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Abstract— This paper deals with the synthesis of controllers
for (max,+) linear systems. The objective of the controllers is
to guarantee that the state trajectories are maintained within a
sub-semi-module. Among the possible controllers, the greatest
is calculated in order to achieve an output as close as possible
to that of the unconstrained system.

I. INTRODUCTION

The max-plus algebraic framework is a powerful tool
for modeling and analyzing discrete event systems such as
Timed Event Graphs (TEGs) which are used in commu-
nication networks, genetic regulatory networks and queue-
ing systems (see [Baccelli et al., 1992]). The fundamental
problems for max-plus linear systems have been studied by
researchers for the past three decades, for example, controlla-
bility [MaxPlus, 1991], [Hardouin et al., 2017], observabil-
ity [Hardouin et al., 2010], and the model reference control
problem [Hardouin et al., 2018]. There are some existing
research results on generalizing fundamental concepts such
as the computation of different controlled invariant sets
([Animobono et al., 2023], [Hardouin et al., 2011]) and the
disturbance decoupling problem [Shang et al., 2016]. This
paper reports upon new investigations on the controller
synthesis for max-plus linear systems in order to ensure that
the state trajectories belong to a given subspace which can
represent a set of constraints on the state. Due to the mono-
tone non-decreasing property of max-plus linear systems, the
controller can only increase the inputs. In other words, only
the delay of tokens entries is possible in the corresponding
timed event graph. Hence, it would be interesting to obtain a
controller respecting the set of constraints while maintaining
system performances as close as possible to that of the
unconstrained system. This problem is a generalization of
the one introduced in [Maia et al., 2005]. Here a semiring
of periodic series is considered, hence the constraints are
applied on infinite trajectories. The remainder of this paper
is organized as follows. Section [[I] presents the mathematical
preliminaries in max-plus algebra. Section presents the
literature on max-plus linear system models. Section
presents the control problems, first the synthesis of optimal
controllers ensuring to preserve the performance of the
system while delaying as much as possible the input (just-in-
time strategy) is recalled, and then the controllers ensuring
that the constraints on the state are introduced. Section [V]
shows the efficiency of the method on a manufacturing
system subject to sojourn time constraint.

II. ALGEBRAIC SETTING

Definition 1: A semiring is a set S, equipped with two
operations, denoted as @ and ®, such that (S,®) is a

commutative monoid (the zero element will be denoted ¢),
(S§,®) is a monoid (the unit element will be denoted e),
operation ® is right and left distributive over @, and ¢ is
absorbing for the product (i.e. e ® a = a ® € = ¢, Va).

A semiring S is idempotent if a ® a = a for all a € S.
As in classical algebra, the operator ® will often be omitted,
moreover, a' = a ® a*~! and a® = e. In this algebraic
structure, a partial order relation is defined by a = b < a =
a®bs b=aANb(where a Abis the greatest lower bound
of a and b). Therefore, an idempotent semiring is a partially
ordered set (see [Baccelli et al., 1992] for a more detailed
introduction). An idempotent semiring is said to be complete
if it is closed for infinite ¢-sums and if ® distributes over
infinite ®-sums. In particular, T = @, g is the greatest
element of S (T is called the top element of S).

Example 1 (Zmax ): The set Zmax = Z U {—00,+0o0}
endowed with the max operator as sum and the classical
sum + as product is a complete idempotent semiring, usually
denoted Z,,.x, of which ¢ = —co and e = 0.

Theorem 1 (Kleene star operator): The implicit inequal-
ity z > ar @b as well as x = ax ® b defined on S,
admit z = a*b as the least solution, where a* = € a'.

(see [Baccelli et al., 1992], Th. 4.75). <

Properties 1: Kleene star operator admits the following
useful property

(ab)*a = a(ba)*. (1)

Definition 2 (Residual and residuated mapping): Let D,
C be two complete idempotent semirings and f : D — C be
an order preserving mapping, f is a residuated mapping if
for all y € C there exists a greatest solution to the inequality
f(z) < y (hereafter denoted f¥(y)). Obviously, if equality
f(x) = y is solvable, f%(y) yields the greatest solution.
The mapping f* is called the residual of f and f*(y) is
the optimal solution of the inequality.

