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Abstract

In this paper semirings with an idempotent addition are considered. These

algebraic structures are endowed with a partial order. This allows to consider

residuated maps to solve systems of inequalities A ⊗ X � B (see [3]). The

purpose of this paper is to consider a dual product, denoted �, and the dual

residuation of matrices, in order to solve the following inequality A⊗X � X �

B �X. Sufficient conditions ensuring the existence of a non-linear projector in

the solution set are proposed. The results are extended to semirings of intervals

such as they were introduced in [25].
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1. Introduction

Many problems in mathematics are non-linear in the traditional sense but

appear to be linear over idempotent semirings. The max-plus algebra is a pop-
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ular semiring widely studied (see e.g., [7, 15, 5, 6, 27]). An idempotent semiring

S can be endowed with a partial order relation. According to this order relation,

and according to continuity assumptions, it is possible to obtain the greatest

solution of inequality A ⊗ X � B where A,X and B are matrices of proper

dimension and (A⊗X)ij =
⊕

k=1...n

(aik ⊗ xkj). The greatest solution is obtained

by considering residuation theory. In this paper we will consider the dual matrix

product A � X defined as (A � X)ij =
∧

k=1...n

(aik � xkj), where ∧ represents

the greatest lower bound. Then we will consider the dual residuation to deal

with computation of the smallest solution of inequality A �X � B. The exis-

tence of a unique solution is not always ensured. Nevertheless if all elements of

the semiring admit an inverse (i.e., it is a semifield) then the smallest solution

exists. This condition is fulfilled in (max-plus) algebra and it has allowed to

deal with opposite semimodules in [10]. This condition is fulfilled neither in the

semirings of non decreasing power series nor in the semirings of intervals such

as introduced in [24, 23, 18], hence we will give some sufficient conditions to

ensure the existence of this smallest solution.

From a practical point of view, it is useful to be able to solve systems such

as A⊗X � X � B�X, as they are involved in the study of dynamical discrete

event systems subject to constraints (see [31, 4, 20]). Hence sufficient conditions

for the existence of a projector in the set of solutions is given. Its computation

is based on additive closure of matrices and on the dual residuation of the dual

product. This projector is also given in semirings of intervals which allow us to

deal with uncertainties.

This paper is organized as follows: in Section 2, algebraic preliminaries are

recalled. More precisely, semiring defintion are first introduced and then some

useful theorems about residuation theory are recalled. Next the section is de-

voted to the presentation of closure mapping properties. In Section 3, the dual

product and its dual residuation are considered. InequalitiesA⊗X � X � B�X

is considered in Section 4, and in order to propose a projector in the solution

set, some sufficient conditions are given. In Section 5, the previous results are

applied in the semiring (max,plus) and in a semiring of non-decreasing power
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series. In Section 6, semirings of intervals are considered. Useful results initially

presented in [24, 23, 18] are recalled, and the results of Section 3 are extended

in this algebraic setting.

2. Preliminaries

2.1. Idempotent Semiring

In this section we recall useful results (for a more exhaustive presentation

see reference [1]).

Definition 1 (Monoid). (M, ·, e) is a monoid if · is an internal law, associa-

tive and with an identity element e. If the law · is commutative, (M, ·, e) is a

commutative monoid.

Definition 2 (Idempotent Semiring, semifield). An idempotent semiring

is a set, S, endowed with two internal operations denoted by ⊕ (addition) and

⊗ (multiplication) such that :

(S,⊕, ε) is an idempotent commutative monoid, i.e., ∀a ∈ S, a⊕ a = a,

(S,⊗, e) is a monoid,

⊗ operation is distributive with respect to ⊕,

ε is absorbing for the law ⊗, i.e., ∀a, ε⊗ a = a⊗ ε = ε.

If ⊗ is commutative, the semiring is said to be commutative. A semifield

is a semiring in which all elements except ε have a multiplicative inverse.

An idempotent semiring2 can be endowed with a canonical order defined by:

a � b iff a = a ⊕ b. Then it becomes a sup-semilattice, and a ⊕ b is the least

upper bound of a and b. A semiring is complete if sums of infinite number of

terms are always defined, and if multiplication distributes over infinite sums,

too. In particular, the sum of all elements of a complete semiring is defined and

2In the following we will only refer to idempotent semirings and therefore drop the adjective

3



denoted by > (for "top"). A complete semiring becomes a complete lattice for

which the greatest lower bound of a and b is denoted a ∧ b.

Definition 3 (Subsemiring). A subset C of a semiring is called a subsemiring

of S if

ε ∈ C and e ∈ C ;

C is closed for ⊕ and ⊗, i.e, ∀a, b ∈ C, a⊕ b ∈ C and a⊗ b ∈ C.

Furthermore the subsemiring is complete if it is closed for infinite sums and if

the product distributes over infinite sums.

Lemma 4 ([1, §4.3.4]). Let S be a semiring. ∀a, b, c ∈ S the following inequal-

ity holds :

c⊗ (a ∧ b) � (c⊗ a) ∧ (c⊗ b).

Furthermore, if c admits a multiplicative inverse, i.e., if there exists a unique

element, denoted c−1, such that c−1 ⊗ c = c⊗ c−1 = e, then

c⊗ (a ∧ b) = (c⊗ a) ∧ (c⊗ b).

Definition 5 (Formal power series). A formal power series in p (commuta-

tive) variables, denoted z1 to zp, with coefficients in a semiring S, is a mapping

s defined from Zp into S: ∀k = (k1, ..., kp) ∈ Zp, s(k) represents the coefficient

of zk11 ...z
kp
p and (k1, ..., kp) are the exponents. Another equivalent representation

is

s(z1, ..., zp) =
⊕
k∈Zp

s(k)zk11 ...zkp
p .

Definition 6 (Semiring of series). The set of formal power series with coef-

ficients in a semiring S endowed with the following sum and Cauchy product:

s⊕ s′ : (s⊕ s′)(k) = s(k)⊕ s′(k),

s⊗ s′ : (s⊗ s′)(k) =
⊕
i+j=k

s(i)⊗ s′(j),

is a semiring denoted S[[z1, ..., zp]]. If S is complete, S[[z1, ..., zp]] is complete. A

series with a finite support is called a polynomial, and a monomial if there is
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only one element in the series. The greatest lower bound of series is given by :

s ∧ s′ : (s ∧ s′)(k) = s(k) ∧ s′(k).

2.2. Residuation Theory

Residuation theory allows to deal with the inverse of order preserving map-

pings defined over ordered sets, i.e. a set equipped with a partial order relation.

This theory gives another point of view on Galois connection. Useful references

are [14, 3, 2].

