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Abstract Based on the (min,+)-linear system theory, the work developed here takes
the set membership approach as a starting point in order to obtain a container for ulti-
mately pseudo-periodic functions representative of Discrete Event Dynamic Systems.
Such a container, by approximating the exact system, ensures in a guaranteed way to
entirely include it. To reach that point, the container introduced in this paper is given
as an interval, the bounds of which are a convex function for the upper approximation
and a concave function for the lower approximation. Thanks to the characteristics of
the bounds, the aim is both to reduce the data storage that can be very important when
exact functions are handled, and to reduce the algorithm complexity of the operations
of sum, inf-convolution and subadditive closure. These operations are integrated into
inclusion functions, the algorithms of which are of linear or quasi-linear complexity.

Keywords (Max,+) algebra - Discrete Event Dynamic Systems - Set membership
approach - Algorithms - Computational complexity

1 Introduction

The theory of (max,+) algebra deals with the study of Discrete Event Dynamic Sys-
tems (DEDS) characterized by delay and synchronization phenomena, through the
particular algebraic structure called idempotent semiring or dioid (Baccelli et al,
1992). The areas of application of this theory are various, we can name the produc-
tion systems (Cottenceau et al, 2001), the communication networks (Le Boudec and
Thiran, 2001; Chang, 2000) or the transportation systems (Heidergott et al, 2006).
More precisely, some control problems have already been solved in the context of
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production systems (Maia et al, 2003) and in the context of communication networks
(Le Corronc et al, 2010). We can also recall that the theory of Network Calculus aims
at analysing and measuring the worst-case performance of a network.

These works on control and on performance analysis share a feature that the un-
derlying model lies on ultimately pseudo-periodic functions (denoted %, in this
paper). Nowadays, some tools enable these kinds of functions to be handled (an
overview for the Network Calculus is given in Boyer (2010)). A non-exhaustive list
can be: the toolbox MinMaxGD (created by the LISA laboratory, see Cottenceau et al
(2000)), the COINC software! and the DISCO toolbox for the Network Calculus (see
respectively Bouillard et al (2009) and Schmitt and Zdarsky (2006)), or also the RTC
toolbox for an extension of the Network Calculus called the Real-Time Calculus (see
Wandeler and Thiele (2006)). The main operations of the (min,+) algebra such as
the sum and the inf-convolution? are available in MinMaxGD, COINC, DISCO and
RTC, whereas the operation of subadditive closure? is only available in MinMaxGD
and COINC. Moreover, for MinMaxGD and COINC, the algorithms of these opera-
tions are described in Gaubert (1992) and Cottenceau (1999) for the former, and in
Bouillard and Thierry (2008) for the latter. In these toolboxes, the complexity of sum
and inf-convolution operations is linear or quasi-linear whereas the one of the sub-
additive closure tends to be polynomial. However, because of the characteristics of
ultimately pseudo-periodic functions, the transient phenomena of handled functions
can be significantly long. In that case, the amount of storage data bursts and the exact
computations are not always possible within a reasonable time.

Therefore, it can be helpful to use alternative models with less complex algo-
rithms and a reduced data size. This paper follows this point of view by defining
an original container for ultimately pseudo-periodic functions (see also the thesis of
Le Corronc (2011)). Actually, the idea proposed here considers:

— a particular algebraic structure denoted .7, Va2 built from the Legendre-Fenchel

transform* .# (specially well-suited for convex functions, see Rockafellar (1997);
Baccelli et al (1992); Fidler and Recker (2006)),

— associated to the set membership approach (see Jaulin et al (2001) and Moore
(1979) for a general introduction, Litvinov and Sobolevskii (2001); Lhommeau
et al (2005); Hardouin et al (2009) in the semiring context).

More precisely, the upper bound of the container is the greatest element of the equiv-
alence class modulo . of the approximated function, it is so a convex function.
Complementary, the lower bound of the container is a concave function that will con-
tract this equivalence class since the approximated function necessarily belongs to
the container. In other words, the container is treated as the intersection between an
interval of functions that contains the exact system, and the equivalence class of the
approximated system modulo the Legendre-Fenchel transform. Thanks to the con-
vex characteristics of the bounds of the container, their data representations need few
storage capacity.

! Name of a research project dealing with COmputational Issues in Network Calculus
2 QOperation used for the concatenation of systems.

3 Also called Kleene star operation and used for systems with closed-loop architecture.
4 Also called the convex conjugate function.



Obviously, the counter part is that such approximations provide results that are not
exact. But the computations made over the proposed container guarantee to include
the exact result as it is proposed in the set membership approach. Indeed, the oper-
ations of sum, inf-convolution and subadditive closure are integrated into inclusion
functions that can be obtained by efficient algorithms thanks again to their convex
characteristics. For instance, some existing results given in Le Boudec and Thiran
(2001) and Schmitt and Zdarsky (2006), and leading to algorithms of linear com-
plexity will be applied to the inclusion function of the inf-convolution. For the sum,
since this operation is a minimum in the (min,+) algebra, we will see that the com-
plexity of its inclusion function is linear too. Finally, this paper develops new results
by choosing a specific shape of the container allowing us to deal with the subadditive
closure in an efficient way. Indeed, by applying factorizations and simplifications, the
complexity of the inclusion function of the subadditive closure becomes quasi-linear.

The presentation of our approach is organized as follows. First, section 2 recalls
the useful basis of (min,+)-linear systems. More precisely, some elements required for
the study such as the idempotent semiring theory and the problem of the transfer ma-
trix computation will be introduced. Then, in the third section, all the elements used to
build the containers for these systems are presented with a canonical representation.
Section 4 will provide both inclusion functions for operations sum, inf-convolution
and subadditive closure, and the outlines of the underlying algorithms that handled
them. Finally, in section 5, some tests are given in order to evaluate the toolbox called
ContainerMinMaxGD?, and to compare the approximated computations to the exact
ones.

2 (Min,+)-linear systems
2.1 Some recalls

We denote by Z,,;;, the set of integers with a min as & operator and the classical sum
as ® operator. On Zy;,, a linear modelling of (min,+)-linear systems can be done
through counter functions. More precisely, for an event labeled x, the function x()
defined from Z to Z,,;, gives the cumulative number of events x that have occurred
until time ¢. Therefore, this work considers systems described by the following state
representation where u(t), x(¢) and y(¢) are vectors of counter functions that respec-
tively represent input events (events of which it is possible to control the occurrence),
internal and output events:

{x(t):A®x(t—1)€aB®u(f)a (1)

y(t) =C®x(1).
Moreover, as in the classical linear system theory, an input-output description

of a (min,+)-linear system also exists. Indeed, by considering counter functions as
event trajectories®, the output y of a Single-Input Single-Output (SISO) system can

5 Created with the container and the algorithms described in this paper.
6 Which can be seen as “signals” for DEDS.



be expressed as a convolution of the input u by a particular trajectory & called transfer
function. As in the classical theory, the transfer function of a system corresponds to
the output due to a specific input that plays the role of “impulse”. Then, the transfer
function can be seen as the impulse response of a (min,+) system.

This kind of input-output behavior can also be handled through formal series
where two operators of time-shift, denoted 8, and event-shift, denoted 7, are involved,
and so the convolution is transformed into a product of formal series. An example of
this structure is the idempotent semiring called .#**[7v, 8] (see Cohen et al (1989b)
and Baccelli et al (1992, Sec. 5.4.2)). In this framework, one of the most important
feature is that the behavior of (min,+)-linear systems can be handled thanks to finite
and canonical representations that have periodic properties. So, the transfer series of
such a system is an ultimately pseudo-periodic series that has a canonical representa-
tion.

In literature, the state representation as well as the input-output model are well
suited to describe the behavior of Timed Event Graphs’ (TEG) with the “as soon as
possible” firing rule like in Cottenceau et al (2001). These models are also interesting
to describe the behavior of some datagrams through a network as it is shown in Chang
(2000) and Le Boudec and Thiran (2001).

Some useful software tools are available to handle such representations. The Min-
MaxGD toolbox computes the classical operations on periodic series of .#*[7, d].
Also, the COINC software handles some piecewise affine pseudo-periodic functions
with operations of min, max, (min,+)-convolution and subadditive closure.

2.2 Idempotent semiring theory

All the models introduced previously share some common algebraic features. In each
case, the underlying algebraic structure is an idempotent semiring for which some
recalls are given here (for more details, see Baccelli et al (1992, Chap. 4); Gaubert
(1992); Heidergott et al (2006)).

