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Weight-Balanced Timed Event Graphs to Model
Periodic Phenomena in Manufacturing Systems

Bertrand Cottenceau, Laurent Hardouin, Johannes Trunk

Abstract—Timed Event Graphs (TEGs) are suitable to model
manufacturing systems in which synchronization and delay
phenomena appear. Since the eighties, TEGs are studied as a
class of linear Discrete Event Systems in idempotent semirings
such as the (min,+) algebra. In this paper, we consider the
class of Weighted TEGs (WTEGs) that corresponds to TEGs
where the edges have integer weights. By introducing non unitary
weights, WTEGs widen the class of manufacturing systems that
can be modeled, especially systems with batches and duplications.
Moreover, a subclass of WTEGs called Weight-Balanced TEGs
(WB-TEGs) can be studied with the algebraic tools that stem
from the theory of (min,+) linear systems. In this work, the
focus lies on some modeling issues for manufacturing systems.
Besides cutting and palletization operations, it is shown that WB-
TEGs are also well adapted to describe periodic routing policies
and, in a symmetrical way, how to merge flows similarly to a
multiplexer. In order to simplify the modeling step, a class of
Cyclo-Weighted TEGs is introduced. It is an extension of WTEGs
where the weights of the edges can change according to a periodic
sequence. Finally, we propose some elements of modeling that
can be described by Cyclo-Weighted TEGs or equivalently with
an input-output transfer relation in an appropriate idempotent
semiring of operators.

Abstract—[Note to practitioners] The (min,+) linear system
theory used in this work aims at obtaining linear models
for a subclass of man-designed systems, such as automated
manufacturing systems or traffic networks. This theory has
many analogies with the conventional linear system theory (for
continuous systems) and it provides the basis to develop a
specific control theory for man made systems. More precisely,
the theory of (min,+) linear systems is well suited to systems
where the prevailing phenomena are synchronizations, delays,
duplications and batches. These phenomena arise for example in
operations such as assembly/matching, cutting/lot splitting and
palletization/lot making. Among the possible representations, we
can describe these systems by transfer functions obtained by
the combination of a finite number of basic operators. This is
analogous to block diagram in the conventional system theory,
i.e., a transfer function describes the complete input-output
behavior of a system. In the context of manufacturing systems,
a transfer function describes the way a system maps an input
flow of materials (raw part inputs) into an output flow (finished
parts), without the necessity of simulation tools to predict this.
Moreover, the transfer function thus obtained can be used to
compute controllers in order to regulate the internal flows of a
system, for instance to decrease internal stocks. In the case of an
automated system, the obtained controllers can be implemented
on a Programmable Logic Controller (PLC) as supplementary
code. This paper focuses on the use of these algebraic tools in
the model process of manufacturing systems and in particular on
their ability to describe splitting and merging flows of materials.
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I. INTRODUCTION

Discrete Event Systems (DESs) are popular for the mod-
eling process of manufacturing systems on a high level of
abstraction. In DESs, we focus on instantaneous phenomena
called events that correspond to the state changes. For instance,
in a manufacturing system, an event corresponds to the arrival
of a raw part, to the departure of a finished part or to the
beginning (resp. to the end) of an operation. Besides the
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Figure 1. Event list and counter function.

logical order in which events occur, in many applications, the
time which elapses between consecutive events is important.
For a manufacturing system, we generally want to know the
production rate which is the mean value of the number of parts
produced in time unit. For a timed DES, we can represent the
occurrences of events on a time line, or equivalently by a list
of pairs <event, date> (sorted by increasing dates). In Fig.1,
the occurrences of event b (depicted by big dots) correspond
to the list <b, 2>,<b, 6>,<b, 6>,<b, 11>,<b, 17>: one
event b occurs at date 2, two events b occur simultaneously
at date 6 etc. Alternatively, we can also describe an event list
by a counter function which is a function of time that gives
the (cumulated) number of events occurred up to a date t.
Fig.1 depicts the counter function b(t) associated to events b:
b(t < 2) = 0 (no event b before t = 2), b(2 ≤ t < 6) = 1,
etc.

For timed DESs, event lists or counter functions are anal-
ogous to signals in the classical system theory. By extend-
ing this analogy further, a timed DES can be viewed as a
combination of elementary subsystems that transform signals;
such subsystems are called operators hereafter. For instance,
synchronizations, time shifts and event shifts can be seen
as specific transformations on signals. To be homogeneous
with [4], we denote by δτ a time shift of τ time units,
by γν an event shift of ν event occurrences and by ⊕ the
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Figure 2. Time Shift, Event Shift and Synchronization

synchronization of two kinds of events. Fig.2 illustrates how
signals are transformed by the operators δτ , γν and ⊕. For the
δ3 operator, an input event at date t leads to an output event
at date t + 3. The γ2 operator describes a system such that
there are permanently 2 more output events than the number of
input events. Therefore, 2 output events have occurred at date
−∞. Translated into relations between counter functions, for
x, y two counter functions, we have ∀t, (δτx)(t) = x(t− τ),
(γνx)(t) = x(t) + ν and (x⊕ y)(t) = min(x(t), y(t)).

Timed Petri Nets constitute a powerful graphical and math-
ematical model to describe how the events of a system are
related to each other [16]. Among timed Petri nets, Timed
Event Graphs (TEG) is a subclass where it is only possible to
model synchronizations, time delays and event shifts. From
an operatorial point of view, TEGs correspond to systems
generated by a finite combination of γν and δτ operators (with
ν, τ ∈ N) and synchronizations of events. For instance, Fig.2
describes how operators γν , δτ and ⊕ are transposed into TEG
models. For TEGs, the events are the firing of transitions.

Since the early eighties, it is known that TEGs can be mod-
eled as linear systems by considering some specific idempotent
semirings (or dioids) such as the (min,+) algebra (see [1],[10]).
In particular, TEGs have an input-output model (transfer
function) in a dioid of formal series denoted Max

in Jγ, δK [4],
where variable γ (resp. δ) can be assimilated to the event-shift
(resp. time-shift) operator introduced before.

In this paper, we consider the modeling of manufacturing
systems by using TEGs where non unitary weights can be
attached to the edges. This class of models is called Weighted
Timed Event Graphs (WTEGs) or Weighted T-systems [15]
[8] and corresponds also to Synchronous Data Flow (SDF)
graphs used in computer science [13] [7]. WTEGs encompass
the class of (ordinary) TEGs and have more expressiveness
since they can model lot making (or palletization) and cutting
operations. For instance, Fig.3 describes a manufacturing cell
where raw parts (events u) are first cut to produce 2 sub-parts
(events x2) and conveyed to a palletizer where a pallet (events
y) is filled with 3 subparts. In summary, 3 raw parts are needed

to fill 2 pallets that corresponds to an input-output gain of 2/3.
This system can be modeled by a Weighted TEG where the
weight of <2> in the output edge of x1 is needed to model
the cutting operation, and the weight of < 3> on the input
edge of x3 describes the palletization.
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Figure 4. Event multiplication and batch

When one considers weighted instead of ordinary TEGs,
operators γν and δτ are not sufficient anymore. Two supple-
mentary operators denoted µm (multiplication of events) and
βb (batch of events) have to be introduced to describe the effect
of the weighted edges. For instance, Fig.4 illustrates how µ2

and β3 operate on a given signal. For operator µ2, each input
event induces immediately two output events. For operator
β3, one output event is released after three successive input
events have occurred. The modeling of WTEGs on the basis
of operators γν , µm, βb, δτ is investigated in [5] and [11]. This
prior work widens the class of timed DES that can be studied
with the tools steming from the (min,+) linear system theory,
even if there is a restriction on the class of weighted TEGs
that can be handled with this approach. The main result of [5]
can be stated as : when a Single Input Single Output (SISO)
WTEG is weight-balanced (parallel paths have the same gain),
then it can be described by an ultimately periodic transfer
function. This transfer function allows us to address control
problems for Weight-Balanced TEGs (WB-TEGs) since the
controller synthesis problem is analogous to the one solved for
ordinary TEGs. For instance, the controller strategies obtained
in [14], [9] for TEGs can be applied for WB-TEGs as well.

