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Disturbance Decoupling of Timed Event

Graphs by Output Feedback Controller

M. Lhommeau, L. Hardouin and B. Cottenceau

Abstract

This paper deals with the closed loop controller design for (max,+)-linear systems (Timed Event

Graphs in the Petri nets formalism) when some exogenous and uncontrollable inputs disturb the system.

The control law (u = Fx ⊕ v) is designed in order to take into account the disturbance effects in an

optimal manner with regards to the just-in-time criterion. This problem is reminiscent of the disturbance

decoupling control problem for classical linear systems.

Index Terms
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I. INTRODUCTION

Discrete Event Systems (DES) appear in many applications in manufacturing systems [1],

computer and communication networks [14] and are often described by the Petri Net formalism.

Timed-Event Graphs (TEG) are Timed Petri Nets in which all places have single upstream

and single downstream transitions and appropriately model DES characterized by delay and

synchronization phenomena. Twenty-five years ago, TEG behavior was described by linear model

in some idempotent semiring (see [5] and also [2], [9], [12]). In the sequel many achievements on

the control of TEG arose in [9], [10], [17]. The control strategies of TEG are very reminiscent of

the control of classical linear systems, the main difference being due to the algebraic setting. In

[2, §5.6] the optimal open-loop control is introduced. In [10], [16] closed-loop control strategies

are introduced, the controller design is given in order to achieve model matching problem. This

paper proposes to consider control of (max,+)-linear system when some disturbances act on

the system. Disturbances are uncontrollable inputs which disable the firing of internal transitions
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of the TEG and lead to an useless accumulation of tokens inside the graph. The controller

aims to avoid, as much as possible, this useless token accumulation1 without altering the system

performances. This is the best that we can do from the just-in-time point of view when these

systems are disturbed.

II. ALGEBRAIC TOOLS

A. Ordered sets, residuation and idempotent semirings

In this section, we recall some basic notions about partially ordered sets, residuation and

idempotent semirings. See [2]–[4] for more details. By ordered set, we will mean throughout

the paper a set equipped with a partial order. We say that an ordered set (X ,�) is complete

if any subset A ⊂ X has a least upper bound (denoted by
∨
A). In particular, X has both a

minimal (bottom) element ⊥X =
∨
∅, and a maximal (top) element >X =

∨
X . Since the

greatest lower bound of a subset A ⊂ X can be defined by
∧
A =

∨
{x ∈ X | x � a,∀a ∈ A},

X is a complete lattice.

If (X ,�) and (Y ,�) are ordered sets, we say that a map f : X → Y is isotone if x � x′ ⇒

f(x) � f(x′). Map f : X → Y is residuated if there exists a map f ] : Y → X such that

∀x ∈ X ,∀y ∈ Y , f(x) � y ⇐⇒ x � f ](y),

which means that for all y ∈ Y , the set {x ∈ X | f(x) � y} has a maximal element, f ](y). Let

(X ,�) and (Y ,�) be complete ordered sets, map f : X → Y is lower semicontinuous (for

short l.s.c.) if for all A ⊂ X , f (
∨
A) =

∨
f (A), where f (A) = {f(a) | a ∈ A}. In particular,

when A = ∅, we get f (⊥X ) = ⊥Y .

When (X ,�) and (Y ,�) are complete ordered sets, there is a simple characterization of

residuated map.

Lemma 1: Let (X ,�) and (Y ,�) be complete ordered sets. A map f : X → Y is residuated

if, and only if, it is lower semicontinuous.

Proof: See [4, Th. 5.2] or [2, Th. 4.50].

We now apply these notions to idempotent semirings. Recall that a semiring is a set S, equipped

with two operations ⊕,⊗, such that (S,⊕) is a commutative monoid (the zero element will be

1In the manufacturing framework, this corresponds to reduce the work-in-process and to satisfy the just-in-time criterion.
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denoted ε), (S,⊗) is a monoid (the unit element will be denoted e), operation ⊗ is right and left

distributive over ⊕, and ε is absorbing for the product (i.e. ε⊗ a = a⊗ ε = ε,∀a). A semiring

S is idempotent if a⊕ a = a for all a ∈ S.

A non empty subset B of a semiring S is a subsemiring of S if for all a, b ∈ B we have

a⊕ b ∈ B and a⊗ b ∈ B.

