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Abstract: A wide range of Discrete Event Systems (DES) such as manufacturing systems,
telecommunications networks, transportation networks, and parallel computing, etc., can be
modelled as max-plus systems in which maximization and addition are the main operations. In
this paper, we use a nonlinear approach to deal with the error-estimation of nondeterministic max-
plus systems with bounded random variables. This estimation is carried out following the ideas of
the stochastic filtering theory for classical time-driven dynamic systems. The probability densities
for the entries of the system matrices are assumed to be known, and a prediction-correction
filtering scheme is used to compute the estimated state. The filtering algorithm is based on the
minimization of a criterion, which is capable to evaluate the estimation-error, and to deal with
the trade-off between prediction and measurement.
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1. INTRODUCTION

This paper proposes a nonlinear approach to deal with the
estimation of a subclass of Discrete Event Systems (DES).
DES are a subclass of dynamic systems whose dynamics
are event-driven, i.e., the state evolution depends entirely
on the occurrence of asynchronous discrete events over
time. These systems are used to model, e.g., manufactur-
ing systems, telecommunications networks, transportation
networks, and parallel computing, i.e., systems that are
very difficult to describe in terms of physical equations,
that are a large set of mathematical tools for control
engineers. Hence, to describe their behavior, more relevant
theoretical setting are considered, among them the follow-
ing can be cited: languages and automata, Markov chain
and Petri nets, the reader is invited to consult Cassandras
and Lafortune (1999) for an overview.

Among DES, a particular class involving synchronization
and delay phenomena can be modelled as max-plus sys-
tems. These systems are essentially nonlinear, but ap-
pear to be linear over idempotent semirings (often called
dioids). This class of DES can be represented graphically,
depicted by Timed Event Graphs (TEG). A TEG is a
timed Petri net in which each place admits only one up-
stream transition and one downstream transition. Taking
advantage of the linearity property over dioids, several
⋆ This work was supported by the RFI Atlanstic 2020.

authors have developed methods to estimate the system
states (Hardouin et al., 2010; Loreto et al., 2010; Gonçalves
et al., 2019). However, if the system is with uncertain
parameters, some alternative methods can be considered
in order to take advantage of the knowledge about the
characteristics of this uncertainty (Cândido et al., 2013;
Farahani et al., 2017; Cândido et al., 2013; Cândido et al.,
2018; Mendes et al., 2019; Candido et al., 2020).

Recently, Mendes et al. (2019) have proposed a stochastic
filtering algorithm for max-plus systems with bounded
random variables. The algorithm proposed is two-fold:
a prediction phase based on calculation of mathematical
expectation w.r.t. the transition equation and a correction
phase with a procedure based on Constraint Satisfaction
Problem (Jaulin et al., 2001) that takes into account the
measurement to correct the prediction estimation.

Contribution: The aim of this paper is to propose an
improvement in the correction phase of the Mendes et al.,
2019, Algorithm 3. The new algorithm that we propose
is based on the minimization of a criterion that allows
evaluating the estimation error of the prediction phase
and to adjust the importance to be given between the
prediction estimation and the corrected estimation, as
the quadratic criterion does in Kalman filter for linear
continuous time systems.



This paper is organized as follows. In section 2 we present
some mathematical preliminaries on max-plus systems,
Timed Event Graphs, interval arithmetic and stochastic
computations over max-plus systems. Section 3 recalls the
filtering scheme in a prediction-correction set of procedures
and presents the new filtering algorithm. In section 4
some simulation results are presented. Finally, section
5 concludes the work and gives some ideas for future
improvements.

2. MATHEMATICAL PRELIMINARIES

This section is intended to serve as a review of mathemat-
ical concepts to be used throughout this paper.

2.1 Max-plus systems

Let us begin with some notations which are used through
this paper. Let Rε := R ∪ {ε} with ε = −∞ be the set
of all real numbers. The set Rn

ε := (R ∪ {ε})n is the
n-th fold Cartesian product of Rε. Its elements can be
thought as points of an affine space, or as vectors which are
denoted by bold symbols, for instance x = (x1, . . . , xn)

t

and 0 = (0, . . . , 0)t. The notation x ≤ y denotes the
usual partial order on Rn, i.e., for x,y ∈ Rn

ε we have
x ≤ y ⇔ xj ≤ yj , ∀j ∈ {1, . . . , n}. For A ∈ Rn×p

ε , and
B ∈ Rp×q

ε , we define each element of A ⊗ B ∈ Rn×q
ε as

(A⊗B)ij = maxpk=1{aik + bkj}.