Definition 7 (Continuity). An order preserving mapping f : D → E, where

D and E are complete ordered sets, is a mapping such that: x � y ⇒ f(x) �

f(y). It is said to be isotone in [1].

A mapping f is lower-semicontinuous (l.s.c.), respectively, upper-semicontinuous

(u.s.c.) if, for every (finite or infinite) subset X of D,

f(
⊕
x∈X

x) =
⊕
x∈X

f(x),

respectively,

f(
∧
x∈X

x) =
∧
x∈X

f(x).

A mapping f is continuous if it is both l.s.c. and u.c.s.

Definition 8 (Image, Kernel). Let f : D → E be a mapping, where D and

E are semirings. The image of f , denoted Imf , is classically defined as Imf =

{y ∈ E|y = f(x) for some x ∈ D}. The equivalence kernel is defined as kerf :=

{(x, x′) ∈ D ×D | f(x) = f(x′)}.

Definition 9 (Residuated and dually residuated mapping). An order pre-

serving mapping f : D → E, where D and E are ordered sets, is a residuated

mapping if for all y ∈ E, the least upper bound of the subset {x|f(x) � y} ex-

ists and belongs to this subset. It is then denoted by f ](y). The mapping f ] is

called the residual of f . When f is residuated, f ] is the unique order preserving

mapping such that

f ◦ f ] � IdE and f ] ◦ f � IdD, (1)
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where Id is the identity mapping on D and E respectively.

Mapping g is a dually residuated mapping if for all y ∈ E, the greatest lower

bound of the subset {x|g(x) � y} exists and belongs to this subset. It is then

denoted by g[(y). The mapping g[ is called the dual residual of g. When g is

dually residuated, g[ is the unique order preserving mapping such that

g ◦ g[ � IdE and g[ ◦ g � IdD. (2)

Remark 10. According to this definition, it is clear that f ] is dually residuated

and that g[ is residuated, furthermore, (f ])[ = f and (g[)] = g.

Theorem 11 ([1, §4.4.2]). Consider the order preserving mappings f : E → F

and g : E → F where E and F are complete semirings. Their bottom elements

are, respectively, denoted by εE and εF . Their top elements are, respectively,

denoted by >E and >F .

Mapping f is residuated iff f(εE) = εF and f(
⊕

x∈X x) =
⊕

x∈X f(x) for

each X ⊆ E (i.e., f is lower-semicontinuous), furthermore f ](>F ) = >E and

f ](
∧
y∈Y y) =

∧
y∈Y f

](y) for each Y ⊆ F (i.e., f ] is upper-semicontinuous).

Mapping g is dually residuated iff g(>E) = >F and g(
∧
x∈X x) =

∧
x∈X g(x)

for each X ⊆ E (i.e., g is upper-semicontinuous), furthermore g[(εF ) = εE and

g[(
⊕

y∈Y y) =
⊕

y∈Y g
[(y) for each Y ⊆ F (i.e., g[ is lower-semicontinuous).

Theorem 12 ([1, Th. 4.56]). Let D, C, B be three semirings. Let h : D → C

and f : C → B be residuated mappings. The following properties hold :

f ◦ f ] ◦ f = f and f ] ◦ f ◦ f ] = f ], (3)

(f ◦ h)] = h] ◦ f ]. (4)

Let h : D → C and g : C → B be dually residuated mappings. The following

properties hold :

g ◦ g[ ◦ g = g and g[ ◦ g ◦ g[ = g[, (5)

(g ◦ h)[ = h[ ◦ g[. (6)
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Theorem 13 ([1, Th. 4.56]). Let D, C be two semirings. Let h : D → C and

f : D → C be residuated mappings. The following properties hold :

f � h⇔ h] � f ], (7)

(f ⊕ h)] = f ] ∧ h]. (8)

Let h : D → C and g : D → C be dually residuated mappings. The following

properties hold :

g � h⇔ h[ � g[, (9)

(g ∧ h)[ = g[ ⊕ h[. (10)

Theorem 14 ([12]). Let S, C be semirings, f : S → C and g : S → C be two

residuated mappings, then the following equivalence holds :

Im f ⊂ Img ⇔ g ◦ g] ◦ f = f.

Proof. If Im f ⊂ Im g then there exists a mapping h : S → S, s.t. f = g ◦ h.

According to Equation (3), g ◦ g] ◦ f = g ◦ g] ◦ g ◦h = g ◦h = f . If g ◦ g] ◦ f = f

then Imf ⊂ Im g. �

Proposition 15 ([12, 9], Projection on the image of a mapping). Let S,

C be semirings. Let f : S → C be a residuated mapping, mapping Pf = f ◦ f ]

is a projector and Pf (c) with c ∈ C is the greatest element in Imf less than or

equal to c. Let g : S → C be a dually residuated mapping, mapping Pg = g ◦ g[

is a projector and Pg(d) with d ∈ C is the lowest element in Img greater than or

equal to d.

Proof. According to Definition 9, Pf (c) = {
⊕
x|f(x) � c} and Pg(d) =

{
∧
x|g(x) � d}. According to Equations (3) and (5), Pf ◦Pf = f ◦ f ] ◦ f ◦ f ] =

f ◦ f ], and Pg ◦ Pg = g ◦ g[ ◦ g ◦ g[ = g ◦ g[, hence they are both projectors. �

The problem of mapping restriction and its connection with residuation the-

ory is now addressed.

7



Definition 16 (Restricted mapping). Let f : E → F be a mapping and

A ⊆ E. We will denote f|A : A → F the mapping defined by f|A = f ◦ Id|A

where Id|A : A → E is the canonical injection from A to E. Similarly, let B ⊆ F

with Imf ⊆ B. Mapping B|f : E → B is defined by f = Id|B ◦ B|f , where

Id|B : B → F .

Proposition 17 ([3]). Let Ssub be a complete subsemiring of S. Let Id|Ssub
:

Ssub → S, x 7→ x be the canonical injection. The injection Id|Ssub
is both

residuated and dually residuated and their residuals are projectors.

Proof. According to Definition 7, mapping Id|Ssub
is both l.s.c. and u.s.c., i.e.

continuous, and by assumption ε ∈ Ssub and > ∈ Ssub, hence Id|Ssub
is both

residuated and dually residuated (see Theorem 11). Furthermore, Id|Ssub
=

Id|Ssub
◦ Id|Ssub

hence (Id|Ssub
)] = (Id|Ssub

◦ Id|Ssub
)] = (Id|Ssub

)] ◦ (Id|Ssub
)] which

proves that (Id|Ssub
)] is a projector. The same can be done for (Id|Ssub

)[. �

Proposition 18. Let f : D → E be a residuated mapping, g : D → E be a

dually residuated mapping and Dsub (resp. Esub) be a complete subsemiring of

D (resp. E):

1. mapping f|Dsub
is residuated and its residual is given by :

(f|Dsub
)] = (f ◦ Id|Dsub

)] = (Id|Dsub
)] ◦ f ];

2. if Imf ⊂ Esub then mapping Esub|f is residuated and its residual is given by:(
Esub|f

)] = f ] ◦ Id|Esub
=
(
f ]
)
|Esub

;

3. mapping g|Dsub
is dually residuated and its dual residual is given by :

(g|Dsub
)[ = (g ◦ Id|Dsub

)[ = (Id|Dsub
)[ ◦ g[;

4. if Img ⊂ Esub then mapping Esub|g is dually residuated and its dual residual

is given by: (
Esub|g

)[ = g[ ◦ Id|Esub
=
(
g[
)
|Esub

.