Definition 1 (Idempotent semiring) An idempotent semiring 2, also called dioid,
is a set endowed with two inner operations denoted & and ®. The sum & is associa-
tive, commutative, idempotent (i.e. Va € ¥,a® a = a) and admits a neutral element
denoted &. The product® ® is associative, distributes over the sum and accepts e as
neutral element.

When ® is commutative (i.e. Va,b € Z,a ® b = b ® a), the idempotent semiring
2 is said to be commutative. Then, an idempotent semiring is said to be complete if
it is closed for infinite sums and if the product distributes over infinite sums too. In
this case, the greatest element of & is denoted T (for Top) and represents the sum of
all its elements (T = @ ,c 4 x).

Furthermore, due to the idempotency of addition, a canonical order relation can
be associated with 2 by the following equivalences: Va,b € Y, a'=b < a=a®b

7 Subclass of Timed Petri Nets in which each place has exactly one upstream and one downstream
transition.

8 As in the usual algebra, operator ® can be omitted: ab = a ® b.



and b = a A\ b. Because of the lattice properties of a complete idempotent semiring,
a @ b is the least upper bound of & whereas a A b is its greatest lower bound.

Example 1 (Idempotent semirings Zmayx and Rnay) The set Zygy = (ZU {—o0, +-o0})
endowed with the max operator as sum @ and the addition as product ® is a complete
idempotent semiring where £ = —o0, ¢ = 0 and T = +o0. On Zu,, the greatest lower
bound A becomes the min operator. By similarity, the set R,y = (RU{—00,4-0}) is
a complete idempotent semiring with the same characteristics.

Example 2 (Idempotent semirings Zpn and R,in) The set Zpyi, = (Z U {—oo, +-o0})
endowed with the min operator as sum & and the addition as product & is a complete
idempotent semiring where € = +o0, ¢ = 0 and T = —oo. On Z,y,;,,, the greatest lower
bound A becomes the max operator. By similarity, the set R, = (RU{—oo, +oo}) is
a complete idempotent semiring with the same characteristics.

Remark 1 1t is important to note that because of operator @, the canonical order
relation = on Zyi, and R,,;, corresponds to the reverse of the natural order <:

35 < 3=3@5=min(3,5) < 3<5.

Theorem 1 (Baccelli et al (1992, Th. 4.75)) The implicit equation x = ax® b defined
on a complete idempotent semiring 9 admits x = a*b as lowest solution:

vVa € 9 a = ai Whe’e ai l—aia a}’ld a =e.
9
>0

This operator is called subadditive closure or Kleene star operator”.

Numerous properties are associated with operator *. For instance, they are pro-
posed in Gaubert (1992) and Cottenceau (1999) for the (max,+) algebra and more
generally in Conway (1971) and Krob (1990) for the theory of rational identities.
Those used in this paper are given below.

Property 1 If & is a commutative complete idempotent semiring, then Va,b € 2:
(ab*) = e®aladpb)”, 2
(a®b)” = a*b*. 3)

Definition 2 (Homomorphism) A mapping I from an idempotent semiring & into
another one ¢ is a homomorphism if Va,b € 9:

M(a®b)=I(a)®II(b) and II(€) =&,
(a®b)=H(a)RII(b) and II(e) =e.

Definition 3 (Congruence) In an idempotent semiring &, a congruence is an equiva-
lence relation denoted = that is compatible with operations @ and ®, that is Va, b, c €
D:
(a®c) = (bao),
=bh =
4 {(a@c)z(b@c).

° This designation is different according to the context of use: Network Calculus or TEG.
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Fig. 1 An elementary function Aﬁ

Definition 4 (Equivalence class) Let us consider an idempotent semiring & en-
dowed with a congruence =. The equivalence class of an element a € & is denoted
[a]= and defined by:

[a=={x€ 2 |x=a}.

Lemma 1 (Baccelli et al (1992, Lem. 4.24)) The quotient of an idempotent semiring
2 by a congruence = is an idempotent semiring denoted 9 ,— and endowed with
operations & and ® defined as follows:

lal=&[b]= = [a®b]=,
la]=®[b]= = [a®b]

Lemma 2 (Baccelli et al (1992, Cor. 4.26)) If a mapping I1 : 9 +— € is a homomor-
phism, then the relation g defined below Ya,b € 9 is a congruence:

@) =010b) < aZb,

i
and the quotient of 9 by = is simply denoted 7 ,17.

Definition 5 (Projector) A projector p is defined as a mapping from Z to 2 such
that:

p=pop-.

2.3 Modelling of (min,+)-linear systems

In the rest of this paper, the (min,+) modelling over the set of real numbers is chosen.
Then, some counter functions from R to R,,;,, (see example 2) must be classified
for the need of our study. Since these functions describe the cumulative number of

events, they are without exception nondecreasing (i.e., Vt; > 1o, f(t1) > f(n)).

Definition 6 (Elementary function AX) The elementary function denoted AX and
illustrated figure 1, is the counter function defined by:

K ift <T
K _ ~ 14,
Ar () = { +oo  otherwise.
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Fig. 2 Examples of piecewise constant functions

Definition 7 (Set .%.) A function f € %, (see figure 2a) is a function that can be
defined by an infinite sum (min) of elementary functions A{? ,l.e..

+oo L
f= @A,;.
i=0

Therefore, f is a piecewise constant function.

Definition 8 (Causality) Let f be a function of .%.. Function f is said to be causal

f:
1 f@&)=7(0) fort <0,
>0 fort > 0.

Remark 2 An elementary function A}( is causal if K, T > 0.

Definition 9 (Set .7p) A function f € %, (see figure 2b) is a function of .7 that is
in addition ultimately pseudo-periodic, i.e.:

3T, > 1, 3K €R}. . IT € R" such thatVt > T,, f(t+T) =K® f(t) = K+ f(t),

min’
where 1 is the time of the first elementary function A,’;O of f. Hence %, C .

Property 2 (Canonical representation) Each function of %, has a canonical form
where T), and T are minimums.

Property 3 (Asymptotic slope ) Let f be a function of Z, its asymptotic slope is
defined by the ratio o(f) = K/T.

According to this classification, trajectories of a (min,+)-linear system are nat-
urally described by counter functions of .%, (i.e. nondecreasing piecewise constant
functions). In this set, considered systems are described by the state equation (1) and

. ZhXn FNXp Hqxn
recalled here by adding thatA € Z,,, , B € Z,,;,, and C € Z,,;, where n, p and g refer

respectively to the state vector size, the input vector size and the output vector size:

{x(t) =AQx(t—1)®BRu(r),
y(t) =C®x(1).



For SISO systems (i.e. where p = 1 and g = 1), the development of the recurrent
equations given by equation (1) leads to express output y as follows:

y(t) = CBu(t) ® CABu(t — 1) & CA*>Bu(t —2)& ...,
=@ CA™Bu(t — ). 4)
>0

In other words, the output is linked to the input by a convolution as defined below.

Definition 10 (Inf-convolution) Let f(#) and g(t) be two counter functions from R
to Rin. The (min,+)-convolution also called inf-convolution of f by g is the counter
function defined below:

(f+8)1) 2 DIf(n)@g(t—1)} = min{f(7)+8(t - 1)}

>0

Remark 3 The inf-convolution is a commutative operation that distributes over the
sum . Its neutral element is denoted e and is defined by e = Ag.

Thanks to this convolution product and according to equation (4), the input-output
behavior of a (min,+)-linear system can be expressed as follows, where function # is
called the transfer function:

y(t) = (h*u)(r) and h(t)=CA"B.

By extension to the Multiple-Input Multiple-Output (MIMO) case, this input-output
relation is described by:

Y(t) = (H=U)(1),
where matrix H is called the transfer matrix. The inf-convolution of two matrices
D4l and F™/ is defined as follows:

l

(D*F),’j = @{Dik*ij}.
k=1

2.4 Transfer matrix computation

The transfer matrix of a MIMO system can be obtained from the state representation
given by equation (1) as explained now. The time shifting between x(¢) and x(r — 1)
and the event shifting contained in matrices A,B and C can also be expressed by
inf-convolutions with elementary functions:

x(t—1) = (4D %) (1),
L@x(r) = (A} *x)(1).