Max-plus system is mathematically defined as 1{
x(k) = (A,B)⊗ y(k), y(k) = (xt(k − 1),ut(k))t,

z(k) = C ⊗ x(k), k ∈ N,

(1)

where x(0) ∈ Rn
ε , (A,B) ∈ Rn×(n+m)

ε , C ∈ Rq×(n+m)
ε ,

x(k) ∈ Rn
ε , z(k) ∈ Rq

ε and u(k) ∈ Rm
ε are the initial state,

the transition-control matrix, the observation matrix, the
current state, the control input and the measurement
output, respectively.

2.2 Interval arithmetic over Rε

Interval arithmetic is presented in Moore and Bierbaum
(1979). A (closed) interval [x] is a subset of Rε, i.e., [x] ⊂ Rε

of the form [x] = [x, x] = {x ∈ Rε : x ≤ x ≤ x}. We denote
IRε the set of intervals of Rε. The width of an interval [x]
is defined as w([x]) = x− x.

An interval [x] ⊆ [y] if and only if y ≤ x ≤ x ≤ y. Similarly,
[x] = [y] if and only if x = y and x = y. Any x ∈ Rε can
be represented by the deprecated interval [x, x] ∈ IRε with
w([x]) = 0.

The max and + operations over IRε are defined as:
max{[x, x], [y, y]} = [max{x, y},max{x, y]} and [x, x] +

[y, y] = [x+ y, x+ y].

Let [A] = [A,A] ∈ IRn×p
ε , and [B] = [B,B] ∈ IRp×q

ε . For
instance, the elements of [A] are [aij , aij ]1≤i≤n,1≤j≤p ∈
IRε. Thus, we define each element of [A]⊗ [B] ∈ IRn×q

ε as
([A]⊗ [B])ij = maxpk=1{[aik] + [bkj ]}.
1 (A,B) is seen as the horizontal concatenation of matrices A and
B with same number of rows.

2.3 Timed Event Graphs (TEG)

Timed Event Graphs (TEG) correspond to the subclass
of timed Petri nets, in which each place admits only one
upstream transition and one downstream transition and
all arcs have weight 1. The number of tokens in a place
is interpreted as the number of available resources. For
instance, the number of tokens at the place p2 (Figure 1)
corresponds to one piece that is waiting to be processed by
the machine M1. A token at p3 indicates that a resource is
being processed by the machine and is no longer waiting at
p2. In addition, each place can be associated with a time
delay (p2 has delay of 3 time unit), making it possible
to model the delay of a token, i.e., the sojourn time
of this token before being processed by the downstream
transition. There is another TEG model in which the
delay is associated with each transition. Nevertheless, it is
straightforward to show that it is always possible to reduce
to the case where only places are delayed (see Murata
(1989)) and hereafter we consider this as an assumption.

Example 1. Consider the following TEG

p1
p2
p3 p4

1

3

t1 t2 t3 t4

M1

Fig. 1. Modelling of a manufacturing system composed of a
single machine

First, we associate each transition with a dater ti(k) : N →
Rε, where ti(k) denotes the date at which the k-th firing
of the transition i occurs. TEG have three distinguished
transitions: input transitions that are not affected by
the firing of other transitions; output transitions that
do not affect the firing of other transitions; and internal
transitions that are neither input nor output transitions.
Additionally, it is considered that the TEG is operating
under the earliest firing rule, i.e., every internal and output
transition fires as soon as it is enabled. The above TEG is
described by the following equations:

x1(k) = max{u(k), x2(k − 2) + 1}, x2(k) = x1(k) + 3, z(k) = x2(k).