Theorem 2: Let D, C be two complete idempotent
semirings and f D — C be an order-preserving
mapping, the following statements are equivalent (see
[Baccelli et al., 1992]):

(1) f is residuated.

(ii) there exists an unique order-preserving mapping f* :
C — D such that fo ff <Ide and ffo f > Idp.

Example 2: The mappings A, r — a ® x and
U, : x — = ® a defined on S are both residuated (see
[Baccelli et al., 1992], Section 4.4.4). Their residuals are
order-preserving mappings, denoted respectively by A% (z) =
ayr and W¥ (z) = xda. This means that a}b (resp. bga) is the
greatest solution of inequality a ® x < b (resp. z ® a < b).

Example 3: Mapping K : § — S,z — z* is residu-



ated (see [Cottenceau et al., 2001]). Actually it is shown in
[Cottenceau et al., 2001] that x = a* is the greatest solution
of inequality z* < a if a = a*, that is x < a* & z* < a*.

The set of n x n matrices with entries in S is an idem-
potent semiring. The sum, the product and the residuation
of matrices are defined after the sum, the product and the
residuation of scalars in S, i.e.,

n

(A® B)ix = P(ai; @ bjr) )
j=1

(A® B)i; = aij @ bij, 3)

(AXB);; /\ (aribr;) , (BFA)i; /\ (birfa,r). (4)

The identity matrix of S"*™ is a matrix with entries equal
to e on the diagonal and to ¢ elsewhere. This identity matrix
will be denoted I,,, and the matrix with all its entries equal
to € will also be denoted «.

Properties 2: ([MaxPlus, 1991]) Given a complete semir-
ing S, and two matrices A € SP*", B € §"*P, the following
equations hold :

ARA = (AYA)*, B¢B =
A. Fixed point of isotone mapping

(B#B)". )

Whereas residuation theory provides optimal solutions to
inequalities f(z) < b, the fixed point theory enables to find
the greatest finite solutions to equations f(z) = z, where f
is an isotone mapping defined over a complete idempotent
semiring S.

Definition 3: Let Fy = {x € S | f(z) = x} be the set
of fixed points of an isotone mapping f defined over S.
Respectively, let Py = {z € S| f(z) = z} be the set
of post-fixed points which can be interpreted in F; as the
following equivalence : f(z) = = & f(z) ANz = x.

Theorem 3: (Knaster-Tarski) Let 7, be a complete lattice.
The greatest fixed solution § of F; is given by:

J= lim ()

where f"*1 = fo f" and f° = Idp.
In order to obtain this solution, the following theorem
presents a method to compute it in a recurrent way.
Theorem 4: Let f be an isotone mapping defined over
D and recall that F is the set of fixed points of f. Now
consider the following iterative scheme:
Letxg =TT,
do zp41 = f(zn),
until x,,11 = x,, for m € N.
If function f admits a finite fixed point € Fy then the
previous algorithm converges toward the greatest fixed point
U= Tpm-
Proof: Firstly, as 41 = T, Tm = f(2,) and so
Zm belongs to the set . Secondly, it is necessary to show
that x,,, is the greatest solution of Fy. Let 2’ € F, since
2o = T, zg = «'. Finally, if x,, = 2’ then z,,1 > 2’
Tma1 = f(xm) = f(2') = 2’ (thanks to the isotony of f
and knowing that 2’ € Fy). [ |

It must be noted that the number of steps for the conver-
gence can be infinite. It is also possible to use this algorithm
to find the greatest fixed point smaller than or equal to a
given value of S. In this case, the following corollary is
given.

Corollary 1: Let h : § — S be an isotone mapping and
val € S;let f be defined by f: S — S,z — h(z)Aval. If f
admits a fixed point & € F, then the algorithm of Theorem
converges toward the greatest fixed point of f less than or
equal to val, that is, § = x,, < val.