In other words, if x € .Z, describes a trajectory, then:

A? xx = trajectory x shifted of 1 time unit,

A& *x = trajectory x shifted of 1 event unit.
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Fig. 3 Subadditive closure of an elementary function: AX *e Fep

So, by considering the idempotent semiring denoted (%, ®, ) of nondecreasing
functions endowed with the min as sum and the inf-convolution as product, a different
expression of equation (1) is obtained:

x=A"%AVxx®B *u, )
y=C *x,

/ Aij Bij Cij : :
where A; = Ay, B; = Ay, G = A", and x, u and y are vectors of functions in
Z.. Thanks to theorem 1, on the semiring (.%.,®, ), these equations are solved in
order to lead to:

y=C'% (A"« AV)* «B xu,
and so y = H *u with:
H=C'x(A"+A))" «B. (6)

Remark 4 (Subadditive closure Af* ) Let Af , with K, T > 0, be an elementary func-
tion of the semiring (%, ®, *). Its subadditive closure AX™ illustrated figure 3, is a
function of .%, such that:

AF = @P(aF) where (AF)H = (AK) 5 (AF) and (Af)°=e.
i>0
Moreover (AX)! = AK so AKX = e AKX ©® AJX @ ... . The asymptotic slope of this
subadditive closure is defined by ¢(AX™) = K/T.If K, T € N, then 6(AX™) € Q+.

The next result showing that a (min,+)-linear system has a transfer matrix that
belongs to the sub-semiring (Fp, ®, *)?*?, is a key result for (min,+)-linear systems.

nxn SNXp

Theorem 2 (Baccelli et al (1992, Th. 5.39)) If matrices A € Zy,, B € Zypyiy
C € Z" of the state representation (1) are positive, then H = C' * (A’ * AD)* x B/
given by equation (6) is such that Vi, j, H;j is a causal ultimately pseudo-periodic

function of F¢p.

and

Sketch of proof First, according to the definition of system (5), transfer matrix H is
obtained by doing a finite number of operations {@®,*, *} on elementary functions
Af . Moreover, since elementary functions A}, Bj;, C/; and A} can be seen as func-
tions of %, a technical proof consists in verifying that the set .%, is rationally
closed (see for instance Gaubert (1992); Baccelli et al (1992); Bouillard and Thierry

(2008, Prop. 4 and 95)). O
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Remark 5 Tt is important to note that the elementary function denoted A(} in the
semiring (Fp,®,*) is nothing else but the y shift operator of idempotent semiring
M [y, 8], and AY corresponds to the § shift operator. In the context of .Z%[y, 8]
modelling, the result of theorem 2 is expressed by a more detailed result: the transfer
matrix of a (min,+)-linear system that is rational (i.e. it can be expressed with a finite
combination of {7,8} and {®,®, *}) is necessarily periodic and causal.

In conclusion of this section, due to equation (6), the computation of the behavior
of a (min,+)-linear system relies on an efficient computation of operations such as
sum @, inf-convolution * and subadditive-closure * of ultimately pseudo-periodic
and causal functions.

3 Container of (min,+)-linear systems
3.1 Motivations

The exact computation of sum, inf-convolution and subadditive closure for ultimately
pseudo-periodic and nondecreasing functions of .%, can be really time and memory
consuming (see for instance Cottenceau et al (1998-2006); Gaubert (1992); Bouillard
and Thierry (2008)). The main objective of this work is to get some efficient algo-
rithms to handle these functions. To achieve this objective, the function f € F, is
not represented in an exact way'?, but is approximated by a set, more precisely by an
interval of functions: f € f= f, f]| where {f € Z, | f < f}-

Then, operations between these sets have to be defined in order to contain the
result in a guaranteed way. These operations are inspired from the set membership
approach (Jaulin et al, 2001; Moore, 1979) that proposes, for f and g two intervals
of functions, to carry out the computation on all the f and g that respectively belong
to[f, f]and|[g, g]. Formally, the interval operations denoted ¢ € {&,*, *} are
defined by: a

fog={fog|fef=[f, flandgcg=[g,3]}

In order to obtain efficient algorithms, a simple idea consists in doing the computation
to get fo g by handling the bounds of the intervals. But this introduces pessimism
on the computations and does not improve the complexity of the algorithms (we
still handle ultimately pseudo-periodic functions). This is why we headed towards
inclusion functions denoted [¢] € {[@®], [#], 1} and that are such that:

flolg D fog.

In other words, the inclusion function [¢] contains in a guaranteed way the result of
fog, by intrinsically adding pessimism. Hence, the aim is to find inclusion functions
with interesting algorithm complexity and allowing us to obtain intervals as small as
possible.

10" Which is made in the MinMaxGD toolbox.
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The idea is to introduce containers denoted [ f , f |, as intervals, the bounds of
which are less memory consuming than functions of .%, and leading to algorithms
with lower complexity than the ones used in MinMaxGD or in COINC. In this pro-
posed container, the bound f corresponds to the greatest element of the equivalence
class of f modulo the Legendre-Fenchel transform .. Complementary, the bound f
plays the role of lower bound of this equivalence class. Finally, these functions f and
f are piecewise affine, ultimately affine, and respectively concave and convex.

It is important to note that in Network Calculus literature, convex and concave
functions are often used in order to compute faster and easier performance bounds
during the analysis of a data network. For instance in Fidler and Recker (2006), au-
thors take back from the convex analysis (Rockafellar, 1997) that inf-convolution of
convex functions corresponds to addition in the Legendre domain (useful result for
the concatenation of systems). However, they only propose to deal with an upper
bound of the input/output behavior whereas we offer here to deal with a container in
which the transfer relation belongs in a guaranteed way. Another difference is that
they make their computations in the Legendre domain while we always stay in the
(min,+) domain and only use the properties of convex functions. Finally, one can find
in Schmitt and Zdarsky (2006) the use of a lower bound for the system in addition
to the classic upper bound. Indeed, this reference considers almost concave func-
tions that allow them to introduce concave lower bounds of transfer relations and to
propose an efficient computation for the inf-convolution. The definition of the lower
bound for the container proposed here is inspired from this result. Nevertheless, they
do not propose the computation of the subadditive closure as we offer to do here.
Besides, in the definition of our container, a canonical representation is provided in
order to minimize the pessimism of its lower bound.

This section will be organized as follows. In subsection 3.2, the classification of
functions is completed by affine functions, since they will be used to frame func-
tions of .%,. The Legendre-Fenchel transform & is defined in subsection 3.3 and in
subsection 3.4, two operators of approximation are defined to approximate an exact
function from above and from below. Lastly, subsection 3.4 will introduce the con-
tainer we developed as an intersection between the interval of functions [ £, f ] and

the equivalence class of f modulo the Legendre-Fenchel transform .&.

3.2 Affine and ultimately affine functions

First of all, in order to build the container of functions of .%,,, the classification
of functions is completed. Until now, only piecewise constant functions have been
considered. Piecewise affine functions are now necessary. They still are defined from
R to Emm.

Definition 11 (Set .%,,) A function f € .%,, (see figure 4a) is a function that is
constant on the interval | — oo, 7], and:

— piecewise affine, i.e. composed of a finite combination of intervals on which the
function is affine!!,

' The affine parts are linked by non-differentiable points.
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Fig. 4 An ultimately affine function f € .%,, and its factorization: f = Aff’ *g

— nondecreasing,
— ultimately affine from a time denoted Taf: a7, » > 77 and Ja, B € R such that V¢ >

Taf7 f(t) = a[+ﬁa
on |y, +ool.

Property 4 (Asymptotic slope o) Let f be a function of .%,,, its asymptotic slope is
defined by the one of its ultimately affine part: o(f) = a.

Property 5 (Factorization of a function f € F,,) A function f € %, can be seen as
the following inf-convolution illustrated figure 4b:

f=A4r *g,

where K¢, Tr and g € .7, are given such that:

{w=g%ﬂm

Tf :max{t |f(t)=Kf}, and g(t):f(t—’ff)—l('f,

s0 g(0) =0 and o(g) = o(f). It means that a function f € .%,, can always be seen
as a function g (with g(0) = 0) shifted by an elementary function A:jf : Ky is the event
shift and 7y is the time shift.

Definition 12 (Set .Z,¢x) A function f € %, (see figure 5a) is a function of .%,,

that is in addition convex'2.

Definition 13 (Set .Z,.y) A function f € %, (see figure 5b) is a function of .%,,
that is in addition concave!? on |77, +oo.

Remark 6 These kinds of concave functions can also be found in Schmitt and Zdarsky
(2006) under the name almost concave functions or in Lenzini et al (2006) where they
are called pseudoaffine curves.

Definition 14 (Extremal point) In convex and concave functions, a non-differentiable
point is called an extremal point.