In an idempotent semiring S, operation ⊕ induces a partial order relation

a � b ⇐⇒ a = a⊕ b, ∀a, b ∈ S. (1)

Then, a ∨ b = a⊕ b. We say that an idempotent semiring S is complete if it is complete as an

ordered set, and if for all a ∈ S, the left and right multiplications2 by a, La : S → S, x 7→ ax

and Ra : S → S, x 7→ xa are l.s.c.. These maps are residuated, then the following notation are

considered :

L]a(b) = a◦\b =
⊕
{x|ax � b} and R]

a(b) = b◦/a =
⊕
{x|xa � b} , ∀a, b ∈ S.

The set of n× n matrices with entries in S is an idempotent semiring. The sum and product of

matrices are defined conventionally after the sum and product of scalars in S, i.e.,

(A⊗B)ik =
⊕

j=1...n

{Aij ⊗Bjk} and (A⊕B)ij = {Aij ⊕Bij} .

The identity matrix of Sn×n is the matrix with entries equal to e on the diagonal and to ε

elsewhere. This identity matrix will also be denoted e, and the matrix with all its entries equal

to ε will also be denoted ε.

The map LA : Sp → Sn, x 7→ Ax, with A a n× p matrix, is residuated, the maximal element

of set {x ∈ Sp | Ax � b} is denoted L]A(b) = A◦\b with (A◦\b)j =
∧
i

Aij◦\bi. Useful results

concerning residuation are given in Appendix B.

B. Equivalence kernel and closure residuation

Definition 1 (Kernel [6]–[8]): Let S be a complete idempotent semiring and let C be a n×p

matrix with entries in S. We call kernel of LC (denoted by kerC), the subset of all pairs of

2The symbol ⊗ is often omitted.
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elements of Sp whose components are both mapped by LC to the same element in Sn, i.e., the

following definition

kerC :=
{
(s, s′) ∈ (Sp)2 | Cs = Cs′

}
. (2)

Clearly kerC, is an equivalence relation on X , i.e., Cs = Cs′ ⇐⇒ s′ ≡ s (mod kerC) and

furthermore it is a congruence and then we can define the quotient S/ kerC.

Notation 1: The subset of elements s′ ∈ Sp that are equivalent to s modulo kerC is denoted

[s]C , i.e.,

[s]C = {s′ ∈ Sp | s′ ≡ s(mod kerC)} ⊂ Sp.

The problem of map restriction and its connection with the residuation theory is now addressed.

Definition 2 (Restricted map): Let f : Sp → Sn be a map and A ⊆ Sp. We will denote3

f|A : A → Sn the map defined by f|A = f ◦ Id|A where Id|A : A → Sp, x 7→ x be the canonical

injection. Identically, let B ⊆ Sn with Imf ⊆ B. Map B|f : Sp → B is defined by f = Id|B ◦ B|f ,

where Id|B : B → Sn, x 7→ x be the canonical injection.

Definition 3 (Closure map): An isotone map f : Sp → Sp is a closure map if f � IdS and

f ◦ f = f .

Proposition 1 ( [10]): A closure map f : Sp → Sp restricted to its image Imf |f is a residuated

map whose residual is the canonical injection Id|Imf : Imf → Sp, s 7→ s.

Corollary 1: Let K : Sp → Sp, s 7→ s∗ be a map, where s∗ =
⊕

i∈N s
i (see Appendix A

for complementary results on map K). The map ImK|K is a residuated map whose residual is(
ImK|K

)]
= Id|ImK. This means that x = s∗ is the greatest solution to inequality x∗ � s∗. Actually,

the greatest solution achieves equality.

III. APPLICATION TO TIMED-EVENT GRAPHS CONTROL

A. TEG model in idempotent semirings

A trajectory of a TEG transition x is a firing date sequence {x(k)} ∈ Z. For each increasing

sequence {x(k)}, it is possible to define the transformation x(γ) =
⊕
k∈Z

x(k)γk where γ is a

backward shift operator in event domain (i.e., y(γ) = γx(γ) ⇐⇒ {y(k)} = {x(k − 1)}, (see

[2], p. 228). This transformation is analogous to the Z-transform used in discrete-time classical

3These notations are borrowed from classical linear system theory see [22].
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control theory and the formal series x(γ) is a synthetic representation of the trajectory x(k).

The set of the formal power series in γ is denoted by Zmax[[γ]] and constitutes an idempotent

semiring.