Corollary 2: Let D and C be two complete idempotent
semirings and let h : D — C and g : D — C be two
residuated mappings. The greatest solution of the equality
h(z) = g(x) is equal to the greatest fixed point of the isotone
mapping f : D — D, defined by

f(@) =z A gF(h(2)) A hF(g(x)).

Proof: The following equivalences hold:
h(z) = g(z) & h(z) < g(z) and g(z) =< h(z)
&z < h¥(g(x)) and = < ¢*(h(z))
& o < h(g(2)) A g (@)
& =a AR (g(@)) A g (h(x)).

Hence, the greatest fixed point of f(z) = x A hf(g(z)) A
g*(h(z)) is the greatest solution of the equation h(x) = g(z).
Furthermore, since the operation A and the mappings h, hf,
g, and ¢ are isotone, the mapping f is isotone. [ ]

As an immediate consequence, the greatest solution of
equation h(x) = g¢(z) smaller than a given zy can be
obtained by using Corollary [T] and Theorem [4}

Corollary 3: Given a complete semiring S, and two ma-
trices A € SP*", B € SP*", the greatest element in
the solution set {x € S™|Ax = Bz} can be obtained by
considering the mapping f(z) = A (B{(Ax)) A (A§(Bzx)).
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Fig. 1. TEG with 2 controllable transitions (u1,u2) and 1 measurable
transition (y1).

III. THE TEG DESCRIPTION IN AN IDEMPOTENT
SEMIRING

TEGs constitute a subclass of timed Petri nets in which
each place has one upstream and one downstream transition.
A TEG description can be transformed into a max-plus or a
min-plus linear model and vice versa. To obtain an algebraic

model in Zp..x, a “dater” function is associated to each



transition. For transition labeled x;, x;(k) represents the
date of the k' firing (see [Baccelli et al., 1992]). In this
paper, without loss of generality, TEGs are described by the
following max-plus linear system:

N, Ny
x(k) = EPAxk-j) o Bulk-1),
=0 1=0
where  u(k) € (Zmax)P. y(k) € (Zmax)™ . and (k) €
(Zmax)™ are the controllable inputs, outputs and state vec-

tors, respectively. These vectors collect the firing dates of the
corresponding transition. The integer number N, (resp. Np)
is equal to a maximum number of tokens initially available in
internal places (resp. in the places between input and internal
transitions). Matrices A; € (Zmax)"*"s Bi € (Zmax)"*?,
and Cy € (Zax)™ ™ represent the links between each
transition and then describe the structure of the graph.
Without loss of generality, it is assumed that each output
transition is linked to one and only one internal transition,
and no token is initially located in the place between this
internal transition and the output transition, ¢.e. only matrix
Cy is needed to model the connection between the internal
states and the output, and one entry is different from € on
each row of matrix Cy and at most one entry is different

from ¢ on each column.

Example 4: In Fig. [} a TEG with p = 2 controllable
inputs, and m = 1 measurable outputs, is depicted. Clearly,
N, = 3 and N, = 0, therefore, the TEG model can be
represented as the max-plus linear system in Eq. (6), where
system matrices are

e € € ¢ e € € €
3 € € 4 e € € ¢
AO = 7141_ )
e € € ¢ e € € €
L e € 7 ¢ € € € € |
[e 2 e ¢ e € ¢ €]
e € € € e € € €
Ay = Az =
2 e € € ¢ |7 3 e € e T |7
Le 2 ¢ ¢ e € € €]
1 e
I
By = 1 700_[5155}.
€ €

A trajectory of a TEG transition is then a sequence of firing
dates. This collection of dates can be represented by a formal
series ;(7) = Ppey (wi(k) ®*) where z;(k) € Zpax
and ~ is a backward shift operator'|in the event domain
(formally ~z;(k) = x;(k — 1)). The set of formal series
in v is denoted by Zyax[7] and constitutes a complete
idempotent semiring. The support of series x;(vy) is defined
by Supp(z;) = {k € Z|x;(k) # €}. The valuation in v of
x;(k) is defined as: val(z;) = min{klk € Supp(z;)}. A
series o; € Zmax|[y] is said to be a polynomial if Supp(z;)
is finite. Furthermore, a polynomial is said to be a monomial
if there is only one element.