12 The epigraph of a convex function is a convex set.
13 The hypograph of a concave function is a convex set.
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Fig. 5 Examples of ultimately affine functions
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Fig. 6 Factorization of a concave function f € Fyey: f = A:ff *Iy

Proposition 1 (Factorization of f € .%,.y) A function f € F .y can be factorized as
follows (see figure 6):

f=47 +I}, (7)

where I'y € Fyaev, T7(0) =0 and o(I7) = o(f).

Proof According to property 5, f = AZ{ * g with g € F,.y and g(0) = 0. So g =TI7}.
O

The function I} is the concave part of f shifted in the plane by the elementary

function Afff . The following theorem about functions denoted I" provides some useful
equalities to deal with operations * and * in the next section.

Theorem 3 (Le Boudec and Thiran (2001, Th. 3.1.3,3.1.6 and 3.1.9)) Let I and
I be two functions of F ey for which I1(0) = I3(0) = 0 (see proposition 1), then:

Li«h=L&h, ®)
with [N ®I; € Fyey and (IT ®15)(0) = 0. Moreover:
L =17, )]

that is I is closed for the subadditive closure operation.
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3.3 Legendre-Fenchel transform

The construction of the container principally lies on the Legendre-Fenchel transform,
well known in convex analysis (Rockafellar, 1997), and already used in Network
Calculus literature to compute efficiently performance bounds (Fidler and Recker,
2006) or in the context of formal series of the idempotent semiring .Z %[y, 6] (Cohen
et al, 1989a; Burkard and Butkovi¢, 2003). In this paper, this transform is applied to
the set .%¢, in order to reduce the computation complexity of operations involving
these functions.

Definition 15 (Legendre-Fenchel transform .#’) The Legendre-Fenchel transform
applied to f € %, is the mapping . defined from (%, ®,*) to the idempotent
semiring of convex functions'* denoted (Zeomer, max, +) by:

Z(f)(s) £ Sl{lP{S-t—f(t)}-

Mapping .Z is a non injective homomorphism from (Fcp, ®, *) to (Zeonvex, max,+),
thatis Vf,g € (Fep,®,*):

Z(f®g) =max(Z(f),Z(g)),
L(fxg) =ZL(f)+Z(g).

Definition 16 (Idempotent semiring .7, Y ) Let us consider the following equiv-
alence relation Vf, g € Fp:

L =2 & fZg

2

Z . . Z . .
where = is a congruence (see lemma 2). The quotient of .7, by = provides an idem-
potent semiring denoted Z, Y (see lemma 1). An element of .7, Y is an equiv-

alence class modulo . denoted [f] & containing all the functions of .%, that have
the same Legendre-Fenchel transform. Operations & and ® of F¢p , o, are defined
below:

[fle®lgle & [fD8le,
fle®lgly £ [f*gle.

This idempotent semiring %, % will play a central role for the definition of the
convex upper bound of our container. Indeed, the following subsection takes back the
link between the Legendre-Fenchel transform of a function and its convex hull.

14 Deonvex 18 the set of convex functions endowed with the pointwise maximum as sum and the pointwise

addition as product.
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Fig. 7 Convex approximation of f € .%, and its equivalence class modulo the Legendre-Fenchel transform

Z

3.4 Operators of approximation

In order to build the container of a function f € %, two operators of approximation
are defined and will be used during the computation of the inclusion functions. The
former is convex and approximates f from above (according to the < order), and the
latter is concave and approximates f from below. We recall that the order < is not the
natural order of functions but the canonical order on (%¢p, ®, *) (see subsection 2.2
and remark 1), that is homogeneous with the literature.

Remark 7 In regard with the notation of property S and in order to make easier the
understanding of this section and the following, the first elementary function AZISO of
a function f = f:f) A,If" € F¢p (see definition 9), will be denoted Afff in the sequel.

3.4.1 Convex approximation

Definition 17 (Convex hull €,,) Let f be a function of %,. The convex hull of
f is denoted %,,,(f) (also called the convex approximation in this paper) and is the
smallest convex function greater than f so €,,(f) = f and G, (f) € Facx (see figure
7a).

Property 6 Mapping %, is a projector, i.e. G (f) = G (Cix(f)) (see definition 5).
Moreover, the asymptotic slopes of %,,(f) and f are equal: o(%,.(f)) = o(f), and
Keu(r) _ AKF

O
Lemma 3 (Baccelli et al (1992, Th. 3.38)) Let 6, (f) and 6,.(g) be the convex hulls
of f and g € F¢p. Functions f and g have the same Legendre-Fenchel transform if,
and only if, they have the same convex hull:

g(f):f(g) g <gwc(f):(gwc(g) A [.ﬂff:[g]ff

Property 7 Functions that have the same extremal points and the same asymptotic
slope than f belong to the equivalent class [ f ] , illustrated on figure 7b by the grey
zone.

the extremal points of &, (f) belong to the function f. In particular A



According to lemma 3, it is so possible to determine the equivalence modulo
the Legendre-Fenchel transform .Z by using the convex hull. As a consequence, the
computations modulo the transform .Z are equivalent to the computations modulo
the convex hull. Formally, we have Vf,g € Z:

[ﬂf@ [g]f = [f@g}f <~ Cox(Cox(f) ©Cix(g)) = Cx(f D g)s (10)
[ﬂf® [g]ﬁf = [f*g]f Aad Cgvx( ( )*%vx<g)) VX(f*g)a (11)
[f]f% = [f*}ff <~ %’X(Cg\m(f)*) %VX(f*)' (12)

Theorem 4 (Baccelli et al (1992, Th. 6.19)) Let f be a function of F¢, and [f].e be
its equivalence class in the idempotent semiring F¢p 2% (see definition 16). Function

Gox(f) € Facx Is the greatest representative of [f].y, i.e.:

[Cx(f) ]z =flz and Vgelflz, &< Gulf)

Hence, thanks to theorem 4, we obtain a method to perform computations on the
idempotent semiring 7, > €ven if in practice the Legendre-Fenchel transform .#
of a function f € %, will never be explicitly computed. Indeed, each equivalence
class of Zp , ., has a canonical representative that is the convex hull of the functions
of the class. Therefore, if we make the computations modulo the convex hull, we
carry out the computations in the quotient dioid %, g We simplify the results and
we still conserve their equivalence classes modulo .Z.

3.4.2 Concave approximation

First of all, let us recall that a function f € %, is constant on ] — oo, Tf] (see remark
7) and then nondecreasing piecewise constant on |7y, 4-co[. Its concave hull denoted
conc(f), i.e. the greatest concave function lower than f (according to the order <),
is necessarily the function € : f — +oo. Hence, this concave hull is uninteresting to
yield a lower approximation of f.

However, a lower bound of f can be defined as a function of .%,., that is constant
on ] — oo, T¢] and concave on |7y, +oo[. This projection in .,y is called a concave
approximation and corresponds to that is defined as an almost concave function in
Schmitt and Zdarsky (2006).

Definition 18 (Concave approximation %;,) Let f be a function of .%,. The con-
cave approximation of f illustrated figure 8 is denoted %,,(f) and defined by:

s [ 1) fors < 17,
Cor(f)(1) = {conc(f)(l) fort > Ti,

where Ty = max{t | f(1) = f(—o0)}. S0 €. (f) < f and €. (f) € Facv-
Property 8 Mapping %, is a projector, i.e. 6, (f) = €ov (€. (f)). Moreover, 6 (., (f)) =

g 5 e
o (f) and A/ = Ag.
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Fig. 8 Concave approximation of f € Fep: € (f) € Facv

Remark 8 1t must be noted that this concave approximation %, is not symmetric to
the convex one %,,. More precisely, the properties equivalent to equations (10) to
(12) are not verified. However, %, is an isotone mapping so the following properties
are satisfied. Let f and g be two functions of .Z¢p:

Ceor(f)DCr(g) S fD8,
{(gc‘)(f) by = Cov(f)*Cer(8) < f*8g,
%cv(g) <8 %v(f)* < f*

and

Cev(Cen(f) ©Cn(8)) < Cor(f D),
Cevr(Cer(f) *Cev(8)) < Cen(f % 8),
(gcv(%CV(f)*) %Cv(f )

3.5 Definition of the container

The objective of this section is to build an approximation of ultimately pseudo-
periodic functions of ., such that the computations on the approximated function
are more efficient than on the original ones. To that aim, the container defined below
is an interval of functions associated to an equivalence class modulo .Z.

Definition 19 (Set F of containers) The set of containers considered in the sequel is
the set denoted F and defined by:

S Flg | f € Fuev, [ € Fuexs 0(f) =0(f) },
with [ f, f ] the subset defined as follows:

([ Fle21f, FIN[fle
={flfr<sr=rf.fle=1[flz}

So, a container of F is a subset of an interval | [ , ? ], the bounds j: and f of which
are respectively concave'> and convex. The elements of | i f 14 are equivalent to
f modulo the Legendre-Fenchel transform .#. This means that Vf € [ f, f ],
f = €x(f) (with 6, the convex approximation given in definition 17).