The model considered is given by x = Ax⊕Bu⊕ Sq

y = Cx
(3)

Where x ∈ Zmax[[γ]]
n is the state vector and each entry xi(γ) represents the behavior of the

transition labelled xi, it is a series (i.e. xi(γ) =
⊕

k∈Z xi(k)γ
k) which depicts the firing trajectory

of the internal transition xi (with xi(k) the date of the firing numbered k). Vector y ∈ Zmax[[γ]]
q is

the output and each component yi(γ) (i ∈ [1, q]) represents the behavior of the transition labelled

yi, the series yi(γ) depicts the date of the tokens output from this transition. Vector u ∈ Zmax[[γ]]
p

is the controllable inputs and each component ui(γ) (i ∈ [1, p]) represents the behavior of the

transition labelled ui, the series ui(γ) depicts the date of the tokens input in the TEG. Matrices

A ∈
(
Zmax[[γ]]

)n×n
, B ∈

(
Zmax[[γ]]

)n×p
, C ∈

(
Zmax[[γ]]

)q×n
and S ∈

(
Zmax[[γ]]

)n×r
represent the

link between transitions. The trajectories u and y can be related ( [2], p. 243) by the equation

y = Hu, where H = CA∗B ∈
(
Zmax[[γ]]

)q×p
is called the transfer matrix of the TEG. Entries

of matrix H are periodic series ( [2], p. 260) in the idempotent semiring, usually represented

by4 p(γ)⊕ q(γ)(τγν)∗.

The control of a transition ui means that the firing may be enable or disable, that means, the

input date is controlled. Therefore, a control law aims to control the input date of tokens in

order to achieve some specifications. A classical specification is to track a trajectory (a reference

output sequence) while delaying as much as possible the token input, this strategy consists in

computing the optimal control with regard to the well-known just-in-time criterion. Formally,

let z ∈ Zmax[[γ]]
q be a given reference output, the problem is to compute the greatest control,

denoted uopt ∈ Zmax[[γ]]
p such that y � z. Among the controls which respect the constraint

y � z, uopt is the greatest, i.e., the one which delays as much as possible the input of the tokens

in the graph, i.e., this control minimizes in an optimal manner the sojourn time of tokens.

4p(γ) =
n−1⊕
i=0

piγ
i, pi ∈ N, is a polynomial that represents the transient and q(γ) =

ν−1⊕
j=0

qjγ
j , qj ∈ N is a polynomial that

represents a pattern which is repeated each τ time units and each ν firings of the transition.
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In [10], [15] closed-loop controllers synthesis, in order to achieve the model matching problem,

is addressed. The objective is to compute the greatest closed-loop controller F ∈
(
Zmax[[γ]]

)p×n
(with u = Fx ⊕ v) which ensures that output y � Grefv, where Gref ∈

(
Zmax[[γ]]

)q×p
is a

model to track. This controller leads to a exact model matching if possible and delays as much

as possible the input of token while ensuring the constraint (y � Grefv).

In this paper a specific design goal is to compute a closed-loop controller F (i.e., u = Fx⊕v)

in order to take into account the influence of the uncontrollable input q. An uncontrollable input

qi may disable the firing of the internal transitions bind to qi through matrix S. Therefore, this

uncontrollable input qi may decreased the performance of the system, i.e., the token output may

be delayed, and some tokens may needlessly wait in the graph since the system is blocked.

Therefore, the controller design aims to obtain the greatest F which avoid the input of useless

tokens. This means that controller F must be the greatest such that the output y, (i.e., with the

control u = Fx⊕ v) be equal to the output without controller (i.e., with u = v), in other words

the control must be neutral with regard to the output, i.e., it must not disturb the system more

than disturbance q does it. From the just-in-time point of view it is the best that we can do.

Formally, thanks to Theorem 1 (see Appendix A), system (3) may be written
x = A∗Bu⊕ A∗Sq = A∗ [B | S]

u
q

 = A∗B

u
q


y = CA∗Bu⊕ CA∗Sq = CA∗B

u
q

 . (4)

The objective is to compute the greatest feedback controller F such that the output be the same

than with u = v, i.e.,

C(A⊕BF )∗B

v
q

 = CA∗B

v
q

 , ∀

v
q

 .