We focus in this paper on some modeling issues, concerning
manufacturing systems, that can be handled thanks to WB-
TEGs. More precisely, we show that WB-TEGs are well
suited to describe a family of routing policies with a periodic
dispatching rule. In other words, we can model systems where
parts are routed into subsystems. In order to simplify the
description of these phenomena, we introduce a class of
WB-TEGs with varying weights : a weight can change after
the firing of a transition according to a periodic sequence.
This class of WB-TEGs is named Cyclo-Weighted Timed
Event Graphs (CW-TEGs) and is inspired by Cyclo-Static
Dataflow Graphs (CSDF) [18] [2]. For instance, CW-TEGs
are useful to simplify the description of periodic phenomena
such as periodic multiplexer or demultiplexer (routing). As
a consequence, a family of varying (max,+) systems already
studied in [12] can be described by CW-TEGs.

The paper is organized as follows. First, we give some
recalls on the operatorial modeling of WB-TEGs coming
from [5]. Then we introduce two new event operators to
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Figure 3. Weighted TEG to model cutting and palletizer

describe multiplier and batch operations the weight of which
can change according to a periodic sequence. This leads to the
introduction of WTEGs where the edges can be valued with
periodic sequences. Such models are called Cyclo-Weighted
TEGs (CW-TEG) and under some conditions a CW-TEG is
equivalent to a WB-TEG. Finally, some elements of modeling
based on CW-TEGs are given : periodic routing, multiplexing
and time-variation (with a periodic sequence of delays).

II. WEIGHT-BALANCED TIMED EVENT GRAPHS

A. Operatorial description of WB-TEGs

A Timed Event Graph (TEG) is a timed Petri net - with
P the set of places, T the set of transitions and A ⊂ (P ×
T ) ∪ (T × P ) the set of edges - such that each place has
exactly one upstream and one downstream transition. A place
pk ∈ P can have a positive holding time value τ ∈ N and an
initial marking denoted M0(pk) ∈ N. For pk ∈ P , the edge
ti → pk (resp. pk → to) is valued by a strictly positive integer
denoted ωi(pk) (resp. ωo(pk)) (the weights of the edges). In
order to avoid confusion with holding times, weights of edges
are denoted between brackets, e.g. < 2 >. Moreover, ti →
pk → to defines an elementary path denoted πk the gain of
which is given by Γ(πk) , ωi(pk)/ωo(pk) ∈ Q.

When one considers only the earliest firing rule, a transition
tj fires as soon as each input place pl of tj contains at
least ωo(pl) available token(s). Then ωo(pl) token(s) is(are)
removed from each input place pl of tj , and ωi(pk) token(s)
is(are) added to each output place pk of tj .

Definition 1 (Gain Γ): For a path π = πa → πb → ...→ πk,
the gain is Γ(π) = Γ(πa)×Γ(πb)×...×Γ(πk). For the WTEG
depicted in Fig.5, ωi(p1) = 3, ωo(p1) = 2, Γ(π1) = 3/2,
Γ(π2 → π3) = 6/4 and Γ(π4) = 1.

In [5], a weighted TEG is said to be weight-balanced if
∀ta, tb ∈ T , all the paths from ta to tb have the same gain. For
instance, the WTEG of Fig.5 is weight-balanced since every
paths from x1 to x3 have the same gain: Γ(π1) = 3/2 =
Γ(π2 → π3) = 6/4 = Γ(π2 → π4 → π3) = 1/4 × 1 × 6.
Clearly, a WTEG is weight-balanced only if any circuit has a
gain equal to 1.
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Figure 5. Weight-Balanced TEG.

The operators needed to model Weight-Balanced TEGs
(WB-TEGs) are now recalled in a more formal way. The
set of counter functions (denoted Σ) corresponds to the set
of signals on which the operators are defined. By denoting
Zmin , {Z ∪ ±∞}, a counter function x ∈ Σ, x : Z →
Zmin, t 7→ x(t) gives the number of events of type x occurred
up to time t (see Fig.1) and is naturally a non-decreasing
function. An operator is a map H : Σ→ Σ which is said to be
linear if ∀x, y ∈ Σ, a) H(min(x, y)) = min(H(x),H(y)) and
b) H(λ+ x) = λ+H(x). An operator is said to be additive
if at least a) is satisfied.

Definition 2 (Dioid O): The set of additive operators on
Σ is a dioid (idempotent semiring) denoted O with x ∈ Σ,
∀H1,H2 ∈ O

H1 ⊕H2 , ∀x, (H1 ⊕H2)(x) = min(H1(x),H2(x)),

H1 ◦ H2 , ∀x, (H1 ◦ H2)(x) = H1(H2(x)).

The null operator (neutral for ⊕ and absorbing for ◦) is
denoted ε : ∀x ∈ Σ,∀t, (εx)(t) = +∞ and the unit operator
(neutral for ◦) is denoted e : ∀x ∈ Σ,∀t, (ex)(t) = x(t).

WB-TEGs operating under the earliest firing rule can be
modeled in dioid O by combining the operators given here-
after.

Definition 3 (Basic operators): Operators δt, γn, µm, βb ∈
O are defined by x ∈ Σ,

τ ∈ Z, δτ : ∀x, ∀t, (δτx)(t) = x(t− τ),
ν ∈ Z, γν : ∀x, ∀t, (γνx)(t) = x(t) + ν,
b ∈ N, βb : ∀x, ∀t, (βbx)(t) = bx(t)/bc,

m ∈ N, µm : ∀x, ∀t, (µmx)(t) = x(t)×m,
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where bac ∈ Z denotes the greatest integer less than or equal
to a ∈ Q.
In order to lighten formal expressions, symbol ◦ (composition)
is omitted, e.g., operator γ3 ◦ δ2 ◦ µ2 is written γ3δ2µ2.

Example 1: For the WB-TEG in Fig.3, we associate counter
functions to transitions, therefore we obtain: xi ∈ Σ, x1 =
δ4(u ⊕ γ1x1), x2 = µ2x1, x3 = β3δ

5x2 ⊕ γ1y and y =
δ2x3. These relations can be described by a block diagram
(see Fig.3).

We define the gain of an operator Γ : O → Q by
va, vb ∈ O, Γ(va ◦ vb) = Γ(va) × Γ(vb) and Γ(va ⊕ vb) =
min(Γ(va),Γ(vb)), where Γ(γn) = Γ(δt) = 1, Γ(µm) = m
and Γ(βb) = 1/b. We intentionally keep the same notation for
the gain of a path in a WB-TEG (see Def.1) and the gain of
an operator, because it has the same meaning. For instance,
Γ(γ1µ2β3δ

2 ⊕ β6γ
1µ4δ

5) = 2/3. Moreover, an operator
v =

⊕
i vi is said to be weight-balanced if ∀i,Γ(vi) = Γ(v)

where vi is obtained only by products of basic operators
in {δt, γn, µm, βb}. In other words, an operator is weight-
balanced if all its ⊕ terms have the same gain.