Proof. Statements 1 and 3 follow directly from Theorem 12 and Proposition

17. Statement 2 is obvious since f is residuated and Imf ⊂ Esub ⊂ E . Statement

4 can be prove in the same manner. �
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2.3. Closure mappings

Definition 19 (Closure mapping). Let S be a semiring and h : S → S be

an isotone mapping. If h ◦ h = h � IdS then h is a closure mapping. If

h ◦ h = h � IdS then h is a dual closure mapping.

Remark 20. According to this definition, it can be checked that the projector

Pf (see Proposition 15) is a dual closure mapping, and the projector Pg is a

closure mapping.

Theorem 21 ([12, Th. 19 and Th. 20]). Let S be a semiring, h : S → S
be a residuated mapping and g : S → S be a dually residuated mapping, then

the following equivalences hold:

h is a closure mapping ⇔ h] is a dual closure mapping⇔ h] ◦ h = h⇔ h ◦ h] = h],

(11)

g is a dual closure mapping⇔ g[ is a closure mapping⇔ g ◦ g[ = g ⇔ g[ ◦ g = g[.

(12)

Proposition 22. Let S be a semiring, h : S → S, g : S → S and f : S → S be

three mappings, and assume that g and f are two closure mappings which are

residuated. The following equivalence holds

Imh ⊂ Imf ⇔ f ◦ h = h,

g � f ⇔ f ◦ g = f = g] ◦ f ⇔ Imf ⊂ Im g ⇔ Imf ⊂ Im g].

Proof. For the first statement, Imh ⊂ Imf ⇒ ∃ m such that h = f ◦ m ⇒

f ◦ h = f ◦ f ◦ m = f ◦ m = h, since f is a closure mapping, and obviously

f ◦ h = h⇒ Imh ⊂ Imf .

For the second statement, according to the closure mapping definition g � IdS ,

hence g � IdS ⇒ f ◦ g � f . Mapping f is assumed to be a closure mapping,

this yields g � f ⇒ f ◦ g � f ◦ f = f . Hence g � f ⇔ f ◦ g = f .

According to Equivalences (11), g] is a dual closure mapping, therefore ac-

cording to Definition 19 g] � IdS , hence g] � IdS ⇒ g] ◦ f � f . Accord-

ing to the assumptions, f and g are residuated, hence Equation (7) yields
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f � g ⇔ g] � f ] ⇒ g] ◦ f � f ] ◦ f = f (the last equality comes from

Equivalences (11)), hence g � f ⇔ f = g] ◦ f .

By considering Equivalences (11) and Theorem 14, f = g] ◦ f = g ◦ g] ◦ f ⇒

Imf ⊂ Im g, on the other hand Imf ⊂ Im g ⇒ ∃ m such that f = g ◦ m ⇒

g] ◦ f = g] ◦ g ◦m = g ◦m = f .

In the same manner, Equivalences (11) and Theorem 14 yield : f = g] ◦f ⇒

Imf ⊂ Im g], on the other hand Imf ⊂ Im g] ⇒ ∃ m such that f = g] ◦m ⇒

g] ◦ f = g] ◦ g] ◦m = g] ◦m = f (indeed g] = g] ◦ g] since g] is a dual closure

mapping). �

2.4. Applications

Definition 23 (Left product, right product). Let S be a complete semir-

ing, a, b ∈ S, and La : S → S, x 7→ a ⊗ x and Ra : S → S, x 7→ x ⊗ a.

Since ε is absorbing for the multiplicative law and according to distributivity

of this law over the additive law, La and Ra are both lower semi-continuous,

hence both mappings are residuated. In [1], their residuals are denoted, re-

spectively, by L]a(x) = a◦\x and R]a(x) = x◦/a. Therefore, a◦\b (resp. b◦/a) is

the greatest solution of a ⊗ x � b (resp. x ⊗ a � b) and equality is achieved

when b ∈ ImLa (resp. b ∈ ImRa). It must be noted that ε◦\ε = > and

>◦\> = >. In the matrix case, mappings LA : Sp×m → Sn×m, X 7→ A ⊗ X

and RA : Sm×n → Sm×p, X 7→ X ⊗ A where A ∈ Sn×p , are residuated map-

pings. The corresponding entries are obtained as follows,

(A◦\B)ij =
∧

k=1...n

(aki◦\bkj) , (13)

(C◦/A)ij =
∧

k=1...p

(cik◦/ajk) (14)

with B ∈ Sn×m and C ∈ Sm×p.

Definition 24 (Kleene star). Let S be a complete semiring. The additive

closure of matrix A ∈ Sn×n is defined as follows :

K : Sn×n → Sn×n, A 7→ A∗ =
⊕
i∈N0

Ai,

10



where A0 = E, Ak = A⊗ Ak−1 and E is the identity matrix, i.e. ∀i, j ∈ [1, n],

Eii = e and Eij = ε if i 6= j.

This mapping is a closure mapping (indeed K ◦K = K and K � IdSn×n). It

is sometimes called the Kleene star operator. Among many references about the

Kleene star matrix we can cite [33], where the link between the Kleene star A∗

and the subeigenvectors of A for an eigenvalue λ, i.e., vectors x s.t. A ⊗ x �

λ⊗ x, was studied.

Property 25. Let A ∈ Sn×n, and X ∈ Sn×p. According to Definition 24

mapping LA∗ : Sn×p → Sn×p, X 7→ A∗⊗X is a closure mapping, (see Definition

19), hence :

A∗ ⊗A∗ ⊗X = A∗ ⊗X, (15)

and as a consequence the following equivalence holds :

X = A∗X ⇔ X ∈ ImLA∗ . (16)

Furthermore according to Theorem 21, L]A∗ is a dual closure mapping, hence :

A∗◦\A∗◦\X = A∗◦\X, (17)

according to Equation (11), LA∗ ◦ L]A∗ = L]A∗ and L]A∗ ◦ LA∗ = LA∗ hence :

A∗ ⊗ (A∗◦\X) = A∗◦\X, (18)

and

A∗◦\(A∗ ⊗X) = A∗ ⊗X. (19)

According to Proposition 15, Equation (18) means that L]A∗ is a projector

on ImLA∗ .