This equation is equivalent to

C(A⊕BF )∗B = CA∗B ⇐⇒
(
(A⊕BF )∗B,A∗B

)
∈ kerC.

The right side of the equivalence shows that F must be such that the transfer between state x

and control input
(
v q

)t
be equivalent to A∗B modulo kerC. This is very reminiscent to the

disturbance decoupling problem for the classical linear system (see [22]), which leads to keep
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the state in the kernel of output matrix C. Let us note that in [11], [13] the classical concept

of (A,B)-invariant space is extended to linear dynamical systems over max-plus semiring (see

also [20]).

Proposition 2: The greatest controller F such that, (A⊕BF )∗B ∈
[
A∗B

]
C

is given by

F = CA∗B◦\CA∗B◦/A∗B. (5)

Proof: Let us note that B = B

e
ε

, therefore the problem is to compute the greatest F

such that

C

A⊕B
e
ε

F

∗B = CA∗B. (6)

Obviously, F = ε is solution, then the greatest solution of

C

A⊕B
e
ε

F

∗B � CA∗B, (7)

leads to equality. From (f.1) and (f.3) we have that

C

A⊕B
e
ε

F

∗B � CA∗B ⇐⇒ CA∗B

e
ε

FA∗B

∗ � CA∗B. (8)

By applying the residuation theory (see Section II), we have the following equivalence

CA∗B

e
ε

FA∗B

∗ � CA∗B ⇐⇒

e
ε

FA∗B

∗ � (CA∗B) ◦\ (CA∗B) .
Relation (f.7) yields

(
CA∗B

)
◦\
(
CA∗B

)
=
((
CA∗B

)
◦\
(
CA∗B

))∗
, then

(
CA∗B

)
◦\
(
CA∗B

)
belongs to image of map K (see Corollary 1). Since ImK|K is residuated (see Corollary 1),

we gete
ε

FA∗B

∗ � (CA∗B) ◦\ (CA∗B) ⇐⇒
e
ε

FA∗B �
(
CA∗B

)
◦\
(
CA∗B

)
.

Finally, by using residuation theory and (f.5), we obtain

F =

e
ε

 ◦\ (CA∗B) ◦\ (CA∗B) ◦/ (A∗B) =

CA∗B
e
ε

 ◦\ (CA∗B) ◦/ (A∗B)
= (CA∗B) ◦\

(
CA∗B

)
◦/
(
A∗B

)
. (9)
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Remark 1: As in classical control linear system theory, controller synthesis, when disturbance

acts on the system, may be seen as a particular model matching problem [18], [21].

Remark 2: Controller F is the greatest such that

(A⊕BF )∗B ∈ ImA∗B ∩
[
A∗B

]
C
,

where ImA∗B =
{
A∗Bu | u ∈ Zmax[[γ]]

p
}

. Indeed, it is sufficient to note, thanks to (f.1) and (f.3),

that (A⊕ BF )∗B =

A∗B
e
ε

F

∗A∗B = A∗B

e
ε

FA∗B

∗, clearly (A⊕BF )∗B ∈

ImA∗B.

IV. ILLUSTRATION

The example considered here is borrowed to the manufacturing setting but may be transposed

easily to transport system [12] or network system [14]. The TEG depicted figure 1 may represent

a workshop with 3 machines (M1 to M3). Machine M1 processes 2 parts simultaneously, each

processing lasts 4 times units. Machine M3 processes the parts released by machines M1 and M2.

Transitions q1, q2 and q3 are uncontrollable inputs (disturbances), which delay the parts output

of machines M1,M2 and M3. In a manufacturing context, inputs q may represent machine

breakdowns, uncontrollable supplies of raw materials, . . .. For this example, the matrices of

model (3) are given by

A =


4γ2 ε ε

ε 6γ2 ε

7 7 6γ

 , B =


6 ε

ε 9

ε ε

 , S =


e ε ε

ε e ε

ε ε e

 and C =
(
ε ε 1

)
,

where, for each entry, the exponent in γ denotes the tokens number in the place and the coefficient

depicts the processing time. This yields to the following transfer between output y and disturbance

q (respectively input u)

CA∗S =
(
8(6γ)∗ 8(6γ)∗ 1(6γ)∗

)
and CA∗B =

(
14(6γ)∗ 17(6γ)∗

)
,

each component of these matrices is a periodic series. The example has been computed by using

toolbox MinMaxGD which runs with Scilab (see [19]).
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Fig. 1: System in bold lines and controller in dotted lines

According to Proposition 2 and solution (5), the controller is obtained by computing CA∗B ◦\CA∗B◦/A∗B.
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Therefore, we obtain

F = CA∗B ◦\CA∗B◦/A∗B =

−6(6γ)∗ −6(6γ)∗ −13(6γ)∗

−9(6γ)∗ −9(6γ)∗ −16(6γ)∗

 .

