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Abstract: A max-plus system with partial synchronization is a persistent discrete event
system divided into a main subsystem and a secondary subsystem such that the secondary
subsystem has to adjust its behavior to the main subsystem, but the main subsystem is not
affected by the secondary subsystem. A formal model based on max-plus recursive equations is
presented for max-plus systems with partial synchronization. Furthermore, the control problem
of output tracking is addressed by assigning a higher priority to the main subsystem: the
performance of the main subsystem is never degraded to improve the performance of the
secondary subsystem. Two different control approaches are investigated: optimal feedforward
control and model predictive control. In both cases, residuation theory is applied to efficiently
solve the optimization problem.
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1. INTRODUCTION

A discrete event system is said to be persistent if the
occurrence of an event never disables another event. Then,
in a persistent discrete event system, an enabled event
remains enabled until it occurs. Such systems may ap-
pear after solving the conflicts between events by a pre-
defined schedule in the fields of manufacturing processes
or transportation networks. The times when events occur
often play an important role in the dynamics of persis-
tent discrete event systems. Therefore, the fundamental
question is not about the occurrence of an enabled event,
but about its occurring time. In many applications, the
time behavior of a persistent discrete event system is
described by synchronization rules of the following form:
occurrence k of event i occurs at least τ units of time after
occurrence k − l of event j. This kind of synchronization
is referred to in the following as standard synchronization
and leads to recursive equations for the occurring times
of events. After rewriting these equations in the max-plus
algebra, linear equations similar to state-space equations
in classical control theory appear. Therefore, such sys-
tems are called max-plus linear systems. By analogy with
classical control theory, transfer functions are defined for
max-plus linear systems using operatorial representation
(Cohen et al. (1989) and Baccelli et al. (1992)). Moreover,
several methods from classical control theory have been
adapted to max-plus linear systems, e.g., optimal control
(Cohen et al. (1993) and Lhommeau et al. (2003)), model

predictive control (De Schutter and van den Boom (2001)),
and feedback control (Cottenceau et al. (2001)).

In the literature, synchronization rules different from stan-
dard synchronization have already been investigated. Soft
synchronization, introduced in De Schutter and van den
Boom (2003), is defined as a standard synchronization
which can be ignored at a certain cost. Exact synchroniza-
tion of event i and event j corresponds to the following
rule: occurrence k of event i and of event j occur simul-
taneously. Obviously, exact synchronization comes down
to two standard synchronizations: occurrence k of event
i occurs after occurrence k of event j, and, conversely,
occurrence k of event j occurs after occurrence k of event
i. Partial synchronization is another synchronization rule
introduced in David-Henriet et al. (2013) corresponding to
an asymmetric form of exact synchronization. The partial
synchronization of event i by event j means that event i
can only occur when (not after) event j occurs.

In this paper, a particular class of persistent discrete
event systems is considered. The time behavior of these
systems is ruled only by standard synchronizations and
partial synchronizations. The system is divided into two
disjoint (i.e., with disjoint event sets) subsystems (a main
subsystem and a secondary subsystem) such that only
standard synchronizations of events in the same subsystem
and partial synchronizations of events in the secondary
subsystem by events in the main subsystem exist. Such
systems are called max-plus systems with partial synchro-



nization. From a practical point of view, max-plus systems
with partial synchronization are useful to model systems
divided in two independent subsystems: a main subsystem
and a secondary subsystem such that the secondary sub-
system adjusts its behavior to the main subsystem, but the
main subsystem is not affected by the secondary subsys-
tem. In public transportation networks, for example, a user
(secondary subsystem) waits for his bus (main subsystem),
but the bus does not wait for the user: the user has to adapt
his behavior to the bus time-schedule. In David-Henriet
et al. (2013), this class of systems has been investigated
for a main subsystem composed of independent events and,
under this assumption, optimal feedforward control has
been defined. In this paper, this restriction is dropped:
the main subsystem is a max-plus linear system with its
own dynamics. Furthermore, optimal feedforward control
and model predictive control (MPC) are investigated for
max-plus systems with partial synchronization.

Necessary mathematical tools are recalled in § 2. In § 3, a
model for max-plus systems with partial synchronization
is presented. The main contributions of this paper are
introduced in § 4: optimal feedforward control and MPC
for max-plus systems with partial synchronization.