By substituting x1(k) into x2(k) and introducing a new
variable x3(k) = x2(k − 1), the previous equations can
be rewritten in shorthand notation as the max-plus system
given in (1) as shown below:(

x1(k)

x2(k)

x3(k)

)
=

(
ε ε 1 0

ε ε 4 3

ε 0 ε ε

)
⊗

(
x1(k − 1)

x2(k − 1)

x3(k − 1)

u(k)

)
, z(k) =

(
ε 0 ε

)
⊗

(
x1(k)

x2(k)

x3(k)

)
.

In practice, it is necessary to take into account the uncer-
tainties in the modelling. Ideally, one must consider that
the delays are nondeterministic variables, i.e., for instance,
the delay of p3 is uncertain and only its probability density
function is known.

In view of the stochastic behaviour of TEG, the definition of
uncertain max-plus systems arise quite naturally (Cândido
et al. (2018); Candido et al. (2020)), considering that the
random variables are bounded:{

x(k) = (A(k), B(k))⊗ y(k),

z(k) = C(k)⊗ x(k),
(2)



where (A(k), B(k)) ∈ [(A,B), (A,B)] ∈ IRn×(n+m)
ε and

C(k) ∈ [C,C] ∈ IRq×n
ε are matrices of independent

random variables with finite support and whose entries are
mutually independent. For instance, matrices C and C are
respectively the lower and upper bounds of [C], such that
cij ∈ [cij , cij ] ∈ IRε. The same reasoning is applied to the
lower and upper bounds of [(A,B)]. Moreover, the uncertain
systems studied in this work are assumed to be Markovian
in the sense that the current state vector depends entirely
on event k−1 and control inputs at k, and not on the events
k − 2, k − 3, . . . (the so-called Markov property).

2.4 Stochastic computations over max-plus systems

On the mathematical conditional expectation calculation
Consider the generic max-affine equation zi = (A⊗x)i that
is similar to those used in (2), precisely

zi =
n

max
j=1

{aij + xj}, (3)

where aij ∈ [aij , aij ] ∈ IRε, with i ∈ {1, . . . , q} and

j ∈ {1, . . . , n} and x ∈ Rn
ε . In the following, aij will

be considered as independent and uniformly distributed
random variables. According to these assumptions, the
cumulative distribution function (c.d.f.) of aij , denoted by
Faij

(t), is given by:

Faij (t) =


0 if t ≤ aij ,
t− aij
aij − aij

if aij < t ≤ aij ,

1 otherwise.

(4)

such that E[aij ] = (aij + aij)/2.

Let v = maxnj=1{wj} be the value of (A ⊗ 0)i. If all wj

are independent random variables, then Fv(t) = P [v ≤
t] = P [w1 ≤ t and w2 ≤ t and wn ≤ t] =

∏n
j=1 P [wj ≤

t] =
∏n

j=1 Fwj
(t). As a corollary, if each wj is shifted by

a constant bj , i.e., v = maxnj=1{wj + bj}, then Fv(t) =∏n
j=1 Fwj (t− bj).

Summing-up, by analogy, we can calculate the c.d.f. of
(A⊗x)i, denoted by F(t), as F(t) =

∏n
j=1 Faij (t−xj), for

all i ∈ {1, . . . , q} with the term Faij (t− xj) related to (4).

F(t) is a piece-wise polynomial function 2 of order bounded
by n and defined on [zi, zi] = ([A] ⊗ x)i according to
interval arithmetic over max and + operations. Hence, the
mathematical conditional expectation of zi given (A⊗ x)i,
i.e., E[zi|(A⊗ x)i] := E[(A⊗ x)i], is given by:

E[(A⊗ x)i] = zi0 +

∫ +∞

zi0

(1−F(t))dt,

= zi −
∫ zi

z
i

F(t)dt, for all i ∈ {1, . . . , q}. (5)

Since the piece-wise polynomial c.d.f. Faij
(t) is given for

the uniform law, (5) is a continuous and isotonic function
on x. Any other technique to calculate E[(A ⊗ x)i] can be
alternatively considered as long as it keeps the properties
of continuity and isotony w.r.t. x. We can mention the
2 The expression for F(t) is famous and was originally given in
Frechét (1928). Moreover, it is also applicable for all cases where aij
is distributed according to any piece-wise polynomial c.d.f. Faij (•)
(e.g., triangular distribution).

results proposed in van den Boom and De Schutter (2014)
and Farahani et al. (2017) which are possible alternative
methods.