Operator v plays a role similar to operator z~! in the Z-transform for

the conventional linear systems theory.

The TEGs can then be described by the following model:

= A(r D Bu,
where u € (Zmax[V])?, v € (Zmax[y])™ and

2 € (Zmax[y])™ are series of inputs, outputs, states and
disturbances, respectively. Matrices A € (Zmax[Y])"*",
B € (Zmax[7])™*P, and C € (Zuax[7])™*™ represent the
links between each transition, and are defined as follows:

N, Ny
A= @VJAJ», B = @7131, C = Cp.
j=0 1=0

Therefore, the y-domain representation describes the same
structure of the TEG model as the event domain equation in
Eq. (6). By considering Theorem [I] for this system, the state
and the output trajectories can be rewritten as:

r = A*Bu
= C(CA*Bu, (8)

where CA*B € (Zmax[Y])™*? is the input/output transfer

matrix.

Example 5: The model of the system depicted in Fig. [I]
can be described concisely thanks to the representation in
Eq. where the system matrices are given as

e 292 & ¢ 1 €

3 € € 4 € €
A= e e € | B = e 1 |7

e 297 7T ¢ € €

C= [e 1 & ]

The entry A(3,4) = 7> represents the place between
the transition z4 and z3, which means that there is 3
tokens in this place and a minimal sojourn time equal to
7 time units. The implicit model as given in Eq. can be
easily computed by using the toolbox MinMaxGD, a C++
library developed in order to handle periodic series. For
example the transfer matrix between input u and state x
(see [Cottenceau et al., 2006]) for the source code) is given
below (where r = [14+3)]) :

A*B =
179 @ 642 @ (1272 @ 18+46)r* (1442 @ 204%)r*
4~0 @ (10~2 @ 164%)r* (1279 @ 18’72)7‘* a (9)
(137° @ 1977)r* 170 ® (1543 @ 214%)r*

(642 ® 124H)r* (8+9 ® 14+2)r*

The entries of transfer matrices are actually periodic and
causal series. Below, we recall the definition and properties
of such series.

Definition 4 (Periodicity): A series s € Zmdx[[ ] is said
to be periodic 1f it can be written as s = p @ qr*, with p =
@ tiy™, q = @ T;+Ni are polynomials and 7 = 77", with

=1 Jj=
v,r €N is a monomlal depicting the asymptotic slope of

the series. Polynomial p depicts the transient behavior of the
series, polynomial ¢ represents a pattern which is repeated
each v events and 7 time units. The ratio 0 (s) = v/7 is the
production rate of the series. A matrix is said to be periodic
if its entries are periodic.



Sum, product and residuation of periodic series are well
defined and algorithms and software toolboxes are available
in ([Cottenceau et al., 2006]).

Theorem 5: ([MaxPlus, 1991] [LeCorronc et al., 2009])
Let s; and sy be two series of Zuyay[y] and 51 < so.
The series says; is called the correlation of s; with sy and
contains the maximum distances between s; and s, in the
event domain and in time domain. More precisely, monomial
07" of series sa%s; gives the maximal event distance v
between s; and s, also denoted by:

v=2»A,(s1,52) =min{n | y"v < s}, (10)

whereas —77" provides the maximal time distance 7 denoted
by:
T = As(81,82) = min{¢ | ts1 = s2}. (11)

It is possible that so§s; = €. In such a case, the distances
A, (s1,52) and As(s1, s2) are infinite.

Example 6: Let u = 194! @ 3v3(2¢%)* and v = 174! @
492 @ 671(27%)* be two series of Zax[7] (see Fig.[2). The
correlation of u with v is the following series (see Fig. [2):
wu = —37° @ —192? @ 14%(293)*. The maximum event
distance is A, (u,v) = 5, while the maximum time distance
is As(u,v) = 3.
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Fig. 2. Maximal distances in event and time domains between two series
of Zmax[7], w and v are given on the left and v §u on the right.