This feedback is not causal because there are negative coefficients in the matrix (see [2, Def.

5.35] for a strict definition of causality). The canonical injection from the causal elements of

Zmax[[γ]] (denoted Zmax[[γ]]
+) in Zmax[[γ]] is also residuated (see [10] for details). Its residual is

given by Pr =
(⊕

k∈Z s(k)γ
k
)

=
⊕

k∈Z s+(k)γk where

s+(k) =

 s(k) if (k, s(k)) ≥ (0, 0),

ε otherwise.

Therefore, the greatest causal feedback is

F+ = Pr(F ) =

 γ(6γ)∗ γ(6γ)∗ 5γ3(6γ)∗

3γ2(6γ)∗ 3γ2(6γ)∗ 2γ3(6γ)∗

 . (10)

Figure 1 shows a realization of the controller (bold dotted lines).

In order to simulate the system, following input v is considered

v =

20⊕+∞γ6

20⊕+∞γ6

 .

It means that 6 tokens are available at time t = 20. First the system is assumed to be not
disturbed, i.e., q = ε. The system trajectories without controller (F = ε, then u = v, i.e., the
open-loop behavior), denoted uol, xol and yol, are given by

uol = v,

xol = A∗Bv =


26⊕ 30γ2 ⊕ 34γ4 ⊕+∞γ6

29⊕ 35γ2 ⊕ 41γ4 ⊕+∞γ6

36⊕ 42γ ⊕ 48γ2 ⊕ 54γ3 ⊕ 60γ4 ⊕ 66γ5 ⊕+∞γ6

 ,

and yol = CA∗Bv = 37⊕ 43γ ⊕ 49γ2 ⊕ 55γ3 ⊕ 61γ4 ⊕ 67γ5 ⊕+∞γ6.

With controller F+ (i.e. u = Fx⊕ v) these trajectories, denoted ucl, xcl and ycl, become

ucl = (F+A
∗B)∗v =

20⊕ 29γ ⊕ 35γ2 ⊕ 41γ3 ⊕ 47γ4 ⊕ 53γ5 ⊕+∞γ6

20⊕⊕32γ2 ⊕ 38γ3 ⊕ 44γ4 ⊕ 50γ5 ⊕+∞γ6

 ,

xcl = (A⊕BF+)∗Bv =


26⊕ 35γ ⊕ 41γ2 ⊕ 47γ3 ⊕ 53γ4 ⊕ 59γ5 ⊕+∞γ6

29⊕ 41γ2 ⊕ 47γ3 ⊕ 53γ4 ⊕ 59γ5 ⊕+∞γ6

36⊕ 42γ ⊕ 48γ2 ⊕ 54γ3 ⊕ 60γ4 ⊕ 66γ5 ⊕+∞γ6


and ycl = C(A⊕BF+)∗Bv = 37⊕ 43γ ⊕ 49γ2 ⊕ 55γ3 ⊕ 61γ4 ⊕ 67γ5 ⊕+∞γ6.
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Clearly, the output trajectories are equal ycl = yol and ucl � uol, xcl � xol, i.e., controller F+ is

neutral in regards to the output, but delay as much as possible the tokens input.

In a second step, the system is assumed to be disturbed, with q =
(
ε 85γ3 ε

)t
. Entry

q2 = 85γ3 means that the fourth firing occurs at time 85. This may represents a machine
breakdown occurring after the third part be processed and this breakdown lasts until time 85.
The system trajectories without controller (u = v), denoted uolq, xolq and yolq, become

uolq = v

xolq = A∗Bv ⊕A∗Sq =


26⊕ 30γ2 ⊕ 34γ4 ⊕+∞γ6

29⊕ 35γ2 ⊕ 85γ3 ⊕ 91γ5 ⊕+∞γ6

36⊕ 42γ ⊕ 48γ2 ⊕ 92γ3 ⊕ 98γ4 ⊕ 104γ5 ⊕+∞γ6

 ,

and yolq = CA∗Bv ⊕ CA∗Sq = 37⊕ 43γ ⊕ 49γ2 ⊕ 93γ3 ⊕ 99γ4 ⊕ 105γ5 ⊕+∞γ6.