Describing WB-TEGs with the operators given in Def.3
leads to an input-output representation. For a given WB-
TEG with m inputs, p outputs, and n internal transitions, by
associating a counter function to each input transition (in a
vector u), to each output transition (in a vector y), and to
each internal transition (in a vector x), the earliest behavior is
described by {

x = Ax⊕Bu
y = Cx

where A ∈ On×n, B ∈ On×m and C ∈ Op×n are matrices.
Since equation x = Ax⊕Bu has x = A∗B as least solution

(see [1, Th.4.75]), with A∗ =
⊕

n≥0A
n = e ⊕ A ⊕ A2 ⊕ ...

the Kleene star operator, the input-output behavior is

y = CA∗Bu = C(e⊕A⊕A2 ⊕ ...)Bu = Hu. (1)

The matrix H ∈ Op×m is called the transfer function matrix
of the WB-TEG.

Example 2: For the WB-TEG in Fig.3, the input-output
behavior is expressed by y = Hu where the transfer function
is given by H = δ2(γ1δ2)∗β3δ

5µ2δ
4(γ1δ4)∗.

The transfer function of a WB-TEG can always be expressed
in a dioid of formal series denoted EJδK which encompasses
Max

in Jγ, δK [5]. Dioid EJδK is a set of formal series in one
variable δ (time shift operator) with coefficients in the dioid
of event operators denoted E (see Def.4 hereafter). The coef-
ficients are obtained by a finite combination of operators in
{γn, µm, βb e, ε}. The formal identities recalled below apply
in EJδK :

γ1δ1 = δ1γ1; µmδ
1 = δ1µm; βbδ

1 = δ1βb (2)

γnγn
′

= γn+n
′
; δtδt

′
= δt+t

′
(3)

γn ⊕ γn
′

= γmin(n,n′); δt ⊕ δt
′

= δmax(t,t′) (4)

µmγ
n = γm×nµm; γnβb = βbγ

n×b. (5)

B. Periodic Event Operators

According to (2), the delay operator δt can commute with
all event operators (E-operators), i.e., operators obtained by
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a finite number of sums and compositions of operators in
{γn, µm, βb}. Therefore, we can always express the behavior
of WB-TEGs as formal expressions

⊕
i wiδ

ti where wi are
weight-balanced E-operators. Compared to ordinary TEGs,
where the only possible E-operator is the γn operator, E-
operators are more complex for WB-TEGs, and thus are
investigated hereafter.

Definition 4 (Dioid E): We denote by (E ,⊕, ◦) ⊂ O
the dioid of E-operators, i.e., those obtained by finite sums
and products of operators in {γn, µm, βb, ε, e}. For instance,
γ1µ2 ⊕ β2γ1 ∈ E whereas γ1δ2 /∈ E .

An E-operator can be considered as an instantaneous1

system. If w ∈ E , for all counter x ∈ Σ, then (wx)(t) depends
only on ki = x(t), and not on t. Therefore, an E-operator
can be described by a Counter-value to Counter-value (C/C)
function Fw : Zmin → Zmin, ki 7→ ko. It is an untimed
representation where ki (resp. ko) is an input (resp. output)
counter value. For a given E-operator w, its C/C function
Fw is obtained by replacing x(t) by ki in the expression of
(wx)(t). For instance, if one considers w = β3γ

2µ4 ∈ E , then
(wx)(t) = b(4× x(t) + 2)/3c and Fβ3γ2µ4

(ki) = b(4× ki +
2)/3c. This C/C function is depicted in the bottom right part
of Fig.6. Function Fβ3γ2µ4

is characterized by a finite set of
values : Fβ3γ2µ4

(0) = 0,Fβ3γ2µ4
(1) = 2,Fβ3γ2µ4

(2) = 3
and its periodicity Fβ3γ2µ4

(ki + 3) = 4 + Fβ3γ2µ4
(ki).

Remark 1: The left and the right multiplication of w ∈
E by γ1 leads to a shift of the associate function Fw since
Fwγ1(ki) = Fw(ki+1) and Fγ1w(ki) = Fw(ki)+1. The left
(resp. right) multiplication by γ1 corresponds to a shift of the
C/C function to the top (resp. to the left).

Remark 2: Let us recall (see [5]) that ∀w1, w2 ∈ E , then
Fw1⊕w2

= min(Fw1
,Fw2

) and Fw1◦w2
= Fw1

◦ Fw2
. There

1or, equivalently, a memoryless system.
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is an isomorphism between the dioid E and the set of C/C
functions.

Definition 5 (Periodicity): An E-operator w is said to be
(n, n′)-periodic if ∀ki ∈ Z,Fw(ki + n) = Fw(ki) + n′ with
n, n′ ∈ N:

w is (n, n′)-periodic ⇐⇒ wγn = γn
′
w. (6)

The set of periodic E-operators is denoted Eper.
For instance, the operator γn is (1, 1)-periodic (γnγ1 =
γ1γn), µm is (1,m)-periodic (µmγ1 = γmµm) and βb is
(b, 1)-periodic (βbγb = γ1βb). Let w ∈ Eper be a (n, n′)-
periodic E-operator, then n′/n ∈ Q is equal to its gain Γ(w)
and is also equal to the average slope of Fw. Let us note that
if w ∈ Eper is (n, n′)-periodic, then it is also (k× n, k× n′)-
periodic, with k ∈ N.

For the sequel, it is important to remark that ∀ν, ν′ ∈ N,
the composed operator γνµmβbγν

′
is a (b,m)-periodic oper-

ator since (see (2)-(5)): (γνµmβbγ
ν′)γb = γνµmβbγ

bγν
′

=
γνµmγ

1βbγ
ν′ = γm(γνµmβbγ

ν′). The associated C/C func-
tion is depicted as a staircase function, Fγνµmβbγν′ (ki) =
(b(ki + ν′)/bc × m) + ν. For instance, the C/C functions
associated to µ4β3γ

2, γ2µ4β3γ
1 and γ3µ4β3 are depicted in

Fig.6. According to Rem.1, each of them is deduced from
Fµ4β3

by shifts.
Proposition 1 ([5]): All weight-balanced E-operators are

periodic.
Prop.1 amounts to saying that all E-operators arising in the
modeling of WB-TEGs are periodic. Moreover, for a Single-
Input Single-Output (SISO) WB-TEG with a transfer function
H ∈ EperJδK, there exist n, n′ ∈ N such that

Hγn = γn
′
H and Hδ1 = δ1H,

where Γ(H) = n′/n is the gain of the SISO system. Let us
note that for ordinary TEGs, n = n′ = 1.

Proposition 2: All (b,m)-periodic E-operators w ∈ Eper can
be written as a finite sum

w =
b−1⊕
j=0

γFw(j)µmβbγ
b−1−j . (7)

Proof: Let us consider the operator defined by v =⊕b−1
j=0 vj with vj = γFw(j)µmβbγ

b−1−j . We have to show
that v = w, or equivalently, ∀k,Fv(k) = Fw(k). First,

Fvj (k) =

⌊
k + (b− 1)− j

b

⌋
m+ Fw(j).