Definition 5 (Causality): A series s € Zmax[7] is causal
if s = ¢ or if both wal(s) > 0 and s >= y¥(*), A matrix is
causal if its entries are causal.

Definition 6 (Realizability): A series s € Zmax[7] is said
to be realizable if there exists three matrices A, B and C
with entries in NU {—o0, +c0} such that s = C(vA)*B. A
matrix is said to be realizable if its entries are realizable.
In other words, a series s is realizable if it corresponds to the
transfer relation of a timed event graph. A transfer matrix H
is realizable if each entry is realizable.

Theorem 6: Let H € Zpax[7]?P be a matrix with
entries in Zmyax[y]. The following statement holds (see
[Baccelli et al., 1992], [Hardouin et al., 2017]) :

H is realizable < H is periodic and causal.
Definition 7 (Semiring Zmax[Y]*): The set of causal ele-

ments of Zyay[7] is a semiring denoted Zp,ax [Y] ™.
It must be noted that €, € € Zpax[7]T C Zmax[7] and that
Zomax[y] T is closed for laws @ and ®, and also for infinite
sums too. Hence Zax [v]* is a complete subsemiring of

Zmax [[’7]] .

Theorem 7: The canonical injection Id;7 =~ r 5.
Zmax[Y]T — Zmax[Y] is residuated and its residual is
denoted Pry : Zpax[v] = Zmax[7]T
Pri(s) is the greatest causal series less than or equal to the
series s € Zmax [v]- From a practical point of view, for all
series s € Zmax[7], the computation of Pr(s) is obtained
by the following:

Pri(s) = Pry <® S(k)Wk> = @8+(k)7k

keZ kEZ
where
o) = ) (ks(k) > (0,0),
T & otherwise.
Example 7: Let s = —5y71(3v2)* € Zmax[7] be a

periodic series. It can be written s = —5y"! @ —27y! @
193 @ 49° @ ..., hence the causal projection s, = Pry(s) =
172 @ 49° @ ... = 193(34%)* is the greatest series in
Zomax[7] T such that s; < s.

IV. CONTROL PROBLEM

TEG control consists in computing the firing of input
transitions. A common control objective is the just-in-time
control of system inputs, which aims to minimize the internal
stock of tokens in the TEG while reaching a given desired
behavior.

An interesting control strategy is known as the neutral
control which aims at preserving the best system’s input-
output performance while delaying as much as possible the
inputs. An example is the design of two neutral controllers
P € Znax[7]P*? and F € Zpax[y]P*™, such that u =
P(v @ Fy), where v € Zuax[7]P. Formally, the problem
can be expressed as computing the greatest controllers such
that:

y = CA*Bv with y = Cz and 2 = Az ® BP(v® Fy) =
A*BP(v® Fy) = A*BPv® A*BPFy (owing to Theorem
[), leading to y = CA*BPv ® CA*BPFy = Hy,v. By
considering again Theorem [I] and property [I} the following
equalities hold

(CA*BPF)*CA*BPuv
— CA*BP(FCA*BP)*v = Hy,v

where H,, is the input/output transfer matrix.

Therefore, the problem can be formulated as:
CA*BP(FCA*BP)* =< (CA*B which implies that
CA*BP =< CA*B (since (FCA*BP)* = e). Therefore,
considering the residuation of the mapping Aca«p we get
P < (CA*B)}(CA*B) = P,,, where P,y is the upper
bound for the controller P. Then the control strategy has to
respect the inequality CA*BP,,(FCA*BP,,)* < CA*B
and the optimal F' is obtained by considering the following



equivalences :

CA"BPypt(FCA*BP,p)" < CA*B
Popt(FCA™BPopt)" =< (CA*B){(CA*B) = Popt
(FCA"BPopt)" = Popt Y Popt

(FCA"BPopt)" = (Popt §Popt )" (see Properties [2)

(FCA*BPopt) 2 Popt § Popt(see Example [3)
F= (Popt }\Popi)f(CA*BPopt) = Fopt.

teooe

The matrices P, F,p: are not necessarily causal (hence not
realizable), to be realized, they have to be projected in the
causal set (see Theorem . The matrices P, = Pro(Pyr,)
and F:};t = Pry(F,p:) are called optimal neutral controllers.