15 On ]y, +oof.
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Fig. 9 Role of the lower bound .(27 during the construction of a container f=[ f , fl o €F.

3.5.1 Canonical representation of a container of F

Among the containers of set F, we propose to define a canonical one. Its definition is

based on a lower bound of the equivalence class [ f | ... Hence we first introduce this
lower bound.

Definition 20 (Lower bound Q7) Let [ f ].# be an equivalence class of the semiring
Fep o and f € Zucx be its greatest element, that is f = %,.(f) (see theorem 4).

Function Q7 € .7 defined below is a lower bound of [ f ] ¢

n
QAP A and Vi >ty Q(1) = +eo, (13)
i=0

where pairs (;,k;) are the coordinates of the n extremal points of f. Therefore:
f ko _ AX7
VIElf  fle f7Q7 and AJ=Ac].

This lower bound is illustrated figure 9a in which the gray zone represents the equiv-

alent class [ f ] .

Remark 9 Even if function Q7 is a lower bound of [ f ] #, it must be noted that it

does not have the same asymptotic slope than f, indeed according to equation (13)
the asymptotic slope of .(27 is infinite. Therefore € does not belong to equivalence

class [ f |.# (see property 7 and theorem 4).

This lower bound .Q? leads to the following implication: if f € [ f , f ]z, then
f= ]: @ Q?. Therefore, as it is illustrated on figure 9b, ]: DN 7 is the smallest element
of the container [ f , f ], and interval [ f & Q7, f ] (the gray zone on figure 9b)
contains the function f. Consequently, according to definition 19, a same container of
F can be represented by different intervals, as long as f, & .(27 =f,® .Q?. In other
words, one can have (see figure 10):

[Il’f]#[I27?] while [i177]f:[i277]f~



Fig. 10 Canonical representation [ f , f ] of the identical containers [/ f]g and [f,: fle

In order to avoid such ambiguities, a canonical representation for these containers is
defined by doing the concave approximation of f & €2 7

Definition 21 (Canonical representation of a container) The canonical represen-
tation of a container f = [ f, f ], € F is written as follows:

[%v(i@ﬂf)vf]f/:[i/7?]f/7

K K=
with Afjf = Arf;_f , and %, the concave approximation given in definition 18. In the

figure 10, this canonical representation is given by the container | f 3 f ).z since
3= CKCV(L 6997) :%Cv(iz@gf)'

Remark 10 This canonical representation will also be the one chosen for the soft-
ware representation. Indeed, in addition to offering the advantage of representing
unambiguously a container of F, it also allows useless points of f to be removed. In
the example of figure 10, the points of f 1 and f 5 located below f ;can so be removed

in order to keep only the canonical representation [ f 3o f |l

3.5.2 Maximal uncertainty of a container of F

Thanks to the canonical form of a container, f = [ f , f ], € F for which Affi = Afg

and o (f) = o(f) (see definitions 21 and 19), the maximal distances in time and event

domains between f and f are finite and the loss of precision due to approximations
is bounded. This uncertainty is defined below.

Definition 22 (Maximal uncertainty Z; of a container f) Letf=[ f, /], bea
container of F. Its maximal uncertainty denoted X¢ is defined as follows:

Zf = { Dmax ) Biax }
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(@ Case f(T,) > 7(Ta7) and (b) Case f(Ty,) < 7(Ta7) and

max{T, T“T} =T, ; max{T, f’T“T} :7Ta7

7

Fig. 11 Maximal uncertainty Xf = { Diax , Bmax | Of a container f € F

where Dy, and B,y (see figures 11a and 11b) are respectively called the delay and
the backlog of the contailler”’. The former element of X¢ corresponds to the maximal
distance between f and f in the time domain:

- Ty, if f(Tay) > f(Tay)
L < — ar AL 7
The latter element corresponds to the maximal distance between f and £ in the event
domain: 7
Bmax = f(t0) — f(fo) where 1o = max{T,,, Taf}.

These computations, according to Bouillard et al (2007, Lem. 3 et 4), are quite
simple because of the convex characteristics of functions f and f. Indeed, since the
bounds f and f are ultimately affine from 7, n and Ta7 (see definition 11), and with
identical asymptotic slope, it is enough to know where are their last points before
their ultimately affine parts i.e. (T, R f(T, L)) and (Ta77 f (Taf)), and to compare the
obtained coordinates. So, the maximal uncertainty Xy can be computed from these
points as illustrated in figure 11.

4 Operations between containers: inclusion functions

In this section, we consider operations between the containers of F (see definition 19).
These operations between two elements f and g € F are the monotonic nondecreasing
operations ¢ € {®,*, *}, and defined in subsection 3.1 by:

[fog, fog].

Unfortunately, F is not closed for these operations. Hence, we will use inclusion
functions that are internals to F, as in the set membership approach (Moore, 1979;
Jaulin et al, 2001).

16 These designations come from the Network Calculus.
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Definition 23 (Inclusion functions of operators {&,+, *}) Letf=[ f, f ], and
g=[g, g] & be two containers belonging to F and o € {®, *, *} be a set of operations.
Inclusion functions of these operators for containers of F denoted:

[o] € {[®],[+], 1} are such that { flolg > fog,
flo]g € F. (14)
In order to ensure condition (14) and in particular for functions [@®] and ), the set
fog will be upper and lower rounded by the convex and concave approximations %,
and %,,. These approximations are interesting since they lead to operations having a
linear or quasi-linear complexity as it will be shown in the sequel.
Moreover, depending on the needs of operations, the canonical form of container
[ Gor (]:GB.Q?) , f |l (see definition 21) will be used for functions [®] and [x],
whereas for function I, the interval without concave approximation [ f @ Qf , f]
will be picked. This choice is relevant in order to obtain in all cases a weak complex-

1ty.

4.1 Convex and concave approximations %, and %,

First, the complexity of the algorithm giving the convex and concave approximations
of a function f € #,, is proposed below.

Proposition 2 (Algorithmic complexity of 4, and 6.,) Let Ny (respectively N,) be
the number of non-differentiable points of f (respectively g) in F ,,. The computation
of Gx(f) (respectively €.,(g)) is of linear complexity, namely &(Ny) (respectively
O(Ng)).

Proof Convex and concave approximations rely on known algorithms of convex hull
computation in the algorithmic geometry (Graham, 1972). In the worst case, only two
scans of the list of non-differentiable points are required. O

Remark 11 According to definitions 18 and 17, let us recall that:
(f) and Afea(n _ AKr

- %cv(f) € Facvs Cgcv(f) <f G(Cgcv(f)) =0 “Gev(f) T
K Sox

- %vx(f) € yacm Cgvx(f) ? fs G(%vx(f)) = O-(f) and A‘L'(g;(%) = A‘L"(ff,

— %,y and 6, are projectors.

By the way, these projections can be applied to either functions of %, or functions
of F,a.
4.2 Inclusion function of the sum: [®]

Prior to study the inclusion function [©], it must be recalled that operator @ is order-
preserving, i.e. f X g=a® f < a®dg and as a consequence [ Hg < fDg.
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Proposition 3 (Inclusion function [®]) Ler f=[f, flyandg=[g .3 ]y
two containers of F given in their canonical forms. The operation denote [ | and
defined by:

flolg=[flolg. fDlg] £ [Ca(fDg), CulfDE) e,
is an inclusion function for the sum @, i.e.:

Vrelf Flyandvgeg,gly = {{g}ziﬂé}g,

Proof According to remark 11 and since & is order-preserving, Vf € | /o fls o and

Vg[8, 8ly ColfDg) < [Bg =< u(fBE), and projections €., (f & g) and
% x(f ©Z) respectively belong to the sets .,y and .Z,cx. Then, since o ( f)= o(f)

and o(g) = o(g), that the sum @ is the minimum operation, and that ¢ (%, (f ©

g)) = o(f®g) (ibid for f, g and 6., then 6 (% (f ®g)) = min(c(f),0(g))

min(o(f),0(g)) = o6(6w(fDg)).

This inclusion function [6] does not necessarily provide a canonical result. This
requires the concave approximation of (f{®]g® Qm) and we thus obtain the fol-

O

lowing container:
a8 py) - T0N8 )2 = [ u(Gar(f £8) 8 Q) » Gu(TET) L2

Proposition 4 (Algorithmic complexity of [®]) Let Ny, N7, Ng and Ng be the num-
ber of extremal points of respectively f, 7, g and g. The computation of £[®]g is of
linear complexity, namely O(Ny + N7+ Ng + Ng).