Then, we can express Fv(k) = minj Fvj (k) = min(b(k+(b−
1))/bcm+Fw(0), b(k+(b−2))/bcm+Fw(1), . . . , bk/bcm+
Fw(b − 1)). Since v is (b,m)-periodic and w is (b,m)-
periodic, it is sufficient to show that Fv(k) = Fw(k) for all
k ∈ {0, . . . , b − 1}. Let us remark that Fw is isotone and
satisfies

Fw(0) ≤ Fw(1) ≤ . . . ≤ Fw(b− 1) ≤ m+ Fw(0) ≤ . . .

We can now evaluate Fv(k) for k ∈ {0, . . . , b − 1}.
We have Fv(0) = min(b(b − 1)/bcm + Fw(0), b(b −
2)/bcm + Fw(1), . . . , b0/bcm + Fw(b − 1)) =

min(Fw(0),Fw(1), . . . ,Fw(b − 1)) = Fw(0) (because
of the isotony of Fw). Similarly, after simplifications,

Fv(1) = min(m+ Fw(0),Fw(1), . . . ,Fw(b− 1))
= Fw(1),

Fv(2) = min(m+ Fw(0),m+ Fw(1), . . . ,Fw(b− 1))
= Fw(2),
. . .

Fv(b− 1) = min(. . . ,m+ Fw(b− 2),Fw(b− 1))
= Fw(b− 1).

Example 3: Fig. 6 illustrates the decomposition of Prop.2
with the (3, 4)-periodic E-operator w = β3γ

2µ4. We have,
Fw(0) = 0,Fw(1) = 2,Fw(2) = 3. Due to (7), we can write
w = β3γ

2µ4 = γ0µ4β3γ
2 ⊕ γ2µ4β3γ

1 ⊕ γ3µ4β3γ
0.

Corollary 1 (Realization): For all (n, n′)-periodic C/C func-
tion f , we can find w ∈ Eper realizing f , i.e., satisfying
Fw = f .

C. C/C functions and residuation

Definition 6 (Cper): Let us denote by Cper the set of
periodic C/C functions, i.e., the set of non-decreasing functions
f : Zmin → Zmin, such that ∃n, n′ ∈ N, f(k+n) = f(k)+n′

and f(−∞) = −∞ (resp. f(+∞) = +∞), with the next
operations: f, g ∈ Cper

f ⊕ g , min(f, g),

f ⊗ g , f ◦ g.

The set (Cper,⊕,⊗) is isomorphic to the set of periodic E-
operators Eper, i.e., w ∈ Eper ⇐⇒ Fw ∈ Cper. In Cper, a
partial order relation can be defined2 by

f � g ⇐⇒ g = f ⊕ g ⇐⇒ g = min(f, g) ⇐⇒ f ≥ g.

On partially ordered sets and in particular in dioids, the
residuation theory introduced in [3], and developped in [1] for
dioids, allows one to tackle some mapping inversion problems.
In [3], a mapping f : (A,≤) → (B,≤) defined over ordered
sets is said to be residuated (resp. dually residuated) if it is
isotone (x ≤ y ⇒ f(x) ≤ f(y)) and if ∀b ∈ B, f(x) ≤ b
(resp. f(x) ≥ b) has a greatest (resp. least) solution in A that
is denoted f ](b) (resp. f [(b)).

When f is residuated (resp. dually residuated), then f ]

(resp. f [) is called its residual (resp. dual residual). More-
over, a residuated (resp. dually residuated) mapping is dually
residuated (resp. residuated) with

(f ])[ = f (resp. (f [)] = f ).

Theorem 1 ([1]): On a complete dioid, mappings La : x 7→
a ⊗ x and Ra : x 7→ x ⊗ a are residuated and their residual
mappings are denoted by L]a(x) = a◦\x and R]a(x) = x◦/a.

Remark 3: Some formula to apply ◦\ and ◦/ operations on
periodic operators in Eper can be found in [5].

Proposition 3: A periodic C/C function Fw ∈ Cper, with
w ∈ Eper, is both residuated and dually residuated. The
residual and the dual residual are defined by: ∀ko ∈ Zmin,

F ]w(ko) = min{ki ∈ Zmin|Fw(ki) ≥ ko}
F [w(ko) = max{ki ∈ Zmin|Fw(ki) ≤ ko}

2It is the opposite of the classical order on functions.
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If Fw is (n, n′)−periodic then F ]w and F [w are
(n′, n)−periodic.

Proof: Let us note that the order � in (Zmin,�) is the
opposite of the classical order ≤ in Z (a � b ⇐⇒ a ≥ b).
Function Fw is residuated if for all K ∈ (Zmin,�), it is always
possible to find a greatest solution ki ∈ (Zmin,�) to Fw(ki) �
K. Expressed differently, with the classical order, does the set
{ki ∈ Zmin|Fw(ki) ≥ K} have a minimum value ? Indeed,
since Zmin is totally ordered, there is a unique minimum
value. Therefore, F ]w(K) = min{ki ∈ Zmin|Fw(ki) ≥ K}.
Analogously we can show that Fw is also dually residuated.

Remark 4: It is important to note that Fw is residuated and
dually residuated but not invertible. And, in general, F ]w is
different from Fbw.

Notation 1 (w], w[): For w ∈ Eper, we denote by w] (resp.
w[) the operator such that F ]w = Fw] (resp. F [w = Fw[ ).

Example 4: Let us consider for instance w = β3γ
2µ4, its

corresponding C/C function is depicted in Fig.6. Since w is
(3, 4)-periodic, w] and w[ are (4, 3)−periodic and we just
have to compute the values of F ]w(k) and F [w(k) for 0 ≤ k ≤
3. We have, F ]w(0) = min{k|Fw(k) ≥ 0} = 0, F ]w(1) =
min{k|Fw(k) ≥ 1} = 1 (let us note that the least value of
Fw(k) greater than 1 is Fw(1) = 2), F ]w(2) = 1 and F ]w(3) =
2. Then, F ]w(k + 4) = F ]w(k) + 3. Analogously, F [w(0) =
max{k|Fw(k) ≤ 0} = 0, F [w(1) = 0, F [w(2) = 1, F [w(3) =
2, and then F [w(k + 4) = F [w(k) + 3. The realization (see
Cor.1) of these C/C functions by periodic operators gives w] =
γ0µ3β4γ

3 ⊕ γ1µ3β4γ
2 ⊕ γ1µ3β4γ

1 ⊕ γ2µ3β4, which can be
simplified to w] = µ3β4γ

3⊕ (γ1µ3β4)(γ2⊕ γ1)⊕ γ2µ3β4 =
µ3β4γ

3 ⊕ γ1µ3β4γ
1 ⊕ γ2µ3β4 since γ1 ⊕ γ2 = γmin(1,2)

(see (4)). In a similar way, w[ = γ0µ3β4γ
3 ⊕ γ0µ3β4γ

2 ⊕
γ1µ3β4γ

1 ⊕ γ2µ3β4 = µ3β4γ
2 ⊕ γ1µ3β4γ

1 ⊕ γ2µ3β4.
Remark 5: Finding F ]w(ko) for each ko ∈ Zmin is equivalent

to find a function in Cper defined by F ]w =
⊕
{g ∈ Cper|Fw◦

g � Id}. Due to the isomorphism between Cper and Eper,
this problem is equivalent to find the greatest operator x ∈
Eper such that wx � e where e is the identity operator. This
problem is clearly linked to the residuation of the product in
Eper (see Th.1). The greatest solution in Eper is obtained by
w◦\e. Therefore, F ]w is the C/C function associated to operator
w◦\e.

Definition 7 (Function Dw): Le w ∈ Eper. We define Dw :
Zmin → N by

Dw(ki) , Fw(ki + 1)−Fw(ki).