2. MATHEMATICAL PRELIMINARIES

The following is a short summary of basic results from
dioid theory and residuation theory. The reader is invited
to consult Cohen et al. (1989) and Baccelli et al. (1992)
for more details.

2.1 Dioid Theory

A dioid D is a set endowed with two internal operations
⊕ (addition) and ⊗ (multiplication, often denoted by
juxtaposition), both associative and both having a neutral
element denoted ε and e respectively. Moreover, ⊕ is
commutative and idempotent (∀a ∈ D, a ⊕ a = a), ⊗ is
distributive with respect to ⊕, and ε is absorbing for ⊗
(∀a ∈ D, ε ⊗ a = a⊗ ε = ε). The operation ⊕ induces an
order relation � on D, defined by ∀a, b ∈ D, a � b ⇔ a⊕
b = b.

A dioid D is said to be complete if it is closed for infinite
sums and if multiplication distributes over infinite sums.
A complete dioid admits a greatest element ⊤ =

⊕

x∈D x.
On a complete dioid, a new internal operation ∧ is defined
by, for all a, b ∈ D,

a ∧ b =
⊕

x∈Xa,b

x with Xa,b = {x ∈ D|x � a and x � b}

Clearly, ∧ is idempotent and admits ⊤ as neutral element.
Endowed with ∧ and ⊕, a complete dioid is a complete
lattice (see Blyth (2005) for a survey on lattice theory).

Example 1. A well-known complete dioid is the (max,+)-
algebra, denoted Nmax: N0 ∪ {−∞,+∞} is endowed with
max as addition and + as multiplication. ε is equal to −∞
and ⊤ to +∞. The associated order relation � is the usual
order relation ≤.

By analogy with standard linear algebra, ⊕ and ⊗ are
defined for matrices with entries in a dioid. For A,B ∈
Dn×m and C ∈ Dm×p,

• (A⊕B)ij = Aij ⊕Bij

• (A⊗ C)ij =
⊕m

k=1 AikCkj

Furthermore, endowed with these operations, the set of
square matrices with entries in a complete dioid is also a
complete dioid.

Daters

Definition 2. (Dater). A dater f is an isotone (i.e., order-
preserving) mapping from Z to the complete dioid Nmax

such that f (k) = ε for k < 0.

The set of daters, denoted Σ, inherits the operation ⊕
defined on Nmax. For f1, f2 ∈ Σ,

∀k ∈ Z, (f1 ⊕ f2) (k) = f1 (k)⊕ f2 (k)

The operation ⊕ admits a neutral element ε in Σ defined
by, for all k ∈ N0, ε (k) = ε. The order relation � on Nmax

induces an order relation � on Σ. For f1, f2 ∈ Σ,

f1 � f2 ⇔ (∀k ∈ Z, f1 (k) � f2 (k))

Then, endowed with ⊕, Σ is a join semilattice.

A dater over a finite horizon is a dater f such that
{k ∈ Z|f (k) ∈ N0} is a finite set. The set of daters over a
finite horizon is denoted Σf . Obviously, for all f1, f2 ∈ Σf ,
f1 ⊕ f2 belongs to Σf .

2.2 Residuation Theory

In the following, some concepts and results of residuation
theory are recalled. A survey is available in Blyth (2005).

Definition 3. (Residuation). Let f : E → F with E and
F ordered sets. f is said to be residuated if f is isotone
and if, for all y ∈ F , the least upper bound of the subset
{x ∈ E|f(x) � y} exists and lies in this subset. This
element in E is denoted f ♯(y). Mapping f ♯ from F to E
is called the residual of f .

Over complete dioids, the mapping La : x 7→ a ⊗ x (left-
product by a), respectively Ra : x 7→ x⊗ a (right-product
by a), is residuated. Its residual is denoted by L♯

a(x) = a ◦\x
(left-division by a), resp. R♯

a(x) = x◦/a (right-division by
a). As left- and right-products are extended to matrices
with entries in a complete dioid, left- and right-divisions
are also extended to matrices with entries in a complete
dioid.

3. MODEL OF MAX-PLUS SYSTEMS WITH
PARTIAL SYNCHRONIZATION

In the following, a formal description of max-plus systems
with partial synchronization based on daters is proposed.
An event v is equipped with an eponym dater v such that,
for k ∈ N0, v (k) corresponds to the time of occurrence k
of event v.

