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Abstract: This paper presents a new approach to bounded error state-estimation for uncertain
max-plus linear systems. This method yields the smallest interval vector including the real state
in a guaranteed way. The parameters of the max-plus linear systems are assumed to be bounded,
the nondeterministic measurement of the system output is assumed to be given as well as the
interval vector including the state at the preceding step. The observation matrix is assumed to
be with high noise, i.e., the width of its interval components is large enough. The computation
makes intensive use of the residuation theory (Baccelli et al., 1992) over the intervals. This
method is worth of interest because it gives a guaranteed over-approximation of the support of
the state and could be used to improve the probabilistic approach considered in the literature
with an overall complexity of computation lower than existing methods.
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1. INTRODUCTION

This paper presents a set-membership method for the
state-estimation of a Max-Plus Linear (MPL) dynami-
cal systems which are Discrete Event Dynamic Systems
(DEDS) involving only delay and synchronization phenom-
ena, i.e., the starting of a task waits for a previous set of
tasks to be completed.

Taking advantage of the linearity property over dioids,
several authors have developed methods to estimate the
system states (Hardouin et al., 2010; Loreto et al., 2010;
Cândido et al., 2013), which is an essential problem to
address applications such as fault detection and diagnosis
(Paya et al., 2020) or state feedback control (Hardouin
et al., 2018). The state estimation can be achieved by
considering an observer as proposed in Hardouin et al.
(2010), this leads to an estimation of the state as close as
possible from below, i.e., the estimation is smaller than
the real state. This estimator is efficient to deal with
deterministic systems and useful to design observer-based
controller (Hardouin et al., 2017) focusing on just-in-time
control strategies.

However, if the system is with uncertain parameters, some
alternative methods can be considered in order to take
advantage of the knowledge about the characteristics of
this uncertainty. Two ways have been considered: the
stochastic approaches which focus on the probability den-
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sity (Xu et al., 2019; Farahani et al., 2017; van den Boom
and De Schutter, 2014) of the MPL system parameters and
the set-membership approaches focusing on the reachable
set (Brunsch et al., 2012b). More precisely, to deal with
state estimation the two existing approaches are:

• The stochastic filtering approaches: In Cândido
et al. (2013) a Particle Filter for MPL is proposed,
it uses a particle representation of the probability
density of the system state to perform a Sequential
Monte-Carlo estimation of the state. This approach
is limited by the numerical difficulties due to the
generation of the particles and by the fact that the
lower dimension of the measurements with respect
to the state, introduces an imprecise generation of
particles in the state space. In Mendes et al. (2019)
an alternative Bayesian method is proposed, it is
based on an algorithm leading to compute the in-
verse of the conditional expectation measurement =
E[observation|state], by taking available measure-
ments and the prediction into account in order to
compute a state estimate. This procedure is based
on a Constraint Satisfaction Problem (CSP) (Jaulin
et al., 2001), but unfortunately it is over-optimistic
since the estimation must respect the condition that
measurement = E[observation|estimation]. Moreover,
as another drawback, this procedure does not consider
the trade-off mechanism between the noise in the
measurement versus the noise in the prediction as it
is efficiently done in classical Bayesian methods.



• The set-membership estimation approaches: In
Cândido et al. (2018); Mufid et al. (2021) the au-
thors consider uncertain Max Plus Linear (uMPL)
systems, which are non-deterministic MPL systems
whose parameters can take arbitrary values in a given
interval. The state-estimation computation can be
carried out by considering Difference-Bound Matrices
(DBM) (Adzkiya et al., 2015) or more efficiently via
interval analysis (Candido et al., 2020), this latest
method is called an Interval Filter (IF) in the sequel.
These estimation methods yield the set of possible
states and can then be used to compute the support
of the posterior density function PDF. Even though
the support of the PDF is known, it is assumed equal
importance for all values inside, which is not desired
in the estimation (conservative characteristic). Nev-
ertheless, they are over-pessimistic since, uMPL are
expansive, i.e., the hyper-volume of the intervals is
increasing at each step of computation.

Our contribution In this paper, we consider a set-
membership approach in order to design an improved
IF, i.e., with a good enough accuracy for high noise
observation matrices, as it is shown in the numerical
results section, and a lower computational complexity than
the existing methods (Mendes et al. (2019); Cândido et al.
(2013)), since it uses only trivial matrix operations over
dioid. It can be defined as the intersection of the interval
representing the a priori information (can be associated to
the prediction stage of the Bayesian approach) and the one
calculated thanks to the given measurement (can be seen
as the correction stage of the Bayesian approach). This
method can be seen as the analogous for uMPL to the one
proposed to compute the robot trajectories in Rohou et al.
(2017).