The function Dw gives a differential analysis of the function
Fw. Let us remark that since Fw is a non-decreasing function,
then Dw(ki) ≥ 0 but Dw is not anymore monotonous.
Moreover, when w ∈ Eper is a (n, n′)−periodic E-operator,
then Fw is (n, n′)−periodic too and Dw is a n-periodic
sequence, i.e., Dw(ki + n) = Dw(ki).

Notation 2 (Periodic sequence <s>n): We denote by

<s>n=<s(0), ..., s(n− 1)>

a n-periodic sequence s : Z → N, k 7→ s(k) where ∀k ∈
Z, s(k + n) = s(k).

5

10

5 10

5

10

5 10 kiki

ko
ko

5

5 10 ki

5

5 10 ki

= =

=

Figure 7. Graphical representation of Dβ3γ2µ4
and Fµ<1,0,2>

If Fw is a (n, n′)-periodic C/C function then Dw =<s>n is
a n-periodic sequence.

Example 5: Let us consider the operator w = β3γ
2µ4 the

C/C function of which is depicted on Fig.7. We have Fw(ki) =
b(4 × ki + 2)/3c, therefore Fw(ki + 3) = 4 + Fw(ki), with
Fw(0) = 0,Fw(1) = 2, and Fw(2) = 3. Therefore, Dβ3γ2µ4

is the 3-periodic sequence <2, 1, 1>.
Remark 6: A (n, n′)-periodic C/C function Fw can be

defined by its values on a period, or by its value Fw(0) and
the n-periodic sequence Dw =<s>n.

III. CYCLO-WEIGHTED TIMED EVENT GRAPHS

A. Weight-Variable Operators

All the event operators arising in WB-TEGs are periodic and
can be described by their associated periodic C/C functions.
Conversely, we can always realize a periodic C/C function by
a finite combination of basic periodic E-operators γn, µm and
βb (see Cor.1), or equivalently by a (non timed) WB-TEG.

We propose here to reconsider periodic E-operators as
weight-variable operators. This means that the weight of an
operator, such as µm or βb, can change after the occurrence
of an event, according to a periodic sequence. Therefore we
introduce new operators denoted µ<m>n and β<b>n′ which
are defined by periodic sequences of weights. For instance,
Fig.8 illustrates the behavior of the weight-variable opera-
tors µ<1,3,2> and β<1,2>. For µ<1,3,2>, the multiplier weight
changes after each occurrence of an event according to the
sequence < 1, 3, 2 >. For β<1,2>, the consumption weight
changes according to the sequence <1, 2>.

For this purpose, we consider the practical meaning of
function Dw (see Def.7). For a given E-operator w ∈ Eper,
Dw(ki) gives the number of output events instantaneously
released when the input event number ki occurs. For instance,
Dβ3γ2µ4

=<2, 1, 1> (see Fig.7). Therefore, operator β3γ2µ4

is equivalent to a weight-variable multiplier where the weight
changes according to the sequence < 2, 1, 1 >. The first
occurrence of an input event releases 2 output events. For the
first event, the weight is 2. The next two ones induce only
1 output event each. The weight of the variable multiplier
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Figure 8. Weight-variable operators

is 1 for the next two events. This sequence is periodically
repeated for the next occurrences of input events. We will
denote β3γ2µ4 = µ<2,1,1> to express this behavior.

Definition 8 (Operator µ<m>n ): We define the weight-
variable multiplier µ<m>n ∈ Eper as the operator w such
that the input event number ki induces instantaneously m(ki)
output events, and such that Fw(0) = 0.

µ<m>n , w ∈ Eper,Dw =<m>n and Fw(0) = 0.

Fig.7 gives an illustration of the C/C function associated
to µ<1,0,2>. By definition, this E-operator is defined such that
Dµ<1,0,2> =<1, 0, 2>.

Proposition 4 (Realization of µ<m>n ): Let
< m0, ...,mn−1 > be a n-periodic sequence of weights,
with mi ∈ N. By setting ν = Σn−1i=0 mi, we have

µ<m>n = γ0µνβnγ
n−1 ⊕ γm0µνβnγ

n−2

⊕γm0+m1µνβnγ
n−3 ⊕ ...

⊕γm0+...+mn−2µνβn.

Proof: According to the definition of Dw (see Def.7), we
can write Fw(ki + 1) = Fw(ki) +Dw(ki). Then, by denoting
<m>n=< m0, ...,mn−1 > the sequence of weights, the C/C
function Fµ<m>n is defined by

Fµ<m>n (0) = 0,
Fµ<m>n (1) = Fµ<m>n (0) +Dµ<m>n (0) = m0,
Fµ<m>n (2) = Fµ<m>n (1) +Dµ<m>n (1) = m0 +m1,

...,
Fµ<m>n (n− 1) = m0 + ...+mn−2.

Finally, we can obtain the realization of this periodic C/C
function Fµ<m>n by applying Prop.2.

This proposition means that we can always realize a weight-
variable operator µ<m>n by a Weight-Balanced TEG.

Example 6: By applying Prop.4 for µ<1,3,2> (see Fig.9),
we have ν = 1 + 3 + 2 = 6, n = 3 and then µ<1,3,2> =
γ0µ6β3γ

2⊕γ1µ6β3γ
1⊕γ1+3µ6β3. For the operator µ<1,0,2>

(see Fig.7), we obtain µ<1,0,2> = γ0µ3β3γ
2 ⊕ γ1µ3β3γ

1 ⊕
γ1+0µ3β3γ

0 which can be simplified to µ<1,0,2> = µ3β3γ
2⊕

γ1µ3β3 because γ1µ3β3γ
1⊕γ1µ3β3γ

0 = (γ1µ3β3)(γ1⊕γ0)
and γ1 ⊕ γ0 = γ0 (see eq. (4)).

The interpretation of a periodic E-operator w as a weight-
variable multiplier is direct due to the associated function Dw.
Now, we will express an operator as a weight-variable batch
operator. The duality between multiplier and batch operators
will be expressed as follows. We first introduce a new C/C
function which describes, for a given E-operator, how many
input events are necessary to obtain at least ko output events.
This C/C function that maps an output counter value to an

<3>

<3>

<3>

<6>

<6>

<6>

<3>

<3>

<3>

<3>

Figure 9. Realization of µ<1,3,2> and µ<1,0,2>

input counter value is simply F ]w = Fw] (see Prop.3). Indeed,
function Fw](ko) gives the minimal number of (cumulated)
input events necessary for the E-operator w to induce (at least)
ko output events. By considering then the Dw] function,

Dw](ko) = Fw](ko + 1)−Fw](ko)
= F ]w(ko + 1)−F ]w(ko),

we obtain that for operator w, the output event number ko
consumes Dw](ko) input events. If w ∈ Eper, the sequence
Dw] =<b>n′ is periodic. Then operator w can be considered
as a batch operator the consumption weight of which can vary
according to the sequence <b>n′ .

Definition 9 (Operator β<b>n′ ): For a sequence <b>n′ , the
weight-variable batch operator β<b>n′ is defined as

β<b>n′ , w ∈ Eper,Dw] =<b>n′ and Fw](0) = 0.

Since the residuation builds a bridge between the expression
of weight-variable multipliers and weight-variable batches, we
can obtain the realization of a batch operator β<b>n′ in the
following way. First we look for an operator w such that
Dw] =< b >n′ . We define w] = µ<b>n′ (see Prop.2 for its
realization) and then w = (w])[.