The event set of the system is partitioned into input events
u, state events x, and output events y such that input
events are not subject to standard synchronizations and
there is no standard synchronization by output events.
From now on, the set of input events, state events, and
output events in the main subsystem and in the secondary
subsystem are assumed non-empty. For many practical ap-
plications, this assumption holds. Furthermore, the system



operates under the earliest functioning rule: each state or
output event occurs as soon as it is enabled.

The main subsystem is a max-plus linear system, as
the only synchronizations influencing its dynamics are
standard synchronizations. Then, the dynamics of the
main subsystem is described by

{

x1 (k) = A1x1 (k − 1)⊕B1u1 (k)
y1 (k) = C1x1 (k)

(1)

where u1, x1, and y1 are the input, state, and output as-

sociated with the main subsystem. Matrices A1 ∈ N
n1×n1

max ,

B1 ∈ N
n1×m1

max , and C1 ∈ N
p1×n1

max are obtained from the
standard synchronizations in the main subsystem.

The equations for the dynamics of the secondary subsys-
tem are slightly different from (1) due to partial synchro-
nizations of events in the secondary subsystem by events
in the main subsystem. Without loss of generality, it is
possible to assume that there exist only partial synchro-
nizations of state events in the secondary subsystem by
state events in the main subsystem. Then, the dynamics
of the secondary subsystem is given by the least solution
of










x2 (k) � A2,0x2 (k)⊕A2,1x2 (k − 1)⊕B2u2 (k)
y2 (k) = C2x2 (k)

Im

(

(x2)j

)

⊆ Φj for all j
(2)

where u2, x2, and y2 are the input, state, and output asso-
ciated with the secondary subsystem. MatricesA2,0, A2,1 ∈

N
n2×n2

max , B2 ∈ N
n2×m2

max , and C2 ∈ N
p2×n2

max are obtained from
the standard synchronizations in the secondary subsystem.
The last condition in (2) is due to partial synchronizations.
Φj denotes the set of admissible (with respect to partial
synchronizations) occurring times of state events (x2)j .
Then, Φj is defined by

Φj = Nmax ∩
⋂

i∈Sj

(Im ((x1)i) ∪ {⊤})

where Sj is the set of indices i such that there exists a
partial synchronization of event (x2)j by event (x1)i. ⊤
is always included in Φj to model the non-occurrence of
event (x2)j : (x2)j (k) = ⊤ means that occurrence k of

event (x2)j never happens.

A max-plus system with partial synchronization is com-
posed of m = m1 + m2 input events, n = n1 + n2 state
events, and p = p1 + p2 output events.

3.1 System Evolution on Finite Horizon

In the following, a method is presented to calculate the
response of a max-plus system with partial synchroniza-
tion to an input u divided into input u1 corresponding
to the main subsystem and input u2 corresponding to
the secondary subsystem. It is assumed that input u is
composed of daters over a finite horizon (i.e., u ∈ Σm

f ):
there exists L in N0 such that, for k ≥ L, all entries of
u (k) are equal either to ε or to ⊤ and u (k) = u (L).
Then, an input event uj is either insignificant (i.e., for
all k ∈ Z, uj (k) = ε) or admits at most L occurrences. By
injecting u1 in (1), it appears that x1 (k) = x1 (L+ n1) for
k ≥ L+n1. Then, the time behavior of the main subsystem
is completely defined after a finite number of operations.

For the secondary subsystem, the sets Φj are determined
by the dynamics of the main subsystem. The cardinality
of Φj is bounded by L. The response of the secondary
subsystem to u2 is obtained using the method presented
in David-Henriet et al. (2013). In the same way, the time
behavior of the secondary subsystem is completely defined
after a finite number of operations, as x2 (k) = x2 (L+ n2)
for k ≥ L + n2. To calculate the complete time behav-
ior of event (x2)j , it is only necessary to scan once Φj .
The amount of calculations necessary to determine the
response to input u in Σm

f is linear in L. To summarize, the
calculation of state x boils down to evaluate successively
two recurrence relations over L+max (n1, n2) steps.

