
Laurent Hardouin, Jorg Raisch

" Implementation of procedures for optimal control of timed event graphs
with resource sharing”, WODES 2022

Bertrand Cottenceau, Laurent Hardouin, Johannes Trunk
"Weight-Balanced Timed Event Graphs to Model Periodic Phenomena in
Manufacturing Systems”

IEEE Transactions on Automation Science and Engineering, 2017, doi :
10.1109/TASE.2017.2729894

Soraia Moradi, Laurent Hardouin, Joerg Raisch

"Optimal Control of a Class of Timed Discrete Event Systems with Shared
Resources, An Approach Based on the Hadamard Product of Series in
Dioids” , CDC'17, Melbourne, Australia, December 2017.

Hardaouin (LARIS, UniOn Counter Functions and Operators for Moc 91 / 96



References

@ Le Corronc E., Cottenceau B., Hardouin L.
" Container of (min,+)-linear systems”, Journal of Discrete Event Dynamic
Systems (2014), vol. 24-1,pp 24-52.

@ Hardouin Laurent, Cottenceau B. , Lagrange S., Le Corronc E.
Performance Analysis of Linear Systems over Semiring with Additive Inputs
Worksop On Discrete Event Systems WODES 08, Goteborg May 2008.

@ Soraia Moradi, Laurent Hardouin, Joerg Raisch
"Modeling and Control of Resource Sharing Problems in Dioids” ,
WODES 16,13th International Workshop on Discrete Event Systems Xi'an,
China, 2016.

@ B. Cottenceau, L. Hardouin, J.L. Boimond
"Modeling and Control of Weight-Balanced Timed Event Graphs in Dioids”,
IEEE TAC, Trans. Automatic Control 59 :5,
(2014),10.1109/TAC.2013.2294822.

@ L. Hardouin, O. Boutin, B. Cottenceau, T. Brunsch, J. Raisch
" Discrete-Event Systems in a Dioid Framework : Control Theory”,
in Control of Discrete-Event Systems, Springer, Lecture Notes in Control

. . . A
ardouin (LARIS, UniOn Counter Functions and Operators for Moc




(Cohen et al. IEEE TAC 85

author=G. Cohen and D. Dubois and J.P. Quadrat and M. Viot,

title=A linear system theoretic view of discrete event processes and its use
for performance evaluation in manufacturing,

journal=IEEE Trans. on Automatic Control,

volume=AC-30,

pages=210-220,

year=1985

4

(Cohen, Quadrat et al. IEEE TAC 89)

author=G. Cohen and P. Moller and J.P. Quadrat and M. Viot,
title=Algebraic Tools for the Performance Evaluation of Discrete Event
Systems,

journal=IEEE Proceedings : Special issue on Discrete Event Systems,
volume=77,

pages=39-58,

aurent Hardouin (LARIS, UniOn Counter Functions and Operators for Moc 93 / 96




(Renato Céandido et al., 2021

Renato Candido, L. Hardouin, M. Lhommeau and R. Santos Mendes
IEEE Trans. Automatic Control, 2021,
10.1109/TAC.2020.2998726

v

(Mufid et al. 2022)

Muhammad Syifa'ul Mufid, Dieky Adzkiya and Alessandro Abate
SMT-Based Reachability Analysis of High Dimensional Interval Max-Plus
Linear Systems,

IEEE Trans. on Automatic Control,

2022

aurent Hardouin (LARIS, UniOn Counter Functions and Operators for Moc 94 / 96



References 3 :

(Hardouin et al. IEEE TAC 2010)

author =L. Hardouin and C.A. Maia and B. Cottenceau and M.
Lhommeau,

year =2010,

month=February,

volume=D55-2,

title =Observer Design for (max,plus) Linear Systems,

journal =IEEE Transactions on Automatic Control,
note=istia.univ-angers.fr/~hardouin/Observer.html

Adzkiya et al. 2015
author=D. Adzkiya, B. De Schutter and A. Abate,
title=Computational techniques for reachability analysis of
Max-Plus-Linear systems,

note=Automatica,

year= 2015,

ouin (LARIS, UniOn Counter Functions and Operators for Moc



istia.univ-angers.fr/~ hardouin/Observer.html

2. |dempotent semi-ring

g

Sandwiches Algebra [Cohen et al. |

1 piece of Bread + 1 slice of ham +
1 slice of cheese is equal to 1
sandwich. Another way of counting!
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