Let B ∈ Sn×n such that B∗ � A∗, i.e., LB∗ � LA∗ , then according to Proposi-

tion 22, the following equivalence holds :

B∗ � A∗ ⇔ A∗B∗X = A∗X = B∗◦\(A∗X)⇔ ImLA∗ ⊂ ImLB∗ ⇔ ImLA∗ ⊂ ImL]B∗ .

(20)
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Lemma 26 ([1], Lemma 4.77). Let A ∈ Sn×n, and X ∈ Sn×p. The follow-

ing equivalences hold :

X � A◦\X ⇔ X � AX ⇔ X = A∗X ⇔ X = A∗◦\X.

3. Dual product over semirings

In this section a dual product is considered and its properties are explored.

Definition 27 (Dual product). Given a semiring S, the dual product in S,

denoted �, is a law assumed to be associative and to have e as neutral ele-

ment, i.e., (S,�, e) is a monoid. Furthermore this dual product is assumed

to distribute with respect to ∧ of infinitely many elements, and element > is

absorbing (∀a, >� a = a�> = >).

Definition 28 (Dual matrix product). Let S be a semiring and A ∈ Sn×p,

B ∈ Sp×m and C ∈ Sn×m matrices, then C = A�B is defined as :

Cij = (A�B)ij =
∧

k=1...p

(aik � bkj) ,

the identity matrix is denoted E� and is such that E�ii = e and E�ij = > for

i 6= j.

In the sequel, mapping ΛA : Sp×m → Sn×m, X 7→ A�X will be considered.

Proposition 29. Let S be a semiring and A ∈ Sp×n, X ∈ Sn×m be matrices,

mapping ΛA : Sn×m → Sp×m, X 7→ A�X is upper-semicontinuous, i.e.,

ΛA(
∧

X∈X
X) =

∧
X∈X

ΛA(X).

Proof. Let X be a subset of Sn×m, then according to the definition of � the

following equalities hold :
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ΛA(
∧

X∈X
X) = A� (

∧
X∈X

X)

(ΛA(
∧
x∈X

X))ij =
n∧
k=1

aik � (
∧
x∈X

xkj) =
n∧
k=1

∧
x∈X

(aik � xkj)

=
∧
x∈X

n∧
k=1

(aik � xkj) =
∧
x∈X

(ΛA(X))ij .

�

Corollary 30. Let S be a semiring and A ∈ Sn×p be a matrix. Mapping ΛA :

Sp×m → Sn×m, X 7→ A � X is dually residuated, and its dual residual will be

denoted3:

Λ[A : Sn×m → Sp×m, X 7→ A•\X

with the following rules :

(A•\X)ij =
n⊕
k=1

aki•\xkj , (21)

and : >•\x = ε, ε•\x = > and ε•\ε = ε.

Proposition 31. Let S be a complete semiring and A ∈ Sn×p, B ∈ Sn×r and

X ∈ Sp×q be three matrices. If for each entry bij of B the following equality

holds bij•\(a⊗ x) = (bij•\a)⊗ x, ∀a, x ∈ S, then the following equality holds :

B•\(A⊗X) = (B•\A)⊗X. (22)

Proof.

(B•\(A⊗X))ij =
n⊕
l=1

bli•\(A⊗X)lj

=
n⊕
l=1

bli•\(
p⊕
k=1

alk ⊗ xkj)

=
n⊕
l=1

p⊕
k=1

bli•\(alk ⊗ xkj) since Λ[B is lower semi-continuous

=
p⊕
k=1

n⊕
l=1

(bli•\alk)⊗ xkj according to the assumption

=
p⊕
k=1

(B•\A)ik ⊗ xkj = ((B•\A)⊗X)ij .

3This notation was initially introduced in the talk entitled "Projective max, + semi mod-

ules", given by G. Cohen during the International Workshop on max, + Algebra (IWMA

Birmingham 2003, in honor of Prof. Cuninghame-Green [8]).
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Definition 32. Let S be a semiring. The ∧-closure of B ∈ Sn×n is defined as:

B∗ =
∧
k∈N0

B�k,

where B�0 = E� and B�k = B �B�(k−1).

Property 33. Let B ∈ Sn×n, and X ∈ Sn×p. Since ΛB is upper-semicontinuous

and, according to Definition 32, mapping ΛB∗ : Sn×p → Sn×p, X 7→ B∗ �X is

a dual closure mapping (see Definition 19), hence :

B∗ �B∗ �X = B∗ �X, (23)

and as a consequence the following equivalence holds :

X = B∗ �X ⇔ X ∈ ImΛB∗ . (24)

Proposition 34. Let S be a semiring and B ∈ Sn×n and X ∈ Sn×p be two

matrices. The following statements are equivalent:

1. X � B �X;

2. B•\X � X;

3. B∗•\X = X;

4. B∗ �X = X.

Proof. (1) ⇒ (2) According to Definition 9 mapping Λ[B is order preserving,

hence X � B � X ⇒ B•\X � B•\(B � X), furthermore the same definition

implies B•\X � B•\(B �X) � X. Hence X � B �X ⇒ B•\X � X.

(2) ⇒ (3) According to Equation (6), (ΛB ◦ ΛB)[ = (ΛB)[ ◦ (ΛB)[, hence

B•\(B•\X) = B�2•\X, furthermore mapping Λ[B is order preserving, then

X � B•\X ⇒ B•\X � B•\(B•\X) = B�2•\X,

hence

X � B•\X � B�2•\X � . . .⇒ X � (E�•\X)⊕ (B•\X)⊕ (B�2•\X)⊕ ...

14



furthermore according to Equation (10) and to Definition 32,

(E�•\X)⊕ (B•\X)⊕ (B�2•\X)⊕ ... = (E� ∧B ∧B�2 ∧ ...)•\X = B∗•\X,

then, X � (B•\X)⇒ X � B∗•\X. On the other hand B∗ � E� then B∗•\X � X,

hence X � (B•\X)⇒ X = B∗•\X.

(3) ⇒ (4) From Definition 9 (Equation (2)) the following inequality holds :

B∗ � (B∗•\X) � X, hence,

X = B∗•\X ⇒ B∗ �X = B∗ � (B∗•\X) � X,

but the definition of the dual closure yields B∗ �X � X, hence

X = B∗•\X ⇒ B∗ �X = X.