In this paper, another control strategy is considered. Its
purpose is to design a control law to ensure that the
state trajectories satisfy a two-sided equation Nx = Mz
where matrices N, M € (Zmax [v])™*™ characterize some
constraints between internal transitions of the TEG. The
set of solutions X = {z|Mz = Nz} defined in the
semiring Zomax is studied in [Butkovi¢ and Hegedus, 1984],
[Allamigeon et al., 2010], where it is proven to be finitely
generated and algorithms are given to obtain its generators.
In semiring Zax[y], if all entries in matrices M and N are
monomials with a same exponen these algorithms can be

adapted to obtain the generators.

Alternatively, Corollary [3| can be invoked to find the
greatest solution of the set X'. Formally, the problem can
be formulated as computing the greatest causal P and F'
in order to ensure that the state © = A*BP(FCA*BP)*v
satisfy Nx = Mux. The constraint expresses the desired
relation between internal transitions. Furthermore, P and F'
have to be causal to be realizable, that is, Pr . (P) = P
and Pry (F') = F. We first consider the open-loop problem,
that is, the computation of the greatest matrix P which
satisfies the following constraints NA*BP = MA*BP
(since © = A* BPv). According to Corollary [3| solution can
be obtained by considering the following implicit function :

f(P)= Pro(P)A(NA*B)Y\(MA*BP)

A(MA*B)Y(NA*BP) (12)

The algorithm proposed in Theorem {4 can be considered to
find the greatest solution. Initial value Py can be chosen
as an expected upper bound for example Py = Py &
Pyn with Pypyr = (MA*B)y(M A*B) the greatest neutral
controller such that M A*BPyy, = MA*B and Pyy =
(M A*B)y(M A*B) the greatest neutral controller such that
NA*BPyny = NA*B. This algorithm converges if there
is a finite solution, but unfortunately, the number of steps
required to achieve convergence is not necessarily finite, even
though this is the case for most practical applications. It is
still an open question to establish conditions which ensure
convergence in a finite number of steps.

The optimal solution sz',t is the greatest such that P:;)t =
Py and NA*BP;;t = MA*BPOJ;t and P(;t = Pr+(PO+pt).

The closed-loop control u = P} (v & Fy) can then be
considered. This control strategy yields the following state

2This latest assumption is not restrictive, as it is always possible to
increase the size of the state space to comply with it.

expression

z = A*BP,},(FCA*BP,,

opt)*v'
The control problem is then to find the optimal feedback
F, such that :
MA*BPO;t(FO;tCA*BP;t)*

= NA*BP;,t(FC;tCA*BP;,t)*.
Before we address this problem, we consider the following
proposition.

Lemma 1: All feedback controllers F' such that

PR(A*BP)F(CA*BP,) = Fopt

opt

F < (A*BP}

opt

are such that A*BP} (FCA*BP} )* = A*BP},

opt*

Proof: First, let us note that VF,
A*BP;;t(FCA*BP;;t)* - A*BPOJ;t.

Second the following equivalences hold :

A*BP

opt

(FCA*BP),)* < A*BP,,
& (FCA*BP),)* < (A*BP},)}(A*BP},)
& (FCA*BP},) < (A*BP), )} (A*BP}),,)

&S F = (A*BPOJ;t)&(A*BPjpt)y{(CA*BPOJ;t) = Fopt

Hence all ' X Fj,,; achieves the equality. ]
Proposition 1: The optimal filter P;;t associated with the

feedback controller F(;;t = Pry (F,p:) ensures that :

Nz = Mz.
Proof:  According to Lemma F;;)t = Pry(Fopt)
ensures equality A*BP) (Ff,CA*BP},)* = A*BPF},.
Furthermore, P;t’ the greatest solution of Eq is such that