The calculations of mathematical conditional expectation
of A⊗x can be thought as element-wise operations of each
(A⊗ x)i.

On the inverse of the mathematical conditional expectation
(Mendes et al., 2019, Sec. II) Let z = A ⊗ x be the
max-affine equation that was considered in (3). Consider
the following problem: given z, find x such that z = E[z|A⊗
x] := E[A⊗x], i.e., which state x leads to z. More formally,
we seek to characterize, the set χ = {x ∈ Rn

ε : E[A ⊗
x]} ⊂ Rn

ε .

Contractors (see Jaulin et al. (2001)) are powerful tools to
efficiently solve the problem of characterization of the set χ.
The operator Cχ is a contractor for χ if it satisfies ∀[x] ∈ IRn

the following properties

Cχ([x]) ⊂ [x] (contractance) and
Cχ([x]) ∩ χ = [x] ∩ χ (completeness).

A contractor is said to be minimal if [x] ∩ χ = Cχ([x]).
In the following, it is assumed that: H1) χ is not empty,
H2) χ ⊂ [x], H3) E[A ⊗ x] ≤ z, H4) for all j ∈ {1, . . . , n},
E[A⊗(x1, x2, . . . , xj , . . . , xn−1, xn)

t)] ≥ z. The composition
of the following two operations summarize the contractor
Ωχ to contract the set χ.

∆L
ij operator:

∆L
ij([x,x]) = [x′,x] , (6)

with

x′ = (x1, x2, . . . , x
′
j , . . . , xn−1, xn)

t

x′
j = sup{xj ∈ [xj , xj ]} s.t.: E[A⊗ x′′] < zi

x′′ = (x1, x2, . . . , xj , . . . , xn−1, xn)
t

∆U
ij operator:

∆U
ij([x,x]) = [x,x′] , (7)

with

x′ = (x1, x2, . . . , x
′
j , . . . , xn−1, xn)

t

x′
j = inf{xj ∈ [xj , xj ]} s.t.: E[A⊗ x′′] > zi

x′′ = (x1, x2, . . . , xj , . . . , xn−1, xn)
t

The calculation of x′
j in (6) and (7) is a one-dimensional

search that can be efficiently performed by the dichotomy
method (see Wilde (1964)) as follows: at each step, the
search interval initialized with [xj , xj ] is divided into two
equal intervals. The half containing the solution will be the
search interval at the next step. The algorithm stops when
the search interval is sufficiently small. We denote Ωχ the
contractor obtained from the iterated composition of 2qn
operators defined above, i.e., Ωχ([x]) = (∆L

11◦∆U
11◦. . .∆L

1n◦
∆U

1n ◦ . . . ◦ ∆L
q1 ◦ ∆U

q1 ◦ . . . ◦ ∆L
qn ◦ ∆U

qn)([x]). It is worth

to mention that, if E[A ⊗ x′′] < zi is not satisfied, then
∆L

ij([x]) is mathematically seen as the identity operator,

i.e., ∆L
ij([x]) = IdL([x]) = [x]. Similarly, if E[A ⊗ x′′] > zi

is not satisfied, then ∆U
ij([x]) = IdU ([x]) = [x].

Remark 1. The contractor Ωχ satisfies the contractance,
completeness and monotonic properties (see Mendes et al.,
2019, Lem. 2 for proofs).



Remark 2. Ωχ([x]) converges to a fixed point, i.e., to an
interval I such that Ωχ(I) = I. Moreover, I contains χ
(see Mendes et al., 2019, Lem. 3 for proofs).

Generally, the interval I = [xopt,xopt] that is obtained with
Ωχ contractor is not deprecated and to properly obtain the
inverse of the mathematical conditional expectation, one
must consider the deprecation procedure described below.