Example 7: As an example, we develop here the expres-
sion of a weight-variable multiplier as an equivalent weight-
variable batch, and conversely. Let us consider the operator
µ<1,0,2>. We obtained (see Ex.6) that µ<1,0,2> = µ3β3γ

2 ⊕
γ1µ3β3, or equivalently Fµ<1,0,2>(0) = 0,Fµ<1,0,2>(1) =
1,Fµ<1,0,2>(2) = 1 and Fµ<1,0,2>(ki + 3) = Fµ<1,0,2>(ki) + 3.
By applying Prop.3, F ]µ<1,0,2> is defined by

F ]µ<1,0,2>(0) = 0, F ]µ<1,0,2>(1) = 1,F ]µ<1,0,2>(2) = 3,

F ]µ<1,0,2>(ki + 3) = F ]µ<1,0,2>(ki) + 3.

The realization of this C/C function is the operator µ3β3γ
2⊕

γ1µ3β3γ
1 which is (µ<1,0,2>)]. For this E-operator, we obtain

D(µ<1,0,2>)] =< 1, 2, 0 >, which is finally equivalent to say
that µ<1,0,2> = β<1,2,0> : the first output event of µ<1,0,2>
consumes 1 input event and the next one consumes 2 input
events. Finally, the third output event consumes no input
events. With the earliest firing rule, it means that the third
ouput event is released as soon as possible after (actually
simultaneously with) the second output.

Conversely, we can express for instance β<1,2> (see Fig.8
for its behavior) as a weight-variable multiplier. First, we
set w] = µ<1,2> = µ3β2γ

1 ⊕ γ1µ3β2 (due to Prop.4).
Therefore, the corresponding operator w is w = (w])[ =
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µ2β3γ
2 ⊕ γ1µ2β3. Since Fµ2β3γ2⊕γ1µ2β3

(0) = 0 and
Dµ2β3γ2⊕γ1µ2β3

=< 1, 0, 1 >, then we obtain β<1,2> =
µ<1,0,1>.
Since µ<m> and β<b> are periodic operators in Eper, we can
deduce their gain from the sequence of weights.

Proposition 5 (Gain of µ<m> and β<b>): For weight-
variable operators we have

Γ(µ<m>n) =
Σn−1i=0 m(i)

n

Γ(β<b>n′ ) =
n′

Σn
′−1
i=0 b(i)

Proof: Direct from Prop.4 and Prop.3.

B. TEG with cyclo-weighted edges

In order to give a Petri net correspondance to weight-
variable operators, we define the class of Cyclo-Weighted
Timed Event Graphs (CW-TEGs) as the class of Weighted
TEGs for which the edges can be valued by constant or peri-
odic sequences of weights. This extension of Weighted TEGs
is an immediate transposition of Cyclo-Static Dataflow Graphs
used to model specific dataflow process networks [18]. For
CW-TEGs, the number of tokens produced or consumed by a
transition can change after it is fired. It means that for a given
place p ∈ P , the input and the output weights ωi(p) =<Wi>m
and ωo(p) =<Wo>b are now defined as periodic sequences.
The first firing of the input transition of p adds Wi(0) tokens
to p, the next one adds Wi(1) tokens, and so on according
to the sequence <Wi>m. Conversely, the first firing of the
output transition of p consumes Wo(0) tokens from p, the
next one consumes Wo(1) tokens and so on. For the CW-

x1

<1,3,2>

x2 x3

<1,2>

x4

pa pb

(a) (b)

Figure 10. Edges with periodic weights

TEG depicted in Fig.10(a), we have ωi(pa) =< 1, 3, 2 >. It
means that the first firing of transition x1 adds one token to
pa and induces instantaneously 1 firing of transition x2. The
second one induces 3 firings of transition x2, the third induces
2 firings and so on. When no number is shown, the weight is
implicitely a constant weight of 1, ωo(pa) =< 1>. From an
operatorial point of view, x2 = µ<1,3,2>x1. For Fig.10(b), we
have ωo(pb) =< 1, 2>. The first firing of transition x3 adds
one token to place pb that can be consumed immediately by
the firing of transition x4, since the first weight of ωo(pb) is
1. But then two supplementary firings of x3 are required to
allow the next firing of x4, because the second firing of x4
consumes 2 tokens. The behavior of the system between x3
and x4 is described by the operator x4 = β<1,2>x3.

Due to section III-A, it is clear that a CW-TEG can always
be described by a finite number of operators among the
operators γν , δτ and the weight-variable operators µ<m> and

β<b>. By extension, a CW-TEG will be said to be weight-
balanced if for all pair of transitions ta, tb ∈ T , all paths
from ta to tb have the same gain. As for Weighted TEGs, a
Cyclo-Weighted TEG is weight-balanced only if all circuits
have a gain of 1.

u2

x1

4

1 y1u1
<1,0,2>

<2,1,1>

<2,3>

u1

u2
y1

x1

<2,3>

<2,1,1>

<1,0,2>

Figure 11. Cyclo-Weighted TEG

Fig.11 gives an example of a Weight-Balanced CW-TEG.
Let us remark that the gain of the circuit containing x1 and
y1 is Γ(µ<1,0,2>) = 3/3 = 1 (cf. Prop.5), the gain of the
path from u1 to y1 is Γ(µ<2,3>) = 5/2, and the gain of the
path from u2 to y1 is Γ(β<2,1,1>) = 3/4. This CW-TEG is
equivalently described as a block diagram with a finite number
of operators and synchronizations.

Proposition 6: A Weight-Balanced Cyclo-Weighted Timed
Event Graph can be described by an equivalent Weight-
Balanced TEG.

Proof: Direct since every weight-variable operator can be
realized by a WB-TEG.

The previous proposition indicates that Weight-Balanced
CW-TEGs are not more expressive than WB-TEGs. They can
express exactly the same kind of phenomena. But, as presented
in the next section, CW-TEGs can describe some phenomena
in a more intuitive way or in a more compact form. As
a consequence, the behavior of Weight-Balanced CW-TEGs
can be described by transfer functions expressed as rational
expressions with operators γν , δτ , µm and βb.

Example 8: For the CW-TEG of Fig.11, we have the next
equivalences

µ<2,3> = µ5β2γ
1 ⊕ γ2µ5β2

β<2,1,1>γ
1 = µ3β4γ

3 ⊕ γ1µ3β4γ
2 ⊕ γ2µ3β4γ

1

µ<1,0,2> = µ3β3γ
2 ⊕ γ1µ3β3

It means that the WB-TEG depicted in Fig.12 is equivalent
to the CW-TEG of Fig.11. It means that by operating under
the earliest firing rule, the same inputs u1 and u2 will lead to
the same output y1 for both graphs. Replacing cyclo-weighted
edges by constant weight edges only requires to introduce
supplementary internal transitions. It is then possible to otain
the input-output transfer matrix of the CW-TEG of Fig.11
which is described by the next transfer function matrix

y1 = H

(
u1
u2

)
=
(
H11 H12

)(u1
u2

)
with
H11 = (γ3δ2)∗(µ<1,3,3,3,2,3>δ

5 ⊕ γ1µ<2,3,3,3,1,3>δ
6),

H12 = (γ3δ2)∗(µ<1,0,2,0>δ
1 ⊕ γ1µ<1,0,2,0>δ

2).
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Figure 12. WB-TEG equivalent to the CWTEG of Fig.11

For this 2-input 1-output system, the (event) periodicity is
expressed by

H11γ
6 = γ15H11 H12γ

4 = γ3H12,

or Γ(H11) = 15/6 = 5/2 and Γ(H12) = 3/4.
Finally, the commutation of a weight-variable operator with

the γ1 operator can be interpreted as a shift in the sequence
of weights.