(4) ⇒ (1) According to Definitions 27 and 32, Mapping ΛB∗ is upper semi-

continuous, then

B∗ �X = (E� ∧B ∧B�2 ∧ ...)�X = (X ∧B �X ∧B�2 �X ∧ ...),

hence X = B∗ �X ⇒ X � B �X. �

4. The Inequality A ⊗ X � X � B � X

Proposition 35. Let S be a semiring and A,B ∈ Sn×n and X ∈ Sn×m. The

following equivalence holds :

A⊗X � X � B �X ⇔ X ∈ ImLA∗ ∩ ImΛB∗ . (25)

Proof. Direct application of Equivalence (16) (see Property 25) and of Equiv-

alence (24) (see Property 33). �

Proposition 36. Let S be a semiring and A,B ∈ Sn×n and X ∈ Sn×m.

If ∀X, the equality B∗•\(A∗ ⊗X) = (B∗•\A∗)⊗X holds, then the mapping

P : Sn×m → Sn×m, X 7→ (B∗•\A∗)∗◦\X,

is a projector in ImLA∗ ∩ ImΛB∗ , formally

P (X) = {
∨
Y |Y � X and Y ∈ ImLA∗ ∩ ImΛB∗}.

15



Proof. First, according to Equations (17) and (18), P is a projector on the

image of L(B∗•\A∗)∗ , and P (X) � X.

According to Definition 32, B∗ � E�, then B∗•\A∗ � E�•\A∗ = A∗ and

(B∗•\A∗)∗ � (A∗)∗ = A∗, which, according to Equation (20), implies that

ImL(B∗•\A∗)∗ ⊂ ImLA∗ , hence P (X) ∈ ImLA∗ .

Since P (X) ∈ ImL(B∗•\A∗)∗ , equality P (X) = (B∗•\A∗)∗P (X) holds, and accord-

ing to Lemma 26, this is equivalent to P (X) � (B∗•\A∗)⊗ P (X).

Because of the assumption, the equality :

(B∗•\A∗)⊗ P (X) = B∗•\(A∗ ⊗ P (X)) holds, furthermore P (X) ∈ ImLA∗ , there-

fore A∗ ⊗ P (X) = P (X), hence

P (X) � (B∗•\A∗)⊗ P (X) = B∗•\(A∗ ⊗ P (X)) = B∗•\P (X).

Otherwise, B∗ � E�, then

B∗•\P (X) � E�•\P (X) = P (X).

Hence, P (X) = B∗•\P (X).

Furthermore, Proposition 34 gives :

P (X) = B∗•\P (X) = B∗ � P (X),

then, by considering Equivalence (24), this implies that P (X) ∈ ImΛB∗ .

Now we show that P (X) is the greatest element in ImLA∗ ∩ ImΛB∗ less or

equal to X.

Let Y ∈ ImLA∗ ∩ ImΛB∗ such that Y � X, hence according to Lemma 26

and Proposition 34, the following equalities hold :

Y = A∗ ⊗ Y = B∗ � Y = B∗•\Y = B∗•\(A∗Y ),

and because of the assumption B∗•\(A∗Y ) = (B∗•\A∗)Y .

From Definition 9, Y = (B∗•\A∗)Y ⇒ Y � (B∗•\A∗)◦\Y , and from Lemma

26, this is equivalent to Y = (B∗•\A∗)∗◦\Y . Mapping L](B∗•\A∗)∗ being an iso-

tone mapping, the following implication holds : Y � X ⇒ (B∗•\A∗)∗◦\Y �

(B∗•\A∗)∗◦\X which means that if Y � X then Y = (B∗•\A∗)∗◦\Y � P (X). �
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Remark 37. The previous result shows that P (X0) is the greatest solution of

the following system of inequalities

A⊗X � X � B �X and X � X0,

which is equivalent to

A∗ ⊗X = B∗ �X = X and X � X0.

This projector can be useful to synthesize a controller for manufacturing systems

subject to constraints. This kind of problem can be seen as a model matching

problem (see [34, 35]) and is of practical interest in many industrial applications

(see e.g. [4] for an example from high-throughput-screening).

5. Examples

The results introduced in the previous section are illustrated in two semirings

of practical interest in control theory of discrete event systems.

Definition 38 (Semiring Zmax). According to Definition 2, the set Z = Z ∪

{−∞,+∞} endowed with the max operator as ⊕ and the classical sum as ⊗

is a complete idempotent semiring, denoted Zmax, where ε = −∞, e = 0 and

> = +∞. The greatest lower bound is a ∧ b = min(a, b), and b◦\a = a − b.

Furthermore a � b = a + b and b•\a = a − b. Hence, except ε and >, all

elements admit a multiplicative inverse a−1, i.e, a ⊗ a−1 = a−1 ⊗ a = e and

a� a−1 = a−1� a = e. As a consequence, the following distributivity properties

hold : c ⊗ (a ∧ b) = (c ⊗ a) ∧ (c ⊗ b), c � (a ∧ b) = (c � a) ∧ (c � b) and

c� (a⊕ b) = (c� a)⊕ (c� b). Obviously, this is not true in the matrix case.

Example 39. Let A =

1 > 3

4 ε 6

 and B =


8

9

10

, C =


1 2

3 4

5 6

 be matrices

with entries in Zmax. The product of these matrices is:

A⊗B =

(1⊗ 8)⊕ (>⊗ 9)⊕ (3⊗ 10)

(4⊗ 8)⊕ (ε⊗ 9)⊕ (6⊗ 10)

 =

>
16

 ,
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and the dual product yields

A�B =

(1� 8) ∧ (>� 9) ∧ (3� 10)

(4� 8) ∧ (ε� 9) ∧ (6� 10)

 =

9

ε

 .

The greatest solution of C ⊗X � B is given by

C◦\B =

(1◦\8) ∧ (3◦\9) ∧ (5◦\10)

(2◦\8) ∧ (4◦\9) ∧ (6◦\10)

 =

5

4

 ,

and the smallest solution of C �X � B is given by

C•\B =

(1•\8)⊕ (3•\9)⊕ (5•\10)

(2•\8)⊕ (4•\9)⊕ (6•\10)

 =

7

6

 .

Remark 40. The dual product can be used to perform residuation of matrices

in the (max, plus) algebra (see [16]). More precisely, in this particular case,

A◦\B = −AT �B.