This paper is organized as follows. In Section 2 alge-
braic background on max-plus algebra, interval arithmetic
and MPL systems are given. Section 3 defines the over-
approximation of the direct image of an interval and recalls
the inverse image of the measurement w.r.t. uMPL system.
Section 4 presents the tools necessary to design the new IF
scheme, which is faster but less precise than considering
exact computations. Section 5 is dedicated to show the
correctness of the proposed procedure. Section 6 presents
the conclusions and final remarks.

2. MATHEMATICAL BACKGROUND

2.1 Algebraic framework

A set S endowed with two internal operations, sum (⊕)
and product (⊗), is an idempotent semiring D (Baccelli
et al., 1992, Chapter 4), (Heidergott et al., 2006) if the
sum is associative, commutative and idempotent (i.e., a⊕
a = a) and the product is associative and left and right
distributive w.r.t. the sum 1 . The null (or zero) element,
denoted by ε, is such that ∀a ∈ D, a ⊕ ε = a and the
identity element, denoted by e, is such that ∀a ∈ D, a ⊗
e = a. Besides, the zero element is absorbing for the ⊗
operation (i.e., ∀a ∈ D, a⊗ ε = ε). As in classical algebra,
the operator ⊗ will usually be omitted in expressions,
ai = a ⊗ ai−1 and a0 = e. In this algebraic structure, a
1 The ⊗-product is not necessarily commutative.

partial ordering is defined by a ⪰ b⇔ a = a⊕b⇔ b = a∧b
(where a ∧ b is the greatest lower bound). Therefore, D
is a partially ordered set. Furthermore, D is complete if
it is closed for infinite sum and if the product distributes
with the infinite sum. Particularly, ⊤ =

⊕
x∈D x is the top

element of D , it respects the absorbing rule, i.e., ε⊗⊤ = ε
and ⊤⊗ε = ε. A dioid D is complete if it is closed w.r.t. the
addition of an infinite number of elements and distributive
w.r.t. the addition of an infinite number of elements.

The set Dn refers to the n-th fold Cartesian product of
the idempotent semiring. Its elements can be thought of as
points of an affine space, or as vectors. They are denoted by
bold symbols, for instance x = (x1, . . . , xn)

t
. The element

ε, ⊤, and e refer to the vectors whose coordinates are all
equal to ε, ⊤ and e respectively. The ⊕ and ⊗ operations
can be extended to matrices as follows. If A,B ∈ Dn×p

and C ∈ Dp×q, then (A⊕B)ij = aij⊕bij and (A⊗ C)ij =⊕p
k=1 aik ⊗ ckj .

The inequality Ax ⪯ y with matrix A ∈ Dn×p, vectors
x ∈ Dp and y ∈ Dn admits a greatest solution denoted
x̂ = A◦\y, with

x̂i =

n∧
k=1

aki◦\yk, for all i ∈ {1, . . . , p}, (1)

where aki◦\yk is the greatest solution of the scalar inequal-
ity aki ⊗ x ⪯ yk.

In the same way, the inequality Xa ⪯ y with matrix
X ∈ Dn×p, vectors a ∈ Dp and y ∈ Dn admits a greatest
solution denoted X̂ = y◦/a, with

X̂ij = yi◦/aj , for all i ∈ {1, . . . , n}, and j ∈ {1, . . . , p},
(2)

where yi◦/aj is the greatest solution of the scalar inequality
x⊗ aj ⪯ yi.

Example 1. The set Rmax = R∪{−∞,+∞} endowed with
the max operator as ⊕ and the classical sum + as ⊗ is
a complete idempotent semiring with ε = −∞, ⊤ = +∞
and e = 0, and with the convention that +∞−∞ = −∞.
Furthermore, in this semiring the product is commutative,
hence x ⊗ a = a ⊗ x ⪯ y admits x = a◦\y = y◦/a as
greatest solution where operators ◦\ and ◦/ are the classical
subtraction −, i.e., x = y − a.

Lemma 1. Given x ∈ R
p

max and y ∈ R
n

max, the following
equality holds (y◦/x)◦\y = x.