As all entries of u (L) are equal either to ε or to ⊤, all en-
tries of x (L+max (n1, n2)) and y (L+max (n1, n2)) are
equal either to ε or to ⊤. Then, each state or output event
is either insignificant or admits at most L + max (n1, n2)
occurrences. Consequently, an input-output mapping H
from Σm

f to Σp
f is associated with a max-plus system with

partial synchronization. H is divided into input-output
mappings H1 associated with the main subsystem and H2

associated with the secondary subsystem. H1 is defined
from Σm1

f to Σp1

f . However, due to partial synchronizations
of events in the secondary subsystem by events in the main
subsystem, H2 takes into account input u1. Then, H2 is
defined from Σm

f to Σp2

f .

Remark 4. H1 corresponds to the input-output mapping
of a max-plus linear system. Therefore, using operatorial
representation, H1 has an explicit form, which allows to
efficiently calculate the response of the main subsystem
to periodic inputs (see Cohen et al. (1989)). However, to
preserve the analogy between the main subsystem and
the secondary subsystem and to simplify the discussion
on complexity, it is still assumed that u1 belongs to Σm1

f

in the following.

The next example shows that the input-output mapping
H might not be isotone.

Example 5. A simple max-plus system with partial syn-
chronization is considered. The main subsystem is de-
scribed by











x1 (k) =

(

e ε
2 e
5 2

)

u1 (k)

y1 (k) = ( ε ε e )x1 (k)

The secondary subsystem is described by
{

x2 (k) � u2 (k)
y2 (k) = x2 (k)
Im ((x2)1) ⊆ Φ1

where x2 is partially synchronized by (x1)2. First, we
consider input u′ defined by

(u′
1)1 (k) = (u′

1)2 (k) =

{

ε if k < 0
e if k = 0
⊤ if k > 0

u′
2 (k) =

{

ε if k < 0
3 if k = 0
⊤ if k > 0

This leads to output y′ with



y′1 (k) =

{

ε if k < 0
5 if k = 0
⊤ if k > 0

and y′2 (k) =

{

ε if k < 0
⊤ if k ≥ 0

Second, we consider the input u′′ defined by (u′′
1)1 = (u′

1)1,
u′′
2 = u′

2, and

(u′′
1)2 (k) =

{

ε if k < 0
3 if k = 0
⊤ if k > 0

This leads to output y′′ with y′′1 = y′1 and

y′′2 (k) =

{

ε if k < 0
3 if k = 0
⊤ if k > 0

Therefore, u′ ≺ u′′ and y′′ ≺ y′. The input-output
mapping of the considered max-plus system with partial
synchronization is not isotone.

4. CONTROL OF MAX-PLUS SYSTEMS WITH
PARTIAL SYNCHRONIZATION

The control objective is to track an output reference z
divided into output reference z1 corresponding to the
main subsystem and output reference z2 corresponding
to the secondary subsystem. The priority is given to the
performance of the main subsystem over the one of the
secondary subsystem: the performance of the main subsys-
tem shall not be degraded to improve the performance of
the secondary subsystem. E.g., in a public transportation
network, a bus is not delayed by the late arrival of an user.
The control problem is first solved for the main subsystem
by neglecting the secondary subsystem. Second, it is solved
for the secondary subsystem using the predefined behavior
of the main subsystem. Hence, the secondary subsystem
takes into account the output reference of the main sub-
system, but the main subsystem is not affected by the
output reference of the secondary subsystem. Formally,
this is expressed by a lexico-graphic order relation, denoted
�Φ, based on the the partition in main subsystem and
secondary subsystem. For the input,

u �Φ u′ ⇔







u1 ≺ u′
1

or
u1 = u′

1 and u2 � u′
2

A similar order relation holds for the state and the output.
To avoid ambiguity between the order relations �Φ and
�, the order relation �Φ is always explicitly mentioned
whenever it is considered. In this section, two different
control approaches are investigated: optimal feedforward
control and model predictive control.

4.1 Optimal Feedforward Control

For optimal feedforward control, the output reference z is
composed of predetermined daters over a finite horizon.
To simplify the following discussion, it is assumed that all
entries from z are different from ε. Then, there exists L in
N0 such that zi (L) = ⊤ with 1 ≤ i ≤ p. The problem is
to find an optimal (according to a criterion given below)
input, denoted uopt, ensuring that output events occur at
the latest at the occurring times specified by the output
reference z. Formally, this corresponds to H (uopt) � z.