Proposition 7: Let <m0, ...,mn−1> and <b0, ..., bn′−1>
be two sequences of weights.

µ<m0,...,mn−1>γ
1 = γm0µ<m1,...,mn−1,m0>

β<b0,b1,...,bn′−1>γ
b0 = γ1β<b1,...,bn′−1,b0>

Proof: These formal equalities can be obtained by analyz-
ing the corresponding CW-TEGs with the earliest firing rule.
In Fig.13, for the CW-TEG given on the left (a realization
of µ<m0,...,mn−1>γ

1), transition t1 is enabled at date −∞.
Therefore, t1 is fired at date −∞ and adds m0 tokens in its
output place. In this new state, the next weight to apply is
now m1. It operates a shift on the sequence of weights. The
situation is comparable (see CW-TEG on the right) for weight-
variable batch operators.

t1

t1 t2

t2

Figure 13. Equivalences

Example 9: For instance, we have: µ<2,1,3>γ
2 =

γ2µ<1,3,2>γ
1 = γ3µ<3,2,1>. Similarly, γ1β<2,1,3> =

β<3,2,1>γ
3.

Corollary 2: Any periodic operator in Eper can be written
as γνµ<m>n or β<b>n′γ

ν′ .
Note that we can express any periodic E-operator either as a
sum of basic operators γniµmβbγn

′
i (as developped in [5]),

or as a specific weight-variable multiplier γνµ<m>n , or as a
weight-variable batch operator β<b>n′γ

ν′ .

IV. MODELING WITH CYCLO-WEIGHTED TEGS

We give here some modeling issues that can be handled by
Cyclo-Weighted TEGs, or equivalently by Weight-Balanced
TEG. The interest of Cyclo-Weighted TEGs is to express some
routing problems in a more natural way.

A. Routing and multiplexing parts

0

0 10

<0,1,0>

<1,0,1>

0

y1

y2

<1,0,1>

<0,1,0>

u

y1

y2

u

demux

u
y1

y2

demux

selects y1 y2 y1

selected output 
| | |y1 y1y2 | y1 y1 y2 |

y2

Figure 14. Demultiplexer modeled by a CW-TEG

1) Routing (demultiplexing): In manufacturing systems, the
flow of parts is sometimes split in order to feed different
subsystems, for instance different production cells. In this case,
the routing policy can be defined by a periodic dispatching
rule. Fig.14 illustrates how a weight-variable multipler can
be used to select some events into a given signal. It shows
that operators µ<1,0,1> and µ<0,1,0> can be interpreted as
event sampling operators. Signal µ<0,1,0>u corresponds to one
event out of three among events u, more exactly the events
the occurrence number of which is 3p+ 1 with p ∈ N. Signal
µ<1,0,1>u is complementary and selects only the events u the
occurrence number of which is 3p and 3p + 2 with p ∈ N.
Used together, these operators model a system able to route
instantaneously some events on one way and the other ones
on the other way, with a 3-periodic rule. This system can
be compared to a demultiplexer (demux) where events are
separated according to their occurrence number. At a given
step, input u is connected to one and only one output and the
selected output can toggle to another output (y1 or y2) only as
a result of an input event, according to the 3-periodic sequence
y1 → y2 → y1. This behavior is different from a time-division
demultiplexer since the selected output is switched on events
and not based on a time driven mechanism. In practice, the
system described jointly by µ<W1> and µ<W2> corresponds to
a periodic routing (or demultiplexer) if <W1> + <W2>=<
1, 1, ..., 1 >=< 1 >, which means that each input event is
dispatched into one and only one output.

2) Multiplexing: The role of a multiplexer (mux) is to
recombine different input signals into only one output signal.
By symmetry with the problem studied previously, such a
system is defined here by synchronizing different weight-
variable batch operators. Let us analyse the signal y =
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Figure 15. Multiplexer with two inputs modeled by a CW-TEG.

β<1,1,0>u1 ⊕ β<0,0,1>u2 (see Fig.15) with u1 and u2 two
input signals. The first and the second event y depend only on
the first two events u1, and the third event y depends only on
the first event u2. More generally, the output events number
3p and 3p + 1, with p ∈ N, depend on events u1 while the
output events number 3p+2 depend on events u2. This system
is comparable to a multiplexer where only one input (u1 or
u2) is connected to the output y and the selected input can
toggle to another input (u1 or u2) according to the 3-periodic
sequence u1 → u1 → u2 → .... It is worth noting that an
input event (u1 or u2) occurring on an input which is not
currently selected is queued until the next selection of this
input. For example on Fig.15, the second event u2 can not
induce immediately an output event because at this step of the
multiplexer, the selected input is u1. This event is therefore
queued until the fourth event u1 at date 8. And at date 8,
the selected input changes twice (to finally select again input
u1). Analgously, the seventh event u1 is queued until the third
event u2.

3) Multiplexing vs. merging: The multiplexer described
previously is a specific way of mixing different input signals
into one output signal. In the original sense, merging two kinds
of signal consists in adding their events as illustrated by the
block merge in Fig.16. When signals are given by counter
functions, we have ∀t, Merge(a, b)(t) = a(t) + b(t). In other
words, each input event a or b induces instantaneously one
output event, which is not necessarily true for the multiplexer.
Therefore, for a multiplexer defined by β<W1>a⊕β<W2>b, with
<W1 > + <W2 >=< 1 >, we have ∀t, Merge(a, b)(t) ≥
(β<W1>a⊕β<W2>b)(t). Let us note that the standard merging
operation can be described by a Petri net (with a place with
two upstream transitions), as described in Fig.16, whereas it
can not be described by a CW-TEG. The main difference of
behavior is that a multiplexer can lead to a deadlock. Indeed,
if one of the input signals (a or b) stops, then the system is
blocked because of the output synchronization. This is not the
case for the classical merging.

4) Example of a flow split into parallel TEGs: As an
application, we consider here the model of a SISO production

0 10

<1,0>

<0,1>

a

b

muxqueuedqueuedmux

merge

merge
selected input 

a b| | | |b a a

Figure 16. Merging vs. multiplexing two inputs

cell where raw parts are separated and processed into two
different parallel subsystems and the processed parts are then
multiplexed into a single output. The subsystems are modeled
by ordinary TEGs3, the input flow is split by a demultiplexer
(with a periodic rule) and the output flows are recombined by
a multiplexer (with the same rule). The system is depicted in
Fig.17. The demultiplexer dispatches the input events accord-
ing to the 5-periodic sequence u1 → u2 → u1 → u2 → u2.
The whole system is described by a CW-TEG and can be
described by a transfer function in dioid EJδK. First, we can
express:

u1 = µ<1,0,1,0,0>u, u2 = µ<0,1,0,1,1>u,
y1 = H1u1, y2 = H2u2,

y = β<1,0,1,0,0>y1 ⊕ β<0,1,0,1,1>y2,

with H1 = δ4(γ2δ3)∗ and H2 = (δ5 ⊕ γ2δ6)(γ4δ4)∗ the
transfer functions of the subsystems. Finally, the input-output
behavior is given by y = Gau, with Ga ∈ EJδK given by

Ga = (γ20δ12)∗
(
γ0δ4 ⊕ γ1µ<0,2,0,1,2>δ5

⊕γ4µ<0,2,0,2,1>δ6 ⊕ γ5µ<2,0,2,1,0>δ7
⊕γ8µ<0,1,0,2,2>δ9 ⊕ γ10δ10
⊕γ14µ<0,2,0,2,1>δ13 ⊕ γ18µ<0,1,0,2,2>δ

14
)

y13u1

y21u2 4

1

y

<1,0,1,0,0>

<0,1,0,1,1>

<1,0,1,0,0>

<0,1,0,1,1>

u

H1

H2

neutral output feedback 

demux mux

Figure 17. Demux/Mux with parallel Timed Event Graphs

Remark 7 (Feedback control): On the basis of this transfer
relation, it is possible to apply some results on controller
synthesis. For instance, by applying [14], we can compute
an optimal neutral feedback loop, i.e. an output feedback such
that the closed loop and the open loop behavior are the same.