Procedure 1. (Mendes et al., 2019, Sec. IV) For an arbitrary
j ∈ {1, . . . , n}, let a ∈ [xj , xj ]. Moreover, let χ′ = χ ∩
{xj = a}, with {xj = a} a hyperplane in Rn

ε , and let I ′

= I ∩ {xj = a} Thus, χ′ ⊂ I ′ and, thanks to Mendes
et al., 2019, Lemma 3, χ′ is not empty. In general, I ′ is not
minimal (Remark 2) and the contraction algorithm can be
called once again in order to obtain the minimal interval
containing χ′.

The previous procedure can be recursively repeated until
the minimal interval is reduced to one point (all components
are fixed) that necessarily belongs to χ. The remaining
question is: which component should be fixed at each step
and to which value? To answer this, consider now that one
holds a guess value (obtained somehow) for a particular
x, formally x0. We shall look for a point x ∈ χ that is
the closest to this value, i.e., x = arg minx∈χ∥x− x0∥∞.
In general, x is not unique, i.e., multiple solutions yield
the same minimum, and an optimal value for this problem
cannot be guaranteed. However, following Mendes et al.,
2019, Section IV, a suboptimal heuristic procedure, based
on the deprecation method described above, is proposed
to solve an alternative optimization problem, stated as
follows. As already pointed-out, I, such that χ ⊂ I, is the
interval resulting from the Ωχ contractor. Then, we consider
the alternative minimization x′ = arg minx∈I∥x− x0∥∞,
whose optimal solution 3 is given by (8) of Algorithm 1.

Remark 3. The vector x′ not necessarily belongs to χ, but
it is useful to determine at each step which component must
be deprecated and to which value. Given χ ⊂ I then the fol-
lowing statement holds min

x∈χ
∥x− x0∥∞ ≥ min

x∈I
∥x− x0∥∞.

The Algorithm 1 summarizes this procedure, and it should
be noticed the generation of the initial interval [x] must
satisfy H2, i.e., it must contain at least one solution of
the problem characterized by the set χ. A simple rule to
guarantee this is to chose x such that A⊗x < z and x such
that A⊗ x > z are respected 4 .

For the “proof of concept”, this inversion procedure has
been naively implemented in MATLAB.

3. RECURSIVE FILTERING ALGORITHM
REVISITED

3.1 Original method

In Mendes et al. (2019) an alternative Bayesian method is
proposed to compute a state estimation in (2), it is based
on two-fold recursive equations, where x̂(k|k) := x̂corr(k)
and x̂(k|k − 1) := x̂pred(k), as shown below:

3 As for x, there exist multiple solutions for x′, but
minx∈I∥x− x0∥∞ is unique.
4 H4 implies E[A⊗x] ≥ z and it must always be respected, otherwise
x must be properly modified.

Algorithm 1: Suboptimal solver

Data: F (A ∈ [A] ∈ IRq×n
ε ) (c.d.f. of each aij ∈ [aij , aij ] ∈ IRε), z ∈ Rq

ε

and x0 ∈ Rn
ε .

Result: x = Inv(z,x0)
generate [x,x]; bool← true;
while bool do

[x,x]← Ωχ([x,x]) ; // Contractor

bool← x ̸= x;
if bool then

/* Heuristic fixation of the j − th coordinate of [x,x] based on

x0. */

foreach j ∈ {1, . . . , n} do

x
′
j ←

{
x
j

if x
0
j ≤ x

j

x
0
j if x

j
< x

0
j < xj

xj otherwise.

(8)

/* x′ = arg minx∈[x,x]

∥∥x− x0
∥∥

∞
*/

end

j ← argmaxj∈{1,...,n} |x
′
j − x0

j |;
/* Deprecation */

x
j
← x′

j ; xj ← x′
j

end
end
return x ; // Notice that: x = x

Prediction phase (x̂pred(k) = E[x(k)|x̂corr(k − 1)])

x̂pred(k) = E[(A(k), B(k))⊗ (x̂t
corr(k − 1),ut(k))t]. (9)

Correction phase (z(k) = E[z(k)|x̂corr(k)])

x̂corr(k) = arg min
x

∥x− x̂pred(k)∥∞ , (10a)

s.t. z(k) = E[C(k)⊗ x]. (10b)

This method is not based on the explicit calculation of
the posterior probability density function (p.d.f.) of the
state given the measurements, since it is an alternative
to the Bayesian filter. Nevertheless, it is claimed by the
authors the analogy with the classical maximum likelihood
estimator and the fact that it inverts, in some sense, the
direct estimation of the measurement given the state. Fur-
thermore, the above equations are implemented by Algo-
rithm 2, but unfortunately with over-optimism, since the
corrected estimation x̂corr(k) must respect the condition
that z(k) = E[C(k) ⊗ x̂corr(k)], which is not necessary in
Bayesian theory.