Proof The minimum of two ultimately affine functions is of linear complexity since
it requires in the worst case only one scan of extremal points for each function. More-
over, according to proposition 2 the complexity of convex and concave approxima-
tions is linear. O

4.3 Inclusion function of the inf-convolution: [

The inf-convolution * is order-preserving, hence f*xg < f*g
Proposition 5 If f and g € Facy, then frge Facv-

Proof Thanks to the factorization of functions of .7,

fre=(Agf#T})  (Afsly)  see (D),
= (A:f * Afgf) * (I 1) see remark 3,
Kr+K,
= (Acfie,) * (GO see (8), (15)
j*
- Arf*gg *I}*g
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According to theorem 3, the sum of concave functions Ff and I belongs to Fycy.
K Kp+K,
Tj*: = ATf+‘L'g L t
us remark that a similar result can be found in Schmitt and Zdarsky (2006, Lem. 2)
and in Pandit et al (2006, Th. 3.2) . a

Hence, f*g is also a function of .%,., with Ff*g = Ff @I;and A

Proposition 6 If f and g € Facx, then fx g € Fyex.

Proof According to Le Boudec and Thiran (2001, Th. 3.1.6) and Bouillard et al
(2008, Th. 5), if a and b are convex functions of .%,., S0 is a * b. Moreover, the
computation of a * b is obtained by putting end-to-end the different linear pieces of a
and b, sorted by nondecreasing slopes. O

Proposition 7 (Inclusion fonction [x]) Ler f= [ f, f ], andg=[g , g ]y be two
containers of F given in their canonical forms. The operation denoted | [ | and defined
by:

flJg=[fl<]g, flx]g] = [f*g . f+Z ]z

is an inclusion function for the inf-convolution x, i.e.:

Vielf, flyandVge[g,3ly = {{[;"ééﬂf]g,

Proof First, thanks to the order-preserving of operator *, Vf € [ f , flyandVge
(8, 8]lg frg<frg= f *g. Then, thanks to propositions 5 and 6 f*g € Fuevand
f*8 € Fucx. Finally, for the asymptotic slopes o(f*g)and o(f*3):

— thanks to proposition 1 and to equation (15), o (f *g) = (Ff eI, ) Then, since
Iy &I, =min(I},I;), that 6(Iy) = o(f) and that 6(I;) = 0(g), then 6 (f*g) =
min(c(f),0(g)),

— thanks to the proof of proposition 6, the computation of f *g is obtained by
putting end-to-end the different linear pieces of f and g. Since f and g are ul-
timately affine, this handling stops when the lowest asymptotic slope between f
and g is reached, i.e. until min(c(f), o (g)).

Therefore, since 6(f) = o(f) and 6(g) = 6(g). then & (f *g) = min(c(f),0(g)) =

min(o(f),0(3)) = o (f*3)- O

Again, this inclusion function [*] does not necessarily provide a canonical result.
The canonical form of f[*]g is given by:

[ Cov(f[* }g@gf[*]g) m]f = [CKCV((f*&)@Qf*g) , [*8ly

Proposition 8 (Algorithmic complexity of [x]) Let N r:N7,Ng and Ng be the number

of extremal points of respectively f, I2 g and g. The computation of f[]g is of linear
complexity, namely O (Ny + N7+ Ng + Ng).
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Ke,o(F )

TeoweF ™)

Fig. 12 Upper bound f of a container f € F and the convex approximation of its subadditive closure
Gu(f )

Proof According to the proof of proposition 6, the computation of f * g is obtained
by putting end-to-end the different linear pieces of f and g, sorted by nondecreasing
slopes. Hence, the computation only requires a simple scan of functions!”. As regards
the lower bound, the inf-convolution is defined as in equation (15) by:

it is enough to make the minimum of the concave parts with a linear complexity, and
e . Kft+Kg . .

the shift in the plane by the elementary function Aflfjrrf in a constant time, namely

in 0(1). - O

4.4 Inclusion function of the subadditive closure: [*]

The subadditive closure * is order-preserving, hence f * < f *

Lemma 4 (Asymptotic slope of €,.(f ) The asymptotic slope of G (f ") is given
below:

07 ")) = min (o(F),min (7)),

i=0

where pairs (t;,k;) are the n extremal points of f.

Proof Thanks to the characteristics of the convex approximation and the one of the

subadditive closure, function €, (f *) belongs to the set .%,.x with only one extremal
. . TK\ K«fvx(f *) _
point. Hence, according to property 5, €,x(f *) = (AT%X(? " ) * g where K7 =0

To, 7 = 0 and g is a half line with o (G (f 7)) as its slope (see figure 12). Then,

the slope of g comes either from the computations k;/#; or from o (f). O

17" The sort of the function slopes is assumed made by the data structure used for their representation.
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Proposition 9 (Inclusion fonction /) Ler f = | /., [l be a container of F. The
operation denoted ¥ and defined by:

£ = [ §

with I & @ o%cv( )@%V(e@A # (Cov (A )691})) and f4 2 6, (F ), is
an inclusion function for the subadditive closure *, i.e.:

_ A
Vielf, fle = {f[*]eF,

where pairs (t;,k;) of f*! 41 are the n extremal points of f, A is the elementary function
of [ and Iy is the concave part of f (see proposition 1).

Proof First, since £+ = Cn(F "), then £ € F,ex. Moreover, Vf € (f, fle [
T=<T = 6u(f*) Gu(f7) so f* < 1

Second, for the computation of fI*/, contrary to inclusion functions [®] and [#],
proposition 9 does not perform the computation of £*/ with the canonical form of the
container but with the following interval:

Let us recall that ]: &) .Q? is the smallest element of the container. Hence, if f €
([, flg thenfe[f@Q;, fland fE Q5 < f= (f© Q)" < f*. The develop-
ment of (f & Q)" is detailed below:

(f@Q?)* = ( *1'} EB A ) see equations (7) and (13),

:(A,OO@A,ll@...@A""@A FxIy),

= (A,ISO @A,’j‘ B... EBA,H" @AT; * %) see equation (9),
= A,ISO* * A,]? R A,’;”* * (A:fi *Ff*)* see equation (3),
:Atlf)O**A,]j‘**. *Ak" *(e@A *A *Fi) (16)

see equations (2), (3) and (9).

Then, by introducing concave approximations %, in equation (16), we will approach
this computation from below (indeed €, (f) < f) that so becomes:

G (A )*cgw( )*...*%(A,’;n)*%(e@A *fgw( )*rf) 7)

10
Furthermore, the following functions are closed for the subadditive closure operation:

— the concave approximation of the subadditive closure of elementary functions:
‘év( ) (see figure 13),
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Fig. 13 Concave approximation of the subadditive closure of an elementary function: ‘KCV(Aﬁ *) € Facy-

. . .. K K
— the concave approximation of a function containing e: 6, (e @ Affi * ‘@”C‘,(Affi ) *

I7),
— the concave function: FL

So, by applying theorem 3, the definition of the lower bound ) is given by:
* * * Kr Kp*x
1 2 G (A0 ) 0 6u(A8) 8. 8 Ca(af") & o (ed A + (Galar )oI})),

- %%CV(A?*)EB%V(&BA;;* (CKCV(A:{)®12)). (18)

Lastly, since (f © £+)* < f* and since the concave approximations applied to (f
Q+)* approximate the functions from below (¢.,(f) < f), then < ( feQ)”
f*. The function @ is so composed of sums of concave functions, therefore @ S
y&CV'

As regards the asymptotic slopes, let us first deal with the one of f*l. The subad-

@
<

ditive closure of elementary functions A,]f" ) (from f) provides an ultimately pseudo-
periodic function of .%, (see remark 4) with G(Atlf"*) = k;/t; as asymptotic slope.
Moreover, according to Cottenceau et al (1998-20006), let f and g be two functions of
Fep, then o(f xg) = min(o(f),0(g)). Finally, o(I7) = o(f) = o(f) (see proposi-
tion 1 and definition 19). So, the asymptotic slope of £ is given by:

o(t) = o(( 27)") = min (o(7).min () ).

i=0 “t;

where pairs (1;,k;) are the n extremal points of f. According to lemma 4, this asymp-

totic slope is the same than the one of fi*], i.e. ¢ (f*) = o(f*). O

To conclude, the algorithm complexity of the computation of these bounds are
given below.