3but we could deal as well with systems modeled by WB-TEGs or CW-
TEGs
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This feedback is obtained by Fa = Ga◦\Ga◦/Ga. Applied to
the system of Fig.17, we can show that the output feedback
with an initial marking of 10 tokens (F = γ10) is neutral
(this feedback is depicted with dashed lines in Fig.17), and it
is the minimum number of tokens to put in the feedback to
keep the behavior unchanged. This feedback leads to bound
the Work In Process in the production cell without decreasing
its throughput. For manufacturing systems, this computation
is useful for instance to estimate the number of transportation
means (pallets) in a cell, or to make a flow regulation by
limiting the size of buffers into a cell.

Remark 8: The system depicted in Fig.17 is similar to a
system studied in [17]. The difference in [17] is that output
flows are mixed with a classical merging operation, such as
depicted in Fig.18. And subsystems are necessarily (min,+)
linear systems (ordinary TEGs) described by their transfer
function, for instance inMax

in Jγ, δK. In this case, the system is
not (min,+) linear anymore, it cannot be described neither by
an ordinary TEG nor by a Weighted TEG. Nevertheless, the
authors show in [17] that, if H1 and H2 are TEGs, then the
behavior can be framed by two (min,+)-linear systems denoted
respectively H and H , with H � H , and H,H ∈Max

in Jγ, δK.
It means that for a given input sequence u, the output z is in the
interval [y, y] where signals are given by y = Hu and y = Hu.
The multiplexing operation is more complex to implement
on an automated system than the merging operation, but the
benefit is to keep the possibility of describing this mixing
operation in the theory of (min,+) linear systems, even if
subsystems are WB-TEGs or CW-TEGs.

y1u1

y2u2

z

<1,0,1,0,0>

<0,1,0,1,1>

u
H1

H2

demux

merge

Figure 18. Demux/Merge with parallel Timed Event Graphs in [17]

B. Systems with varying holding times

The problem considered here can be seen as a particular
case of the previous subsection. We consider a routing problem
(demux/mux) where subsystems are simply timed places with
constant holding times. In this way, we are able to model
delays the value of which can change according to a periodic
sequence. This is useful to model manufacturing operations
where durations can vary according to periodic scheme.

1) FIFO place with varying holding times: Such a problem
has already been studied in [12] with the max-plus approach
but without Weighted TEGs. We propose here to reconsider
the problem thanks to Cyclo-Weighted TEGs and periodic
operators in EperJδK.

In Fig.19, we describe (on the left part) a CW-TEG with
an input sequence of events x1 which is demultiplexed into
3 different places, with different holding times, and then
recombined with a multiplexing operation. This system is
equivalent to a single place with a holding time that can

mux

u1

u2 queue

queue

 u1 u2 u3

y1

y2

demux  y1 y2 y3

3
<1,0,0> <1,0,0>

<0,0,1> <0,0,1>

<0,1,0> <0,1,0>
4

6x1 x2 x1 x2FIFO place

holding times 

x1

x2

<3,4,6>

u3

3

4

6
queuey3

Figure 19. FIFO Place with a holding time that changes periodically modeled
by a CW-TEG

vary according to the 3-periodic sequence < 3, 4, 6 >. The
first token spends at least 3 time units between transitions
x1 and x2, the next one 4 time units and so on. But the
multiplexing adds another constraint: tokens cannot overtake
each other. A token cannot leave the place before the previous
one has left. In other words, the place has a First In First
Out (FIFO) behavior. In summary, we can model a FIFO
place with a varying holding time (with periodic variations)
by an equivalent CW-TEG. Thanks to this equivalence, we can
reconsider the systems with varying holding times studied in
[12]. In general, a FIFO place with the sequence of holding
times given by <τ1, τ2, ..., τn> can be described by

w = β<1,0,...,0>δ
τ1µ<1,0,...,0>

⊕β<0,1,0,...,0>δτ2µ<0,1,0,...,0>
⊕...
⊕β<0,...,0,1>δτnµ<0,...,0,1>

2) Example: The example studied in [6] with WB-TEGs is
reconsidered here with CW-TEGs and depicted in Fig.20. For
this system, the place x1 → x2 is a FIFO place with holding
times <3, 4, 6> (see Fig.19), and the place x2 → y is a FIFO
place with holding times <2, 5>. The system is defined by

x1 = u⊕ γ3x2,
x2 = (β<1,0,0>δ

3µ<1,0,0> ⊕ β<0,1,0>δ
4µ<0,1,0>

⊕β<0,0,1>δ
6µ<0,0,1>)x1,

y = (β<1,0>δ
2µ<1,0> ⊕ β<0,1>δ

5µ<0,1>)x2.

The transfer function of this system y = Gbu is computed in
[6] with constant-weight operators and can be given also with
weight-variable operators:

Gb = γ0δ5 ⊕ γ1µ<0,1,1,1,1,2>δ6 ⊕ γ1µ<0,1,1,2,0,2>δ8
⊕γ1µ<0,2,2,0,0,2>δ9 ⊕ γ3µ<0,0,2,0,0,4>δ11
⊕γ5µ<0,0,2,0,1,3>δ13
⊕(γ6δ12)∗

(
γ5µ3β3δ

14 ⊕ γ5µ<0,0,4,0,0,2>δ17
⊕ γ8µ3β3δ

20 ⊕ γ9µ<0,0,2,0,0,4>δ23
)

V. CONCLUSION

In this paper, we consider the class of Weight-Balanced
Timed Event Graphs to model manufacturing systems. They
are well suited to model batch and split operations such as
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<1,0>

3<1,0,0> <1,0,0>

<0,0,1> <0,0,1>

<0,1,0> <0,1,0>4

6 <0,1>

<1,0>

<0,1>

2

5

x1 x2
y
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x1 x2 yu

Figure 20. TEG with varying holding times and the equivalent CW-TEG

cutting, lot making or palletizing. But this class is also well
adapted to describe some routing phenomena that can be seen
as analogous to muliplexing and demultiplexing operations.
In order to describe these phenomena in a more natural way,
we introduce an extension of Weighted TEGs with weight-
variable edges which we call Cyclo-Weighted TEGs since their
weights change according to periodic sequences. Moreover,
the behavior of Cyclo-Weighted TEGs can be described by
both weight-variable operators and constant weight operators
already used to model WB-TEGs. All these tools are useful
to model a family of phenomena arising in manufacturing
systems that can finally be modeled by input-output transfer
relations. These algebraic tools give a mathematical framework
to deal with flow control in manufacturing process, in partic-
ular by making it possible to compute some feedback loop
controllers in the spirit of the conventional control theory.
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