This problem has already been solved for max-plus linear
systems described by

{

x (k) = Ax (k − 1)⊕Bu (k)
y (k) = Cx (k)

(3)

with A ∈ N
n×n

max, B ∈ N
n×m

max , and C ∈ N
p×n

max. In this case,
the optimal input uopt is defined as the greatest input u
such that H (u) � z. This is known as the just-in-time
criterion: the input events occur as late as possible while
ensuring H (u) � z. The reference output z is tracked
from below as closely as possible. The calculation of
uopt is completed using the backward recursive equations
introduced in Cohen et al. (1993),

{

ζ (k) = A ◦\ζ (k + 1) ∧ C ◦\z (k)
uopt (k) = B ◦\ζ (k)

(4)

where ζ is the co-state associated with z (i.e., the greatest
state leading to an output less than or equal to z). As
all entries of z (L) are equal to ⊤, all entries of ζ (L) and
uopt (L) are equal to ⊤. Then, uopt is completely defined
after a finite number of operations. The input-output
mapping H from Σm

f to Σp
f associated with (3) is isotone

and, for all z ∈ Σp
f , H (u) � z admits a greatest solution

in Σm
f . Therefore, H is residuated and uopt = H♯ (z).

For max-plus systems with partial synchronization, the
optimal input is the greatest (with respect to �Φ) input
u such that H (u) � z. The output reference z is tracked
from below as closely as possible taking into account the
higher priority assigned to the main subsystem.

First, the optimal input of the main subsystem, denoted
u1opt, is obtained by neglecting the secondary subsystem.
This comes down to the calculation of the optimal input

of a max-plus linear system, i.e., u1opt = H♯
1 (z1). Second,

the state of the main subsystem is obtained by injecting
u1opt in (1) and yields Φopt,j with 1 ≤ j ≤ n2. As
u1opt belongs to Σm1

f , this step terminates after a finite
number of operations. Third, the optimal input of the
secondary subsystem, denoted u2opt, is calculated under
the assumption u1 = u1opt. Then, u2opt is the greatest
solution of










ζ2 (k) � A2,0 ◦\ζ2 (k) ∧ A2,1 ◦\ζ2 (k + 1) ∧ C2 ◦\z2 (k)
u2opt (k) = B2 ◦\ζ2 (k)

Im

(

(ζ2)j

)

⊆ Φopt,j with 1 ≤ j ≤ n2

where ζ2 is the co-state of the secondary subsystem associ-
ated with z2 (i.e., the greatest state leading to an output
less than or equal to z2). As all entries of z2 (L) are equal to
⊤, all entries of ζ2 (L) and u2opt (L) are equal to ⊤. Then,
u2opt is obtained after a finite number of operations using
the approach developed in David-Henriet et al. (2013). The
mapping H2,z1 defined by

H2,z1 (u2) = H2

(

H♯
1 (z1) , u2

)

is an input-output mapping for the secondary system
parametrized by the output reference z1 of the main
subsystem. This mapping is isotone and, for all z2 ∈
Σp2

f , H2,z1 (u) � z2 admits a greatest solution in Σm2

f .

Therefore, H2,z1 is residuated and u2opt = H♯
2,z1

(z2).
By analogy with the response to an input, the amount
of calculations necessary to calculate the optimal input
associated with an output reference z in Σp

f is linear in L.



Remark 6. The input-output mapping H from Σm
f , en-

dowed with �Φ, to Σp
f might not be isotone: in Ex. 5,

u′ ≺Φ u′′ and y′′ ≺ y′. Then, H might not be residuated.
However, for all z in Σp

f , the least upper bound (with

respect to �Φ) of the subset
{

u ∈ Σm
f |H (u) � z

}

exists

and lies in this subset.

Feasible Reference Output The system might not be able
to respect the output reference z. This translates into an
unrealizable optimal input: some entries of uopt (0) are
equal to ε. We then consider the problem of finding the
least (with respect to �Φ) feasible output reference z′

greater than or equal to z. Optimality of z′ with respect to
�Φ ensures that the performance of the main subsystem is
not degraded to improve the performance of the secondary
subsystem. The first step focuses on the main subsystem
and neglects the secondary subsystem. The aim is to
determine the least feasible output reference of the main
subsystem z′1 greater than or equal to z1. An unrealizable
input such that H1 (u1) � z1 is ε1L, the entries of which
are all equal to εL defined by