Algorithm 2: Filtering algorithm for state estimation in (2)

Data: F ((A(k), B(k)) ∈ [(A,B)] ∈ IRn×(n+m)
ε ),

F (C(k) ∈ [C] ∈ IRq×n
ε ), and z(k) ∈ Rq

ε.
Result: x̂corr(k) = Filter(z(k), x̂corr(k − 1))

x̂pred(k)← E[(A(k), B(k))⊗ (x̂t
corr(k − 1),ut(k))t] ; // (5)

x̂corr(k)← Inv(z(k), x̂pred(k)); // Algorithm 1

return x̂corr(k)

3.2 Contribution

We recall that in Kalman filter theory, the gain is the weight
given to the measurements and current-state estimate, and
can be “tuned” to achieve a particular performance. If the
Kalman gain is large that means error in the measurement
is small which means that new data put in can now very
quickly get us to the true value, and therefore we will
reduce the error in the estimate and vice versa. Then, we
propose to improve the original filtering algorithm for max-
plus systems (Algorithm 2) by introducing a criterion in the
spirit of the Kalman filtering gain. The optimal gain matrix
of the Kalman filter is often derived by minimizing the
trace of the posterior covariance matrix (Jazwinski, 1970).
By analogy, we will define a criterion J to be minimized,



allowing to take into account the trade-off between the noise
in the prediction estimation and in the measurement.

The criterion J
From (9) and (10) the following information is known:

• The state corrected estimation of x(k) at k − 1,
formally x̂corr(k − 1) (prior knowledge of state);

• The current prediction estimation for the state x(k)
from the available state estimation at k − 1, formally
x̂pred(k) = E[(A(k), B(k))⊗ (x̂t

corr(k − 1),ut(k))t];
• The measurement output z(k) obtained at k.

For instance, let z0 be defined as the output prediction
estimation, i.e., z0 = E[C(k)⊗ x̂pred(k)]. Consider that, z0
will be used as input of the inversion procedure, formally
x0 = Inv(z0, x̂pred(k)). Based on this, it is straightforward
to see that x0 = x̂pred(k). However, if we define z1 as a
convex combination between z(k) and z0, formally z1 =
βz(k) + (1 − β)z0 where β ∈ [0, 1], then this artificial
measurement should be used also as input of the same
inversion procedure, precisely x1 = Inv(z1, x̂pred(k)).

The pair (x1, z(k)) as defined before is the input of the
following heuristic criterion that aims at evaluating for
each k the trade-off between the noise in the prediction
estimation and in the measurement:

J(x1, z(k)) = max{∥P−1
dyn(x1 − x̂pred(k))∥∞,

∥P−1
obs(z(k)− E[C(k)⊗ x1])∥∞},

(11)

where Pdyn = diag(α1, . . . , αn) and Pobs = diag(γ1, . . . , γq)
are weighting matrices. The first part of the criterion re-
flects how the estimation impacts the prediction estimation
obtained in (9). The second part reflects how the estimation
impacts the measurement.

A key point is to ensure that the criterion above is verified.
For this reason, the parameters α1, . . . , αn must be associ-
ated with the variability of the components of the vector
x̂pred(k). The inverse of these parameters is therefore an
indicator of the reliability of x̂pred(k). A rule of thumb for
tuning the parameter αi for all i ∈ {1, . . . , n} is given by

αi = 1
n+m

∑n+m
j=1 w([hij ]) where [H] = [(A,B)]. Similarly,

the parameters γ1, . . . , γq must be associated with the reli-
ability of the components of E[C(k)⊗x1]. The variability of
these variables depends on the vector x1, and in principle,
the parameter γi must depend on x1. In order to avoid
this dependence, although it is approximate, a possible
rule of thumb for γi for all i ∈ {1, . . . , q} is given by
γi =

1
n

∑n
j=1 w([cij ]). Hence, Pdyn and Pobs are calculated

in an offline phase and remain the same throughout the
filtering loop. Nevertheless, it is possible to define other
suitable values for αi and γi, possibly online, but it is not
the subject of the present work.