Definition 41 (Semiring γ∗Zmax[[γ]], [1], §5.3.2). According to Definition 6,

the set of non-decreasing formal power series in one variable γ with coefficients

in the semiring Zmax and exponents in Z is a semiring denoted γ∗Zmax[[γ]],

where γ∗ =
⊕

i∈N0
γi (see Definition 24). The neutral element of addition is

the series ε(γ) =
⊕

k∈Z εγ
k and the neutral element of multiplication is the

series e(γ) =
⊕

k∈N0
eγk, furthermore >(γ) =

⊕
k∈Z>γk. The monomials are

defined as γ∗(tγn) =
⊕

k∈N0
tγn+k. In order to keep notation simple, this will be

denoted tγn in the sequel of this paper. In the same way, a series will be simply

denoted s =
⊕

i∈IS
tiγ

ni , where IS ⊂ N0. The computational rules between

monomials are the following :

t1γ
n ⊕ t2γn = max(t1, t2)γ

n, t1γ
n1 ⊗ t2γn2 = (t1 + t2)γ

n1+n2 , (26)

t1γ
n1 ∧ t2γn2 = min(t1, t2)γ

max(n1,n2), t1γ
n1 � t2γn2 = (t1 + t2)γ

n1+n2 , (27)

(t1γ
n1) ◦\(t2γn2) = (t2 − t1)γn2−n1 , (t1γ

n1) •\(t2γn2) = (t2 − t1)γn2−n1 . (28)

Furthermore, the order relation is such that t1γn1 � t2γn2 ⇔ n1 ≤ n2 and t1 ≥

t2. According to these rules, a non decreasing series admits many representa-

tions (e.g., 2γ2 ⊕ 3γ2 = 3γ2) and one of which is canonical. It is the represen-

tation whose t0 < t1 < ... and n0 < n1 < .... The computation rules between
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two series s =
⊕

i∈IS
tiγ

ni and s′ =
⊕

j∈IS′
tjγ

nj are given as follows :

s⊕ s′ =
⊕
i∈IS

tiγ
ni ⊕

⊕
j∈IS′

tjγ
nj , (29)

s⊗ s′ =
⊕
i∈IS

⊕
j∈IS′

(ti + tj)γni+nj , (30)

s ∧ s′ =
⊕
i∈IS

⊕
j∈IS′

min(ti, tj)γmax(ni,nj), (31)

s◦/s′ = s′◦\s =
∧
j∈IS′

⊕
i∈IS

(ti − tj)γni−nj . (32)

According to Definition 27, the dual product has to distribute with respect to

the operator ∧, hence it is only defined between a monomial and a series in the

following way :

tγn � s =
⊕
i∈IS

(t+ ti)γn+ni . (33)

It can be checked that a� (s∧ s′) = (a� s)∧ (a� s′). The dual residual is then

given by :

tγn•\s =
⊕
i∈IS

(ti − t)γni−n. (34)

In [11], periodic series were introduced. They are defined as s = p ⊕ q ⊗ r∗

where p =
m⊕
i=1

tiγ
ni (respectively q =

l⊕
j=1

tjγ
nj ) is a polynomial depicting the

transient (resp. the periodic) behavior, and r = τγν is a monomial depicting the

periodicity allowing to define the asymptotic slope of the series as σ∞(s) = ν/τ .

Sum, product, Kleene star and residuation of periodic series are periodic series

(see [17]), and algorithms and software toolboxes are available in order to handle

them (see [13]). In the same way, the dual product and its dual residual are well
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defined. Below, only properties concerning asymptotic slopes are recalled:

σ∞(s⊕ s′) = min(σ∞(s), σ∞(s′)),

σ∞(s⊗ s′) = min(σ∞(s), σ∞(s′)),

σ∞(s ∧ s′) = max(σ∞(s), σ∞(s′)),

σ∞(s∗) = min( min
i=1..m

(ni/ti), min
j=1..l

(nj/tj), σ∞(s)),

σ∞(tγn � s) = σ∞(s)

σ∞((tγn)•\s) = σ∞(s)

if σ∞(s) ≤ σ∞(s′) then σ∞(s′◦\s) = σ∞(s), else s′◦\s = ε.

Example 42. Let B =


> 15γ3 7γ0 >

> > > >

3γ0 8γ4 > >

6γ 4γ5 > >

 be a matrix where the entries

are monomials in γ∗Zmax[[γ]]. According to Definitions 41 and 28. It can be

checked that :

B�2 =


10γ0 15γ4 > >

> > > >

> 18γ3 10γ0 >

> 21γ4 13γ >

 and B�3 =


> 25γ3 17γ0 >

> > > >

13γ0 18γ4 > >

16γ 21γ5 > >


It can be also checked that B�n � B�3∀n > 3, hence :

B∗ = E� ∧B ∧B�2 ∧B�3 ∧ . . . =


e 15γ4 7γ0 >

> e > >

3γ0 8γ4 e >

6γ 4γ5 13γ e

.

Note that, due to the computation rules (27), the entries of matrix B∗ are always

monomials.

Remark 43. From these examples, it can be seen that the assumption of Propo-

sition 31, i.e., that bij•\(a⊗ x) = (bij•\a)⊗ x, is clearly fulfilled in the semiring

Zmax (indeed bij − (a + x) = (bij − a) + x). In γ∗Zmax[[γ]], the dual product

is only defined between monomials and series. Hence by considering monomial

bij = tγn, series a =
⊕

i∈IA
tiγ

ni and x =
⊕

j∈IX
tjγ

nj , and according to
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Equations (30) and (34) the following equalities hold :

(tγn)•\(a⊗ x) = (tγn)•\(
⊕
i∈IA

tiγ
ni ⊗

⊕
j∈IX

tjγ
nj ) = (tγn)•\(

⊕
i∈IA

⊕
j∈IX

(ti + tj)γni+nj )

=
⊕
i∈IA

⊕
j∈IX

(ti + tj − t)γni+nj−n = (
⊕
i∈IA

(ti − t)γni−n)⊗
⊕
j∈IX

tjγ
nj

= ((tγn)•\a)⊗ x.

The assumption B∗•\(A∗⊗X) = (B∗•\A∗)⊗X used in Proposition 36 is still

valid in Zmax since B∗ is with entries in the semiring Zmax. In the same way,

it also holds in γ∗Zmax[[γ]] since all entries of B are assumed to be monomials

and, as noticed in Example 42, under this assumption all entries of B∗ are

monomials.

6. Interval Analysis over idempotent semirings

Interval mathematics was pioneered by R.E. Moore (see [32]) as a tool for

bounding rounding errors in computer programs. Since then, interval math-

ematics has been developed into a general methodology for investigating nu-

merical uncertainty in many problems and algorithms [21]. In [24] idempotent

semirings were extended to interval arithmetic (see also [29]). Below some pre-

liminary statements are recalled from this reference.

Definition 44 (Interval). Let S be a semiring. A (closed) interval is a set of

the form x = [x, x] = {t ∈ S|x � t � x}, where x ∈ S and x ∈ S (with x � x)

are called the lower and the upper bounds of the interval x, respectively.