Proof. From (2), for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p},
(y◦/x)ij = yi◦/xj = yi − xj ,

and from (1) we have for all j ∈ {1, . . . , p},

((y◦/x)◦\y))j =
n∧

i=1

(y◦/x)ij◦\yi =
n∧

i=1

yi − (yi − xj) = xj .

□

Lemma 2. Let a, b, c, d ∈ Rmax. If c ≺ a then the following
equivalence holds

a⊕ b ⪯ c⊕ d⇔ a⊕ b ⪯ d.

Proof. First, a⊕b ⪯ c⊕d⇒ a⊕b ⪯ d since by assumption
c ≺ a which implies c ≺ a ⊕ b, hence c ≺ a ⊕ b ⪯ c ⊕ d
and c ≺ c ⊕ d ⇔ c ≺ d ⇔ c ⊕ d = d. Similarly, c ≺ a and
a ⊕ b ⪯ d imply c ≺ a ⊕ b ⪯ d ⇒ c ⊕ c ≺ a ⊕ b ⊕ c = a ⊕



b ⪯ c ⊕ d, i.e., we have a ⊕ b ⪯ d ⇒ a ⊕ b ⪯ c ⊕ d which
concludes the proof. □

2.2 Interval arithmetic over semiring Rmax

Interval arithmetic is presented in Moore and Bierbaum
(1979). An interval of Rmax is defined as [x] = [x, x] ={
x ∈ Rmax : x ⪯ x

}
∩ {x ∈ Rmax : x ⪯ x} = {x ∈ Rmax :

x ⪯ x ⪯ x}. An interval [x] is empty if x ≻ x. The width
of an interval [x] of Rmax is defined as w([x]) = x◦/x = x◦\x.
The max-plus operations can be, therefore, extended to
intervals as follows: (Brunsch et al., 2012a; Hardouin et al.,
2009; Litvinov and Sobolevskīı, 2001; Lhommeau et al.,
2005):

[x]⊕ [y] = {x⊕y : x ∈ [x], y ∈ [y]} = [x⊕y, x⊕y] , (3)

[x]⊗ [y] = {x⊗y : x ∈ [x], y ∈ [y]} = [x⊗y, x⊗y] . (4)

Two set-theoretic operations are important in this paper to
properly handle intervals. First, the intersection between
the intervals [x] = [x, x] and [y] = [y, y] is defined as the

set Z = {z ∈ Rmax : z ∈ [x] and z ∈ [y]} and coincides
with [z] = [x] ∩ [y], i.e., Z = [z]. Therefore,

[z] = [max{x, y},min{x, y}]. (5)

Secondly, the union of the same two intervals is defined as
the set Z = {z ∈ Rmax : z ∈ [x] or z ∈ [y]} but, in order
to make the set of intervals closed w.r.t. this operation, we
define the interval union, i.e., the interval hull 2 of Z as:

[z] = [x]⊔ [y] = [min{x, y},max{x, y}], such that Z ⊆ [z].
(6)

The ∩ and ⊔ operations of two interval vectors can be com-
puted as the element-wise operation of the corresponding
entries.

The⊕ and⊗ are extended to interval matrices as follows: if
[A], [B] and [C] are, respectively, (n×p), (n×p) and (p×q)-
dimensional interval matrices, then ([A]⊕ [B])ij = [aij ]⊕
[bij ] and ([A]⊗ [C])ij =

⊕p
k=1([aik]⊗ [ckj ]).

Remark 1. Any matrix A ∈ R
n×p

max can be represented by a
deprecated interval matrix [A], in which aij = aij for all
i ∈ {1, . . . , n} and j ∈ {1, . . . , p}.
Remark 2. An interval matrix is considered with high
noise if the width of its elements is considerable large.

2.3 Max-Plus Linear (MPL) Systems

The nonautonomous model of an MPL system, considering
the earliest firing rule, is given by:

x(k) =Ax(k − 1)⊕Bu(k), (7a)

z(k) =Cx(k), (7b)

where the entries of matrices A ∈ R
n×n

max , B ∈ R
n×p

max and

C ∈ R
q×n

max represent the process times. The variable k ∈ N
is an event-number and x ∈ R

n

max is a dater, i.e., x(k)
contains the k-th date of occurrence of each event of the
system. The vector z ∈ R

q

max is the output and the input

(or control) vector u ∈ R
p

max.