εL (k) =

{

ε if k < L
⊤ if k ≥ L

Then, H♯
1 (z

′
1) � H♯

1 (z1) � ε1L. The least realizable input
greater than or equal to ε1L is e1L, the entries of which
are all equal to eL defined by

eL (k) =

{

ε if k < 0
e if 0 ≤ k < L
⊤ if k ≥ L

Therefore, as H♯
1 (z

′
1) is realizable, H♯

1 (z
′
1) � e1L. Conse-

quently, z′1 � H1 (e1L)⊕ z1. Furthermore,

H♯
1 (H1 (e1L)⊕ z1) � e1L

Then, H1 (e1L) ⊕ z1 is feasible. Consequently, z′1 =
H1 (e1L) ⊕ z1. In the next step, the least feasible out-
put reference of the secondary subsystem z′2 greater than
or equal to z2 is calculated. By analogy with the main
subsystem, z′2 = H2,z′

1
(e2L) ⊕ z2, where e2L is a vector

of appropriate dimension with all entries equal to eL. In
terms of complexity, the calculation of the least (with
respect to �Φ) feasible output reference greater than or
equal to a predefined output reference z is linear in L.

4.2 Model Predictive Control

A survey on MPC in classical control theory is available
in Morari et al. (1989). MPC for max-plus linear systems
has been widely studied (e.g., De Schutter and van den
Boom (2001) and Necoara et al. (2008)). The principle
of MPC for max-plus linear systems is briefly recalled
in the following. At time t, the system response to an
input is predicted using a model. Then, based on this
output prediction, an optimal input is selected. At time
t + 1, the optimal input is applied to the system and the
computation is repeated using event occurrences at time
t+ 1. In the following, Kv,t is defined as the index of the
last occurrence of event v before or at time t, i.e., at time
t event v has occurred Kv,t times.

For max-plus systems with partial synchronization, the
aim is still to track the output reference z. To efficiently

find the optimal input, the objective is reduced to a
tracking horizon in terms of occurrences of events of size
M . This leads to a specific output reference zt at time t
defined by

(zt)i (k) =

{

yi (k) if k ≤ Kyi,t

zi (k)⊕ 1t if Kyi,t < k ≤ Kyi,t +M
⊤ if k > Kyi,t +M

with 1 ≤ i ≤ p.Kuj ,t+1 occurrences of input event uj with
1 ≤ j ≤ m are sufficient to induce Kyi,t + 1 occurrences
of output event yi. Therefore, as a max-plus system with
partial synchronization is event-invariant, Kuj ,t + M + 1
occurrences of input event uj with 1 ≤ j ≤ m are sufficient
to induce Kyi,t + M + 1 occurrences of output event yi.
Then, the optimal input computed at time t, denoted ut,
fulfills

(ut)j (k) =

{

uj (k) if k ≤ Kuj ,t

⊤ if k > Kuj ,t +M

with 1 ≤ j ≤ m. Consequently, it remains to determine
the occurring times of input event (ut)j for occurrences

Kuj ,t + l with 1 ≤ l ≤ M (i.e., the next M occurrences
of input event (ut)j). A similar reasoning leads to the
same results for state and output events. Then, to solve
the control problem over a tracking horizon of size M , it
is only necessary to predict the next M occurrences of
each event. Therefore, the tracking horizon corresponds
to a prediction horizon. A fundamental difference between
this approach and MPC in classical control theory is that
the prediction horizon lies in the event domain while the
iteration is done in the time domain. Therefore, at time
t, the prediction horizon associated with an event may
or may not shift depending on the occurrence of this
event at time t. Consequently, the starting and ending
occurrences of prediction horizons associated with different
events might be different. A natural tuning parameter
in this approach is the size M of the tracking horizon.
The method to select the optimal input comes down to
calculate the optimal control while considering the history
of the system. In Menguy et al. (2000), this problem is
solved using operatorial representation. The idea of using
residuation theory to solve the optimization problem in
MPC is borrowed from Necoara et al. (2008).

As before, due to the priority of the main subsystem
over the secondary subsystem, the control problem is first
solved for the main subsystem by neglecting the secondary
subsystem. The output reference of the main subsystem
z1t might not be feasible. Then, the output reference of
the main subsystem is relaxed to ensure the existence
of a realizable input. As in optimal control, the feasible
reference output z′1t is defined by

z′1t = z1t ⊕H1 (u
′
1t)

where u′
1t is defined by

(u′
1t)j (k) =







(u1)j (k) if k ≤ K(u1)j ,t

1t if K(u1)j ,t
< k ≤ K(u1)j ,t

+M

⊤ if k > K(u1)j ,t
+M

with 1 ≤ j ≤ m1. The only terms which might differ
between (z1t)i and (z′1t)i are for occurrences K(y1)i,t

+ l

with 1 ≤ l ≤ M . These terms are calculated using (1).
Second, the missing coefficients of u1t are obtained with
(4). To ensure linear performance in M , a componentwise
approach is preferred to a matrix one: componentwise
recursive equations are derived from (1) and (4).