O

NA*BP;;t = MA*BP;;t, which implies Nz = Mz, Yv
since © = A*BP,, (F.} ,CA*BP} )*v. |

V. APPLICATION

To illustrate the approach, we consider the system repre-
sented in Fig. [T} with transfer relations provided in Example
The constraint matrix N € Zyay [7]*** is chosen as the
identity matrix and

(57")" ( *?) € €

_ € 5y )" € €

M= € —-12  (5yH* €
€ € 3 (5yH)*

This matrix of periodic series represents an elementary set
of constraints that the controlled system must satisfy. These
constraints can be explained as follows. The diagonal entries
are equal to (5y!)*, which means that the asymptotic slope
of series associated to each transition must be such that the
production rate be equal to one event each 5 time units. In
the first row, entry M1, = —6 requires that z1 > —6 ® xo.
This means that the difference between the firing trajectories
of transition xo and x; must be less than or equal to 6
time units. Similarly, the entry M3, = —12 requires that
the difference between x5 and x3 must be less than or equal
to 12 time units. By iterating the implicit Eq. and by
initializing the algorithm with (where r* = [5!]*):



Py = ((MA*B)}(MA"B)) & (NA"B)}(NA"B)) =

(070 & 872 @ 14+%) @ (184%)r

(040 @ 672 @ 129%) @ (214"
3vH & (1295)r~

(070 @ 591 @ (1342)r* }

the convergence in two steps yields :

pr :{(1274)@(2175)7"* (5%)@(1372)7”*}
L2 (0 @ (8y*)r" ]

then the feedback F opt = Pri(Popi8 Poptf(CA* BP,yt)) is
(171)7“*}

+

opt — (373)7,,*
The transfer relation between v and z is then given by
H,y = A*BP,, (F,,,CA*BP,,;)* with

opt
(13yh) @ (229°)r*  (67") @ (147*)r”
o - | (167h) @ (259°)r" (12’71) (2072) *
. (47") @ (134°)r* (M) (97*)r*
(11" @ (20°)r* (84! 69(167 )r*

To illustrate the influence of the controllers, we can focus
on transitions xo and x3, the constraint Mss implies that
each firing zo must not occur later than 12 time units
later than the corresponding firing of 3. Without controller
the state are xo = (A*B)giu; @ (A*B)aug and z3 =
(A*B)3,1u1®(A*B)3 2us. In order to obtain an upper bound
for the duration a token can spend in the place, we can
compute (A*B)318(A*B)2,1 = (97°@1577)[1473]* leading
to a maximal delay 7 = +o00 and (A*B)328(A*B)22 =
(—177° @ —119Y) @ (372 © 995)[1473]* leading to 75 = 17,
that is the difference in firing date between x3 and x-
can be infinite, and does not respect the constraint. With
controllers the state are xo = Hyy, ,u1 & Hyy, ,u2, and
w3 = (Hyo)z,1u1 © (Hyy)s,2uz. Then (Hyy)2,18(Haw)3,1 =
(—127%)[57']* leads to a maximal delay 77 = 12 and
Hyoy o 8NH oy, = (—117°)[57']* leads to 7 = 11, that is
the difference in firing date between x3 and x5 is smaller
than or equal to 12, i.e., the constraint is respected. This
example illustrates the effectiveness of the proposed ap-
proach. The constraint given in this example can be useful
in case of systems with strong sojourn time constraints
such as parts crossing an oven (a bakery example is given
in [Zorzenon et al., 2023]). More complex constraints may
obviously be considered, the only limit is the existence of
a solution in order to ensure convergence of the fixed-point
algorithm.

VI. CONCLUSION AND FUTURE WORK

This paper reports upon recent investigations on the con-
trol for max-plus linear systems for respecting constraints
on the subspace of the state space depicted by an equation
Max = Nx where each entry is given by a periodic series.
The open- and closed-loop controllers working on infinite
horizon are provided. In a future work design method based
on sufficient condition ensuring the existence of controllers
should be addressed.
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