Definition 45 (Semiring of intervals). The set of intervals denoted by IS,

endowed with the following element-wise algebraic operations

x
−
⊕ y ,

[
x⊕ y, x⊕ y

]
and x

−
⊗ y ,

[
x⊗ y, x⊗ y

]
(35)

is a semiring, where the intervals εεε = [ε, ε] and e = [e, e] are the neutral elements

of IS. The canonical order �IS induced by the additive law is such that x
−
⊕

y = [x ⊕ y, x ⊕ y] ⇔ x �IS y ⇔ x �S y and x �S y, where �S is the order

relation in S.
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Remark 46. In the sequel, in the absence of ambiguity, the order relation in

IS will be denoted �. Operations (35) give the tightest intervals containing all

results of the same operations to arbitrary elements of its interval operands.

Remark 47. Let S be a complete semiring and {xα} be an infinite subset of

IS, the infinite sum of elements of this subset is :

⊕
α

xα =

[⊕
α

xα,
⊕
α

xα

]
.

The top element is given by >>> = [>,>].

Remark 48. Note that if x and y are intervals in IS, then x ⊂ y iff y � x �

x � y. In particular, x = y iff x = y and x = y.

Remark 49. An interval for which x = x is called degenerate. Degenerate

intervals allow to represent numbers without uncertainty. In this case x will be

simply denoted x.

Remark 50. IS is not a semifield even if S is one. Indeed, except for degen-

erate intervals, an interval does not admit a multiplicative inverse.

Definition 51 (Dual product over semiring IS). In a semiring of inter-

vals, the dual product � is defined as : x
−
� y ,

[
x� y, x� y

]
, where � is

the dual product in S.

In [26] (see also [23]), it has been shown that order preserving mappings

admit a natural extension over the semirings of intervals by considering the

image of the interval bounds in an independent way. Especially the additive

closure and ∧-closure can be computed in an efficient way and are defined as

follows.

Proposition 52 ([26],[23]). Let IS be a semiring of intervals. The additive

closure of matrix A ∈ ISn×n is given by :

A∗ = [A,A]∗ = [A∗, A
∗
],
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and its ∧-closure is :

A∗ = [A,A]∗ = [A∗, A∗].

Notation 53 (Semiring of pairs). Let S be a complete semiring. The set of

pairs (x′, x′′) with x′ ∈ S and x′′ ∈ S is a complete semiring denoted by C(S)

with (ε, ε) as the zero element, (e, e) as the identity element and (>,>) as top

element (see Definition 2). The set of pairs (x′, x′′) such that x′ � x′′ is a

complete subsemiring of C(S) (see Definition 3). It will be denoted CO(S).

Proposition 54. The canonical injection Id|CO(S) : CO(S)→ C(S) is both resid-

uated and dually residuated. Its residual (Id|CO(S))] is a projector. Its practical

computation is given by :

(Id|CO(S))]((x′, x′′)) = (x′ ∧ x′′, x′′) = (x̃′, x̃′′). (36)

Its dual residual (Id|CO(S))[ is a projector. Its practical computation is given by :

(Id|CO(S))[((x′, x′′)) = (x′, x′ ⊕ x′′) = (x̃′, x̃′′). (37)

Proof. This theorem is a direct application of Proposition 17, since CO(S) is

a subsemiring of C(S). Practically, let us consider (x′, x′′) ∈ C(S), we have

(Id|CO(S))]((x′, x′′)) = (x̃′, x̃′′) = (x′ ∧ x′′, x′′), which is the greatest pair such

that :

x̃′ � x′, x̃′′ � x′′ and x̃′ � x̃′′.

On the other hand, we have (Id|CO(S))[((x′, x′′)) = (x̃′, x̃′′) = (x′, x′⊕x′′), which

is the smallest pair such that :

x̃′ � x′, x̃′′ � x′′ and x̃′′ � x̃′.

�

Proposition 55 ([18]). Mapping L(a′,a′′) : CO(S) → CO(S), (x′, x′′) 7→ (a′ ⊗

x′, a′′ ⊗ x′′) with (a′, a′′) ∈ CO(S) is residuated. Its residual is equal to

L](a′,a′′) : CO(S)→ CO(S), (x′, x′′) 7→ (a′◦\x′ ∧ a′′◦\x′′, a′′◦\x′′). (38)

23



Proposition 56 ([18]). Let IS be a semiring of intervals. Mapping La : IS →

IS,x 7→ a
−
⊗ x is residuated. Its residual is equal to

L]a : IS → IS,x 7→ a◦\x = [a◦\x ∧ a◦\x, a◦\x].

Therefore, a◦\b is the greatest solution of a
−
⊗ x � b, and equality is achieved if

b ∈ ImLa.

Remark 57. In the same manner, it can be shown that mapping Ra : IS →

IS,x 7→ x
−
⊗ a is residuated.

Proposition 58. Mapping Λ(a′,a′′) : CO(S)→ CO(S), (x′, x′′) 7→ (a′�x′, a′′�x′′)

with (a′, a′′) ∈ CO(S) is dually residuated. Its dual residual is equal to

Λ[(a′,a′′) : CO(S)→ CO(S), (x′, x′′) 7→ (a′•\x′, a′•\x′ ⊕ a′′•\x′′). (39)

Proof. According to Corollary 30, mapping Λ(a′,a′′) : C(S)→ C(S), (x′, x′′) 7→

(a′ � x′, a′′ � x′′) is dually residuated and its dual residual is Λ[(a′,a′′) : C(S)→

C(S), (x′, x′′) 7→ (a′•\x′, a′′•\x′′). Mapping Λ(a′,a′′) is order preserving, hence

ImΛ(a′,a′′)|CO(S) ∈ CO(S). Furthermore, the canonical injection Id|CO(S) : CO(S)→

C(S) is dually residuated. Hence Proposition 18 yields

(CO(S)|Λ(a′,a′′)|CO(S))[ = (CO(S)|Λ(a′,a′′)◦Id|CO(S))[ = (Id|CO(S))[◦(Λ(a′,a′′))[◦Id|CO(S).

To conclude, Equation (37) of Proposition 54 yields equation (39). �

Proposition 59. Let S be a semiring and IS be a semiring of intervals. Map-

ping Λa : IS → IS,x 7→ a
−
� x is dually residuated. Its dual residual is equal

to

Λ[a : IS → IS,x 7→ a•\x = [a•\x, a•\x⊕ a•\x].

Therefore, a•\b is the smallest solution of a
−
� x � b, and equality is achieved

if b ∈ ImΛa.