After predicting the state of the main subsystem using
the computed optimal input, the optimal input of the
secondary subsystem is obtained using a similar method.
Due to the implicit equation in (2), it is necessary to use, in
the prediction, a particular order for the events depending
on the structure of the system (see David-Henriet et al.
(2013)). These steps are also linear in M . Therefore, in
terms of complexity, the optimization step for MPC with
a tracking horizon of size M is linear in M .

Example 7. A simple max-plus system with partial syn-
chronization is considered. The main subsystem is de-
scribed by







x1 (k) =

(

ε e
ε 2

)

x1 (k − 1)⊕

(

e
2

)

u1 (k)

y1 (k) = ( ε e )x1 (k)

The secondary subsystem is described by


























x2 (k) �

(

ε ε
1 ε

)

x2 (k) ⊕

(

ε e
ε ε

)

x2 (k − 1)

⊕

(

e
ε

)

u2 (k)

y2 (k) = ( ε e )x2 (k)
Im ((x2)1) ⊆ Φ1

where (x2)1 is partially synchronized by (x1)2. The output
references for the main subsystem and the secondary
subsystem are

(z1 (k))0≤k≤8 = {3, 5, 6, 12, 15, 16, 19, 22,⊤}

(z2 (k))0≤k≤4 = {4, 8, 15, 21,⊤}

Furthermore, a perturbation is assumed: occurrence 6 of
(x1)1 occurs at the earliest at time t = 20. For a tracking
horizon of size 2, the following results are obtained:

(u1 (k))0≤k≤8 = {1, 3, 5, 10, 13, 15, 17, 22,⊤}

(y1 (k))0≤k≤8 = {3, 5, 7, 12, 15, 17, 22, 24,⊤}

(u2 (k))0≤k≤4 = {3, 5, 7, 21,⊤}

(y2 (k))0≤k≤4 = {4, 6, 8, 23,⊤}

MPC takes into account the perturbation on (x1)1 by
delaying occurrence 7 of u1 and occurrence 3 of u2. For
a tracking horizon of size 3, the following results are
obtained:

(u1 (k))0≤k≤8 = {0, 2, 4, 10, 12, 14, 17, 22,⊤}

(y1 (k))0≤k≤8 = {2, 4, 6, 12, 14, 16, 22, 24,⊤}

(u2 (k))0≤k≤4 = {2, 4, 14, 22,⊤}

(y2 (k))0≤k≤4 = {3, 5, 15, 23,⊤}

With a tracking horizon of size 3, the output reference
of the main subsystem is respected. In this case, the
performance is better with a tracking horizon of size 3
than with a tracking horizon of size 2.

5. CONCLUSION

In this paper, the modelling of max-plus systems with
partial synchronization has been investigated. A method
to calculate the response to an input composed of daters
over a finite horizon is presented. The control of max-plus
systems with partial synchronization has also been stud-
ied. In the chosen approach, the performance of the main
subsystem is not degraded to improve the performance of
the secondary subsystem. This divides the control problem

in two subproblems. First, the control problem is solved
for the main subsystem by neglecting the secondary sub-
system. Second, under a predefined behavior of the main
subsystem, the control problem is solved for the secondary
subsystem. This is expressed by optimality with respect to
the lexico-graphic order �Φ. The two considered control
methods are optimal feedforward control and MPC. The
main advantages of MPC over optimal feedforward control
is the ability to react to perturbations and to update the
output reference during run-time. Its main disadvantage is
that calculations, linear in the size of the tracking horizon,
are necessary during run-time to compute the next occur-
ring times of input events. A major drawback for MPC
applied to max-plus systems with partial synchronization
in comparison to MPC applied to max-plus linear systems
is that, at present, we cannot take constraints into account.
A possible improvement is to use operatorial representa-
tion to develop MPC over an infinite tracking horizon.
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