Proposition 10 (Algorithmic complexity of fT*]) Let N be the extremal point num-
ber of f. The computation of £ s of linear complexity, namely O (Nf).
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Proof According to lemma 4, the computation of fi*] only requires a research of its
asymptotic slope by checking the N7 extremal points of f and the asymptotic slope

o(f). O

Remark 12 One can see that in the proof of proposition 9, the computation of £+
does not come from equation (17) but from equation (18) with concave approxima-
tions. These approximations are necessary to obtain an efficient algorithm for this
inclusion function of the subadditive closure. Indeed, the computation of (f ® Q%)*
involves inf-convolutions of ultimately pseudo-periodic functions of .7, that are very
memory and time consuming. Formally, let f = A,’;O* and f' = A,’i‘* be two subad-
ditive closures of elementary functions with 6(f) < o(f’). These functions are stair
case functions of the set %, and since they have different asymptotic slopes, the
inf-convolution of f by f’ is given by:
frf = (e@Al @...@A((I’;jll))t’?) % (AN,

with K a positive integer conditioning from which moment function f is permanently
above function f’ (see Cottenceau et al (1998-2006) and (Le Corronc, 2011, Th.
A.28)). The algorithm complexity of this computation is linear depending on the size
of K, namely in €(K), but without condition on how the value of K is big. The
algorithm complexity of this computation can not be controlled and the tentatives
undertaken in order to achieve simple and efficient computations become useless by
using this method.

Proposition 11 (Algorithmic complexity of f*)) Let n be the number of elemen-
tary functions A,];" of (f© 27) and Nr, be the number of extremal points of I'y. The

computation of £ is in O((n+ Nr,)log(n+Nry)).
Proof In order to prove that proposition, we will divide equation (18) in two parts.

Sk
— First, let us consider @}, %CV(A,I:’ ).

According to proposition 4, the sum of two functions of .%,.y is of linear complexity.
But, since the computation of ﬂ needs to make the sum of »n functions, the com-
plexity will be normally extended to n?. Nevertheless, thanks to algorithm such as
“divide and conquer” where recursion is used in order to break down a problem into
sub-problems until these become simple enough to be solved directly, this complex-
ity can be reduced to a quasi-linear problem. Then, if a two by two min of ‘@‘,(Atllf" *)
is made, this part of equation is solved in & (nlog(n)).

Kf K‘f*
— Second, for the part &, (e B A, * (%CV(AT; )b 12)) .

*
The sum of %V(A:fﬁ ) and I is made in linear time, namely &'(Nr;) where N is

the number of extremal points of Iy. Then, the shift of Affi is in O(1) as well as
the addition of e. The concave approximation does not modify this result since its
computation is in linear time (see proposition 2). So, the complexity of this part of
equation is in O(Nr;)).
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Therefore, the complexity evaluating the expression in equation (18) is in &((n+
Nr/i)log(n—l—Npi)). |

To summarize, this section has shown that all the inclusion functions [¢] € {[&], [+], "/}
applied to containers of F can be computed with a linear complexity for the sum and
the inf-convolution, and a quasi-linear complexity for the subadditive closure. Of
course, the results of computations also belong to the set F. These advantageous al-
gorithmic complexities are possible only thanks to the convex characteristics of the
bounds of the containers.

It is also important to keep in mind that in all these proposed inclusion functions,
the upper bound f is the canonical representative of the equivalence class [ f ] & of
the elements of the container. Therefore, one can see these operations on the contain-
ers of F as operations on the semiring .7, S for which the handled equivalence

classes are restricted: a container [ f , f ], only describes the elements of the equiv-

alence class of [ f | & greater than f. Finally, since in the container the equivalence

class of the exact system is also preserved (| f ] = [f]#), some of its important
characteristics are kept as the asymptotic slope and the extremal points of the upper
bound that really belong to the exact system.

5 Tests and applications

The container and the algorithms of inclusion functions introduced in this paper
have been implemented in a toolbox called ContainerMinMaxGD. 1t is a set of C++
classes, available at the following address: http://www.istia.univ-angers.fr/~euriell.
lecorronc/Recherche/softwares.php.

Below, are proposed several tests of this toolbox. They have been done by using
a computer with the following configuration: 2,9 GiB of Memory and 4 Processors
(Intel(R) Core(TM) i7 CPU L640 @ 2.13GHz).

5.1 Pessimism of computations and gain in memory consumption

In order to evaluate the pessimism introduced by the inclusion functions and the
performance according to the memory consumption, we consider two containers S
and R of F. The former is the container built from the exact computation § = f ¢
g (with f,g € Z, two exact systems), that is S = [ €.,(S) ,€x(S) ] «. The latter
contains the result of the computation R = f[o]g (with f,g € F two containers that
respectively contain f and g). So S € S C R.

A first criterion deals with the pessimism due to the approximated computations,
that is how close the approximated computations are to the real ones? The inclusion
functions handle containers that are composed of convex and concave approximations
hence, to evaluate the pessimism they introduced, we will compare S, the container
of §, and R, the result of the inclusion functions.
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> {

Fig. 14 Pessimism and memory consumption between the approximated computations R and the exact
ones S €S

Definition 24 (Pessimism of computations) The pessimism between S and R is de-
fined by the formula:
IrS
SR’
where Xy g is the maximal distance between R and S, and X is the maximal uncer-
tainty of R. These quantities are illustrated in figure 14.

This indicator can be completed by another criterion about the gain in memory
consumption we can do with these approximated computations. Indeed, as shown
previously, the complexity of the computations depends of the number of points in
the containers. We can so observe the difference of the number of points between the
exact system S and the container R obtained with inclusion functions.

Definition 25 (Ratio of memory consumption saved) The memory consumption
saved between S and R is evaluated by the following ratio:

Nr

Ns’

where Ny is the number of points of the container R, that is the number of extremal
points of R and R, and N is the number of points of S = f ¢ g, that is the number of
its elementary functions until the periodic part plus the number of points necessary
for one periodicity. These quantities are also illustrated in figure 14, with circles for

the points of S (the last two circle points are for the periodicity in this example) and
triangles for the points of R. In this case, the ratio is equal to 1 —4/8 = 50%.

Remark 13 One can note that since the bound £ of a container is the greatest element
of [f].# (the equivalent class of f modulo the Legendre-Fenchel transform), the pes-
simism between R and S does not come from this upper approximation: R = %,,,(S)
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(see figure 14). However, the error between these two containers comes from the
inequalities obtained with concave approximations: R < %,,(S) (see remark 8).

Below three examples are proposed to analyse the evolution of these two criteria.

5.2 Examples of application
5.2.1 Computation of a transfer function

We give first an example of the computation of a transfer function by comparing
the toolbox ContainerMinMaxGD versus the toolbox MinMaxGD where functions
of F, are used.

For this example, let us consider a SISO system (p = g = 1) described by the
following state representation:

x=Axx®Bxu,
y=Cxx.

Matrices A, B and C are given such that:

39 A45 422 A20
Ajg Ay Ay Ay €
| A27 A36 412
Ay AsT Asp A €
A= , B= and C= (g € € e),
9 A43 A22 439
Ay Ay A5 Aj €
10 427 A32 A32
Ag” Ay Ay Ag €

where entries of matrices belong to the sub-semiring (.%p, @, *). Thanks to theorem
1, the transfer matrix H'*! of the system is obtained by:

H=CxA"xB.

On the one hand, with MinMaxGD, the computations are made on the exact val-
ues of A, B and C with classical operations of (min,+) algebra i.e. {&,*, *}. On the
other hand, with ContainerMinMaxGD, each entry of matrices is lower and upper
approximated by a container belonging to F. The handled matrices are so A,B,C € F
and the performed operations are the inclusion functions {[&], [%], */}. We can note
that entries of matrices are elementary functions, hence there is no uncertainty'® in
these containers: €,,(AX) = €,,(AX) = AK. The computation of the transfer matrix
H is so:

H=C[AM[«B=[H H].

Table 1 describes the lines written with toolboxes MinMaxGD and Container-
MinMaxGD, and the results obtained are illustrated figure 15.