It should be noted that:

• if z1 = z0, then the first part of the criterion, precisely
P−1
dyn(x1 − x̂pred(k)) is null.

• if z1 = z(k) (this is the case of (10)), then the second
part of the criterion, precisely, P−1

obs(z(k)−E[C(k)⊗x1])
is null.

The modified correction equation is also a constrained
optimization problem, as shown below, and the main idea
is to choose x̂pred(k) as the value of x1 that minimizes (11).

x̂corr(k) = arg min
x1

J(x1, z(k))

s.t. z1 = E[C(k)⊗ x1]
(12)

Based on this, the search for z1 will be constrained to the
convex combination of z(k) and z0. Hence, J(x1, z(k)) is
reinterpreted by J(β) where β ∈ [0, 1]. Any one-dimensional
search method can be used to find a local minimum value
of the objective function above. We summarize (9) together
with (12) given by the following filtering Algorithm 3.

Algorithm 3: Criteria filtering algorithm for state estimation in (2)

Data: F ((A(k), B(k)) ∈ [(A,B)] ∈ IRn×(n+m)
ε ),

F (C(k) ∈ [C] ∈ IRq×n
ε ), Pdyn ∈ Rn×n

ε , Pobs ∈ Rq×q
ε and

z(k) ∈ Rq
ε.

Result: x̂corr(k) = Filter(z(k), x̂corr(k − 1))

x̂pred(k)← E[(A(k), B(k))⊗ (x̂t
corr(k − 1),ut(k))t] ; // (5)

z0 ← E[C(k)⊗ x̂pred(k)] ; // (5)

/* Objective function. */

J(β) =

{z1 ← βz(k) + (1− β)z0
x1 ← Inv(z1, x̂pred(k))

J(x1, z(k))← max{∥P−1
dyn

(x1 − x̂pred(k))∥∞,

∥P−1
obs

(z(k)− E[C(k)⊗ x1])∥∞}

;

/* One-dim minimizer for J(β) with β between 0 and 1. */

βopt ← 1dMinimizer(J(β), 0, 1); // arg min
β

J(β) s.t. β ∈ [0, 1]

z
opt
1
← βoptz(k) + (1− βopt)z0;

x
opt
1
← Inv(z

opt
1

, x̂pred(k));

return x̂corr(k) = x
opt
1

The resulting one-dimensional search in the Algorithm 3
is represented by βopt = 1dMinimizer(func, 0, 1) and is
solved in the simulation section of this work using the
fminbnd function, which is implemented in MATLAB.
Furthermore, it is worth to mention that if the elements of
the main diagonal of P−1

dyn and P−1
obs are 1/0 then fminbnd

will not run as desired, and thus we replace 1/0 with a
sufficient finite value, for instance 104.

4. NUMERICAL SIMULATIONS

In this section, two different systems are studied by means of
simulations up to the occurrence of N = 400 event-firings.

Example 2. Third-Order System: Consider the third-order
uncertain max-plus system given by (2), with (A(k), B(k)) ∈
[(A,B)] ∈ IR3×4

ε and C(k) ∈ [C] ∈ IR1×3
ε :

[(A,B)] =

(
[0, 8] [0, 8] [3, 11] [ε, ε]

[2, 10] [0, 8] [0, 8] [ε, ε]

[1, 9] [1, 9] [0, 8] [ε, ε]

)
, [C] =

(
[0, 1]

[0, 1]

[ε, ε]

)t

.

For instance, the prior knowledge of state x̂corr(k − 1) is
initialized with the initial state x(0) = 0.

The analysis of the root-mean-square-error 5 (RMSE) be-
tween the estimation provided by Algorithm 2 and the true
value of the state is almost equal to the RMSE between
the estimation provided by Algorithm 3 and the true state.
Table 1 shows the obtained results.