Obviously, this machine breakdown delay the firing of transitions x2 and x3 (see Figure 2),
indeed xolq � xol and yolq � yol. With controller F+, these trajectories, denoted uclq, xclq and
yclq become

uclq = (F+A
∗B)∗v ⊕ F+(A⊕BF+)∗Sq =

20⊕ 29γ ⊕ 35γ2 ⊕ 41γ3 ⊕ 85γ4 ⊕ 91γ5 ⊕+∞γ6

20⊕ 32γ2 ⊕ 38γ3 ⊕ 44γ4 ⊕ 88γ5 ⊕+∞γ6

 ,

xclq = (A⊕BF+)∗Bv ⊕ (A⊕BF+)∗Sq =


26⊕ 35γ ⊕ 41γ2 ⊕ 47γ3 ⊕ 91γ4 ⊕ 97γ5 ⊕+∞γ6

29⊕ 41γ2 ⊕ 85γ3 ⊕ 97γ5 ⊕+∞γ6

36⊕ 42γ ⊕ 48γ2 ⊕ 92γ3 ⊕ 98γ4 ⊕ 104γ5 ⊕+∞γ6

 ,

and yclq = C(A⊕BF+)∗Bv ⊕ C(A⊕BF+)∗Sq = 37⊕ 43γ ⊕ 49γ2 ⊕ 93γ3 ⊕ 99γ4 ⊕ 105γ5 ⊕+∞γ6.

The output yclq = yolq, i.e., the controller F+ does not disturb the system, nevertheless xclq � xolq

and uclq � uolq this means that the tokens input is delayed. Furthermore this is done in an optimal

manner, then the input of useless tokens is avoid.
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Fig 2: Responses of the system without disturbance
(

where xol = (x1ol x2ol x3ol)
t (resp.

xcl = (x1cl x2cl x3cl)
t ) is the open-loop state (resp. closed-loop state)

)
and the system with

disturbance
(

where xolq = (x1olq x2olq x3olq)
t (resp. xclq = (x1clq x2clq x3clq)

t ) is the open-loop

state (resp. closed-loop state)
)

. The trajectory yol (resp. yolq) correspond to the output of the

open-loop system without disturbance (resp. with disturbance) and the trajectory ycl (resp. yclq)

correspond to the output of the closed-loop system without disturbance (resp. with disturbance).

The control trajectory uol = (u1ol u2ol)
t (resp. uolq = (u1olq u2olq)

t is equal to the v and the

trajectory ucl = (u1cl u2cl)
t ( resp. uclq = (u1clq u2clq)

t ) is the control provided by the controller

when the system is not disturbed (resp. when the system is disturbed).

V. CONCLUSION

In this paper, the closed-loop controller design for max-plus linear systems subjected to

disturbances is given. The control law obtained (i.e. u = Fx ⊕ v) is neutral with regard to

the output but leads to the greatest input achieving our objective, it is optimal in regards to

just-in-time point of view. The design method may now be applied for (max,+)-linear systems

in order to transpose the analogous of the disturbance decoupling problem for the classical linear

system.
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APPENDIX A

FORMULAE INVOLVING STAR OPERATOR

Theorem 1 ( [2, Th. 4.75]): In a complete idempotent semiring S, the least solution of x =

ax⊕ b is x = a∗b, where a∗ =
⊕

i∈N a
i (Kleene star operator) with a0 = e. Similarly, the least

solution of x = Ax⊕ b in Dn is x = A∗b.
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a∗(ba∗)∗ = (a⊕ b)∗ = (a∗b)∗a∗ (f.1)

(a∗)∗ = a∗ (f.2)

(ab)∗a = a(ba)∗ (f.3)

a∗a∗ = a∗ (f.4)

aa∗ = a∗a (f.5)

(ab) ◦\x = b ◦\(a ◦\x) (f.5)

a(a ◦\x) � x (f.6)

a ◦\a = (a ◦\a)∗ (f.7)

a ◦\(ax) � x (f.8)

(x◦/a)a � x (f.9)

APPENDIX B

FORMULAE INVOLVING DIVISION
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