18 The construction of a container f from one elementary function Af provides two identical bounds f =

f with only one extremal point of (7, K) coordinates, and an infinite asymptotic slope 6 (f) = o(f) = +oo.
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Table 1 Script files for computations in toolboxes MinMaxGD and ContainerMinMaxGD

// Script for the example

// Script for the example // with ContainerMinMaxGD

// with Scilab/MinMaxGD MCserie A
A = smatrix(4,4);

A(1,1) = series([39,19]); Al1,1) = (19 39);

A(1,2) = series([45,29]); A(1,2) = (29 45);
: A(1,3) = (14 22);

A(1,3) = series([22,14]);
R A(1,4) = (40 20);

A(1,4) = series([20,40]);
; A(2,1) = (23 1);

A(2,1) = series([1,23]);
) A(2,2) = (5 27);

A(2,2) = series([27,5]);
; A(2,3) = (20 36);

A(2,3) = series([36,20]);
; A(2,4) = (1 12);

A(2,4) = series([12,1]);
: A(3,1) = (48 9);

A(3,1) = series([9,48]);
. A(3,2) = (46 43);

A(3,2) = series([43,46]);
R A(3,3) = (35 22);

A(3,3) = series([22,35]);
R A(3,4) = (32 39);

A(3,4) = series([39,32]);
: A(4,1) = (6 10);

A(4,1) = series([10,6]);
A(4,2) = series([27,271); A(4,2) = (27 27);
’ ’ ’ A(4,3) = (30 32);

A(4,3) = series([32,30]);

A(4,4) = series([32,9]) A(4,4) = (9 32)

B = smatrix(4,1); astal
B(1,1) = series(e) PP

s B(4,1) = (eps)
C = smatrix(1,4); MCserie C

C(1,4) = series(e) c(1,4) = (0 0)

H = C * stargd(A) * B MCserie H

H=C * Star(A) * B

First of all, the pessimism of the container H versus the container that approxi-
mates the exact system S = [ €,,(H) , G,x(H) ] (see definition 24) is:

Sus 8
“HS _ % 9589
Ty 31 2

i.e. H is 25,8% greater than the convex and concave approximations of the exact
computation. Then, let us note that the computation with MinMaxGD produces a
matrix H with a sum of 80 elementary functions AX. Here are some of them (during
the transient and the periodic parts) as well as its asymptotic slope:

H=A0AB oA oAlie.. oAl e...0AZ)xA)", o(H)=31/62.

As regards the elements of the container H, its bounds H and H have many fewer
points than H. Indeed, they have respectively 4 and 3 extremal points given below by
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HeH | A extremal points of [ and T

zone between [ @ T and H

107

2040803

B, =X
28642 max H

0 6 50 78 =Ta§ 148 = Tai
Fig. 15 Transfer matrix H'*! € F, and its container H=[H , H] € F
their pairs (time,event):

H = {(6,10); (67,28); (78,233503) ; (148,107)},

H = {(6,10) ; (50,28) ; (78,41)}.

So, according to the number of points, the memory consumption saved (see definition
25) is:

Ny 7
1—-H L _91,25%.
Ny 80 i

Then, H and H and H have the same first elementary function:
Agh = AT = AZ =AY,
and the asymptotic slope of H corresponds to the reduced form of the one of H:
o(H)=0(H)=1/2.

Finally, the maximal uncertainty Xy of H is also provided by the toolbox. We are in
the case of definition 22 where:

H(T,,)=107>H(T, ) =41 and max{T,, T, } =T, = 148.

H >

Hence:
23 = { Dmax =62, Bmax =31 }.

To conclude this example, let us recall that the exact system H truly belongs to
the grey zone i.e. H® Qp < H < H.
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5.2.2 Subadditive closure of a matrix

The second example comes from Olsder et al (1998) and proposes to compute the
subadditive closure of a given matrix A € (F¢p, ®,*)'9*10. This matrix is a bench-
mark with numerous interconnections between its elements when its subadditive clo-
sure is computed. Indeed, even if the matrix A has not many elements different of &,
the matrix A* is full of functions of ﬂcp, the elements Af of which are given with
Te[0,975])and K € [0, 21 ]. The entries of matrix A that are not the function €
are the following ones:

A(L4)=Ag, A1) =45, Al28)=e  A(32)=44,
A39) =e,  A43)=A4% A(58) =Ak, A(6,4)=e,
A(6,5)=Ak, A(7,6)=Ak, A(7,10)=e, A(8,7)=AL,

A(9,3)=e,  A(9,10)=4k, A(10,7)=e, A(10,9)=A2.

Then, let A € F!°%10 be the container of A. Again, since matrix A contains only el-
ementary functions, there is no uncertainty between A and A, i.e. 6., (A) = G (A) =
A. The computation of AP is made with the ContainerMinMaxGD toolbox whereas
the computation of A* is made with MinMaxGD. Finally, let S € F be the container
that approximates the exact matrix A*, i.e. S = [ €., (A*) , €\x(A*) | 2.

For this example, we can observe that the average of the pessimism of the con-
tainer A"l versus the container approximating the exact system § is:

DN
ZAYS _ 55.07%.
LAk
This pessimistic result must be carefully linked to the average of the uncertainty X, 1
of A which is:
Lyl = { Dmax =286, Bmax =6 }.

Then, even if the container A is about 55% larger than A*, the pessimism is only of
3,3 in the event domain and 157, 3 in the time domain. Finally, as regards the number
of points of AP and A*, the average ratio of memory consumption saved is:

Ny

[+]
—— =98%.
Na* v

1—

5.2.3 More generally

In this example, we propose to generalize the computation of the pessimism and the
gain in memory consumption of our containers. Indeed, we carry out here the subad-
ditive closure of matrices with various sizes, and we observe the average of error as
well as the gain in number of points between the container obtained with inclusion
functions and either the container of the result obtained with exact computations for
the pessimism, or directly the exact system for the number of points.
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Let A € (Fep,®, %) " and A € F*" be two square matrices. The entries of A
are either elementary functions Af , where T and K are integers randomly chosen in
the interval [1,10], or the function € : # — +oo. Matrix A is the container of A, that
is each entry of A is the container obtained from the respective entry of A. Hence,
there is still no uncertainty in A. Then, let R,S € F*"*" and S € (Fp,®,*)" " be
three square matrices. The first contains the result of the computation R = Al and
the second is the matrix container built from the computation § = A*, that is S =
[ 6.v(S) ,6x(S) ] #- So S € S C R. The experimentation is made 5 times with a size
of matrix fluctuating between 2 x 2 and 60 X 60.

For these tests, the average of pessimism observed between R and S is:

IRs _ 27%,
2R
that is R is 27% larger than S. According to the gain in number of points between the
exact system S and the container R, we observe:

that is R saves 71% of space memory in comparison with the exact representation.

5.3 Experimental complexity

A last test of the ContainerMinMaxGD toolbox is about the practical complexity of
the computation of the subadditive closure of a square matrix depending on its size.

To this end, let A be a square matrix of F**". The entries of A are either elemen-
tary functions AX, where T and K are integers randomly chosen in the interval [1,5],
or the function € : t — +co. The computation of AP is made with a size of matrix
fluctuating between 2 x 2 and 60 x 60, and the average of the CPU times is noted
down.

The CPU time for the computation of A, depending on the size of A, is il-
lustrated in figure 16. It appears that the practical complexity is approximatively in
17 (n3 logn), with n the size of the matrix. Moreover, we can see that for example, the
average CPU time of the computation of a 50 x 50 matrix is about 200 seconds.

6 Conclusion

This paper has focused on the computation of the transfer function £ for (min,+)-
linear systems. More precisely, since the exact computations can be time and memory
consuming, we introduced an approximated approach of the exact system / via a
container h € F such that:

h=[h,h]y=[h k] N[h]ly and [h]z=][h]z,

where [h]  is the equivalent class of 2 modulo the Legendre-Fenchel transform ..
The bounds 4 and /4 are two ultimately affine functions with convex characteristics.
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Size of the square matrix (nxn)

Fig. 16 CPU time of the computation of Al depending on the size of A

This work has also been inspired by the set membership approach since the main
operations of (min,+) algebra, i.e. the sum, the inf-convolution and the subadditive
closure, has been integrated into inclusion functions [o] € {[@], [¥], '} in which only
the bounds of the intervals are handled.

Despite the performed approximations, since the equivalence class modulo the
transform .Z of the exact system is preserved, some of its important characteristics
are kept as the asymptotic slope and the extremal points of the upper bound that really
belong to the exact system. Furthermore, the convex characteristics of the bounds of
the interval allow us to reduce both the algorithm complexity of the computations
made over these systems, and the amount of data storage. Indeed, the algorithmic
complexity of inclusion functions is linear for the sum and the inf-convolution, and
quasi-linear for the subadditive closure.

Finally, the container and its algorithms were implemented in a toolbox developed
in C++ and called ContainerMinMaxGD. The proposed tests of this toolbox showed
the performance and the computational advantage of these containers by comparison
with exact solutions.
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