It is important to mention that, for this example, βopt

asymptotically converges to 1 for most event-firings, such
that z1 = z(k), clearly leading to the same result found
using the Algorithm 2.

Example 3. Ninth-Order Flow Shop System: Consider the
Flow Shop system modified from Loreto et al. (2010), mod-
elled as a ninth order uncertain max-plus system with three

5 Notation: RMSE(a, b) =

√
1
N

∑N

j=1
(a(j)− b(j))2.



Table 1. Comparison between the Algorithms 2
and 3 - Example 2.

State Alg. 2 Alg. 3
i RMSE({x(k)}, {x̂F1

corr(k)})i RMSE({x(k)}, {x̂F2
pred(k)})i

1 1.9195 1.7046
2 2.0124 1.9171
3 1.8908 1.8745

directly measured states x3, x6, x8 and no control input (au-
tonomous). Unfortunately, the measurement occurs under
high uncertainty. The model for this system is given by (2)

where (A(k), B(k)) ∈ [(A,B)] ∈ IR9×10
ε = (A,B) ∈ R9×10

ε

and C(k) ∈ [C] ∈ IR3×9
ε :

(A,B) =


ε ε 4 ε ε ε 2 ε ε ε

1 ε ε ε ε ε ε 3 ε ε

ε 5 ε ε ε ε ε ε 1 ε

4 ε ε ε ε 3 ε ε ε ε

ε 3 ε 1 ε ε ε ε ε ε

ε ε 5 ε 4 ε ε ε ε ε

ε ε ε 4 ε ε ε ε 3 ε

ε ε ε ε 3 ε 5 ε ε ε

ε ε ε ε ε 2 ε 4 ε ε

 , [C] =


[ε, ε] [ε, ε] [ε, ε]

[ε, ε] [ε, ε] [ε, ε]

[ε, ε] [ε, ε] [0, 6]

[ε, ε] [ε, ε] [ε, ε]

[ε, ε] [ε, ε] [ε, ε]

[ε, ε] [0, 6] [ε, ε]

[ε, ε] [ε, ε] [ε, ε]

[0, 6] [ε, ε] [ε, ε]

[ε, ε] [ε, ε] [ε, ε]



t

.

For instance, the prior knowledge of state x̂corr(k − 1) is
initialized with the initial state x(0) = 0.

The model is not disturbed by any noise, i.e., it is under
deterministic behaviour. However, the measurement, repre-
sented by the interval matrix [C], is under high uncertainty,
making all states become noisy. Algorithm 2 will then return
a poor corrected estimation of the states, whereas Algo-
rithm 3 is able to retrieve the prediction estimation instead
of the corrected one as the reliable estimation of the states
(βopt asymptotically converges to 0 for most event-firings).

The analysis of the RMSE between the estimation provided
by Algorithm 2 and the true value of the state is greater
than the RMSE between the estimation provided by Al-
gorithm 3 and the true state. Table 2 shows the obtained
results for the noisy states x3, x6 and x8 only.

Table 2. Comparison between the Algorithms 2
and 3 - Example 3.

State Alg. 2 Alg. 3
i RMSE({x(k)}, {x̂F1

corr(k)})i RMSE({x(k)}, {x̂F2
pred(k)})i

3 1.7230 0.0065
6 1.6432 0.0065
8 1.5082 0.0065

5. CONCLUSIONS

This paper proposes an improvement of the filtering algo-
rithm presented in Mendes et al. (2019). The new filtering
strategy for the correction equation uses the same inversion
procedure but using an artificial variable generated by a
convex combination between output prediction and output
measurement, rather than only the output measurement.
This algorithm is able to deal with the trade-off between
the noise in the measurement and in the prediction. The
approach has been illustrated by two examples with an
important improvement for the second one because all sys-
tem noise is restricted to the observation equation, i.e., the
prediction estimation is more reliable than the corrected
estimation. Future work could focus on the definition of
other objective functions that improve the efficiency of
the proposed filtering algorithm, and on defining max-plus
stochastic computations that exploit the linearity of the

max operator over the max-plus semiring, i.e., leading to
a max-plus linear stochastic filtering theory that resembles
Kalman filter.
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