Proof. Let Ψ : CO(S) → IS, (x̃′, x̃′′) 7→ [x, x] = [x̃′, x̃′′] be the mapping which

maps an ordered pair to an interval. This mapping defines an isomorphism,

since it is sufficient to deal with the bounds to handle an interval. Then the

result follows directly from Proposition 58. �
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Corollary 60. Let S be a semiring and A ∈ ISn×p, X ∈ ISp×q and Y ∈ ISn×q

be matrices. According to Corollary 30, mapping ΛA : ISp×q → ISn×q,X 7→

A
−
� X is dually residuated. Its dual residual is equal to

Λ[A : ISn×q → ISp×q,Y 7→ A•\Y = [A•\Y ,A•\Y ⊕A•\Y ]. (40)

Additive closure and residuation being well defined over a semiring of intervals

the Properties 25 can be translated as follows.

Property 61. Let A ∈ ISn×n, B ∈ ISn×n, C ∈ ISn×n , and X ∈ ISn×p be

four matrices. The following statements hold:

A∗⊗A∗⊗X = A∗⊗X, (41)

A∗◦\A∗◦\X = A∗◦\X, (42)

A∗⊗(A∗◦\X) = A∗◦\X, (43)

A∗◦\(A∗⊗X) = A∗⊗X, (44)

C∗ � A∗ ⇔ A∗C∗X = A∗X = C∗◦\(A∗X)⇔ ImLA∗ ⊂ ImLC∗ ⇔ ImLA∗ ⊂ ImL]C∗ .

(45)

For the dual product the following property can be stated :

B∗�B∗�X = B∗�X, (46)

and the following equivalences hold

A⊗X � X ⇔ X = A∗⊗X ⇔ A∗◦\X ⇔ X ∈ ImLA∗ ,

X � B�X ⇔ X = B∗�X ⇔ B∗•\X ⇔ X ∈ ImΛB∗ .
(47)

Remark 62. According to Proposition 56 and 59, the following implications

hold :

X ∈ ImLA∗ ⇒ X = [A∗X,A
∗
X] = [A∗◦\X ∧A∗◦\X,A∗◦\X]

= [A∗◦\X,A∗◦\X] since A∗X � A∗X,

X ∈ ImΛB∗ ⇒ X = [B∗ �X,B∗ �X] = [B∗•\X,B∗◦\X ⊕B∗•\X]

= [B∗•\X,B∗•\X] since B∗ �X � B∗ �X.
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Below, the extension of Proposition 36 to a semiring of intervals is given.

Proposition 63. Let S be a semiring and A,B ∈ ISn×n and X ∈ Sn×m.

If ∀X the equality B∗•\(A∗⊗X) = (B∗•\A∗)⊗X holds, mapping

P : ISn×m → ISn×m,X 7→ (B∗•\A∗)∗◦\X

with

(B∗ •\A∗)∗ ◦\X = [((B∗ •\A
∗)∗ ◦\X) ∧ (((B∗ •\A

∗)⊕ (B∗ •\A
∗
))∗ ◦\X), ((B∗ •\A

∗)⊕ (B∗ •\A
∗
))∗ ◦\X],

is a projector in ImLA∗ ∩ ImΛB∗ , formally

P(X) = {
∨

Y|Y �IS X and Y ∈ ImLA∗ ∩ ImΛB∗}.

Proof. It is a direct application of Proposition 36. For the practical compu-

tation, from Proposition 56, we get :

(B∗•\A∗)∗◦\X = [((B∗•\A∗)∗◦\X) ∧ ((B∗•\A∗)∗◦\X), ((B∗•\A∗)∗◦\X)]

with, according to Propositions 59 and 52,

(B∗•\A∗)∗ = (B∗•\A
∗)∗

and

(B∗•\A∗)∗ = ((B∗•\A
∗)⊕ (B∗•\A

∗
))∗.

�

Example 64. Below, we compute the greatest interval vector which satisfies :

A⊗X � X � B�X

X � X0,

where

A =



[ε, ε] [ε, ε] [ε, ε] [ε, ε] [ε, ε]

[7, 11] [ε, ε] [8, 14] [ε, ε] [2, 7]

[ε, ε] [ε, ε] [ε, ε] [ε, ε] [ε, ε]

[ε, ε] [ε, ε] [4, 12] [ε, ε] [1, 5]

[ε, ε] [ε, ε] [ε, ε] [ε, ε] [ε, ε]


, B =



[>,>] [>,>] [>,>] [>,>] [>,>]

[11, 16] [>,>] [15, 19] [>,>] [7, 10]

[>,>] [>,>] [>,>] [>,>] [>,>]

[>,>] [>,>] [13, 18] [>,>] [5, 9]

[>,>] [>,>] [>,>] [>,>] [>,>]
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and X0 =
(
[10, 14] [10, 14] [10, 14] [10, 14] [10, 14]

)T

.

We get :

(B∗•\A
∗)∗ =



e −11 −3 −14 −9

7 e 8 −3 2

−8 −15 e −13 −12

1 −6 4 e 1

e −7 1 −5 e


, (B∗•\A

∗
)∗ =



e −16 −2 −18 −9

11 e 14 −2 7

−8 −19 e −18 −12

6 −5 12 e 5

1 −10 4 −9 e


.

This yields X = P(X0) =
(

[3, 3] [10, 14] [0, 0] [10, 12] [7, 7]
)T

as greatest

interval vector.

Example 65. We provide also an example in the semiring γ∗Zmax[[γ]]. We

consider :

A =


[ε, ε] [ε, ε] [8γ2, 8γ]

[ε, ε] [ε, ε] [ε, ε]

[7γ ⊕ 9γ2, 10⊕ 11γ3] [2γ ⊕ 4γ3, 4γ ⊕ 6γ2] [ε, ε]

 , B =


[>,>] [>,>] [15γ, 18]

[>,>] [>,>] [>,>]

[>,>] [5γ, 7] [>,>]



and X0 =


[4γ ⊕ 7γ4(18γ)∗, 7⊕ 8γ3(18γ)∗]

[5γ2 ⊕ 8γ5(18γ)∗, 8γ ⊕ 9γ4(18γ)∗]

[6γ3 ⊕ 9γ6(18γ)∗, 9γ2 ⊕ 10γ5(18γ)∗]

 .

According to the computation rules given in Definition 41 (see also [17, 13] for

algorithmic issues and software tools), the following vector is obtained :

X = P(X0) =


[21γ4(18γ)∗, 17γ3(18γ)∗]

[4γ2(18γ)∗, 5γ(18γ)∗]

[6γ3(18γ)∗, 9γ2(18γ)∗]

 .

7. Conclusion

This work deals with a dual product in a semiring and its extension to

semirings of intervals. Sufficient conditions are given in order to ensure the

existence of a projector in the solution set of the following system : A⊗X �

X � B�X, where A, B and X are interval matrices. This projector can
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be useful to solve control problems for timed discrete event systems. More

precisely, control for uncertain systems with parameters that are only known to

be in an interval, and where the state evolution is subject to constraints (see

e.g. [30, 31, 22, 19, 28, 4]).
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