2 The interval hull of a set X ⊆ R is the smallest interval [X] such
that X ⊆ [X].

The matrix entries of the equations above are considered
to be bounded noisy, i.e., it is assumed that at each event
k these entries can take an arbitrary value within a real
interval. Hence, it is possible to model Uncertain Max-Plus
Linear (uMPL) systems as defined in Cândido et al. (2018);
Candido et al. (2020) from (7) considering that A

.
=

A(k) ∈ [A,A], B
.
= B(k) ∈ [B,B] and C

.
= C(k) ∈ [C,C]

are matrices of independent random variables with finite
support and whose entries are mutually independent. 3 For
instance, matrices A and A are respectively the lower and
upper bounds of [A], such that aij ∈ [aij , aij ]. The same
reasoning is applied to the lower and upper bounds of [B]
and [C].

Remark 3. According to Remark 1, any MPL system can
be seen as a uMPL system in which its matrix entries are
a deprecated interval.

Remark 4. Any nonautonomous uMPL system can be
transformed into an augmented autonomous uMPL model
as x(k) =Mr(k), whereM∈ ([A] [B]), and r(k) = (x(k−
1)t u(k)t)t.

Remark 5. The autonomous system x(k) = Ax(k − 1)
is assumed to be FIFO (first in, first out). In view of
this assumption, it is always true that x(k) ⪰ x(k − 1),
such that the elements of the main diagonal of A can be
assumed to be greater or equal to e at each event k.

In this work, we therefore consider, without loss of general-
ity, only autonomous systems, i.e., we drop Bu(k) in (7a),
and only uMPL systems, i.e., we assume that the entries
of the system matrices are intervals in (7).

In the sequel, for the sake of readability, we use the
following notation: x

.
= x(k), z

.
= z(k) and x0

.
= x(k− 1).

3. DIRECT IMAGE OF AN INTERVAL VECTOR
AND INVERSE IMAGE OF A POINT W.R.T. THE

UNCERTAIN MPL SYSTEM

This section presents an approach to compute an over-
approximation of the direct image of an interval vector
w.r.t. the autonomous uMPL dynamical equation x =
Ax0, and it recalls the inverse image of the measurement
w.r.t. the observation equation z = Cx.

3.1 Over-approximation of the direct image of an interval
vector w.r.t the nonautonomous uMPL dynamical equation

Let [A] be an (n× n)-dimensional interval matrix and X0

be a set that is contained in R
n

max, the direct image of X0

is called the reach set X which is defined as:

X = I[A]{X0} = {Ax ∈ R
n

max : x ∈X0, A ∈ [A]}. (8)

In (Cândido et al., 2018, Sec 4.1), a method based on
Difference-Bound Matrices (DBM) is presented in order
to compute exactly X (Cândido et al., 2018, Algorithm
1) when X0 is the union of d0 DBM. The set X is then

3 This assumption of statistical independence between the matrix
entries means that the minimum task duration or transportation
time are independent of each other. This assumption is reasonable
for practical problems, e.g., in the field of transport systems, a failure
of one train does not affect the potential efficiency of the others, even
if they are blocked due to precedence constraint.



the union of DBM obtained thanks to a procedure with a
complexity equal to O(d0nn+3).

In order to avoid this computational effort, we consider
[x0] an n-dimensional interval vector such that X0 ⊆ [x0].
Hence, the reach set X is over-approximated by the
following interval vector (i.e., X ⊆ [x]):

[x] = {x ∈ R
n

max : A x0 ⪯ x ⪯ Ax0}. (9)

3.2 Interval hull of the inverse image of the measurement
w.r.t. the uMPL observation equation

We are interested in characterizing the inverse image of z
w.r.t. the observation equation, i.e., the set of all states x
that may lead to z. This set is defined in Candido et al.
(2020) as:

I−1
[C]{z} = {x ∈ R

n

max :∃C ∈ [C] : Cx = z}, (10)

⇐⇒ I−1
[C]{z} = {x ∈ R

n

max : Cx ⪯ z ⪯ Cx},

with C,C ∈ R
q×n

max and z ∈ R
q

max.

The max-plus mapping is generally residuated but not
dually residuated, i.e., given z, there is a unique greatest
x given by (1) such that Cx ⪯ z, but not a unique least x
such that Cx ⪰ z. Hence, we split I−1

[C]{z} into two sets

L = {x ∈ R
n

max : z ⪯ Cx} and U = {x ∈ R
n

max : Cx ⪯ z},
(11)

which are equivalent to:

L ≡
q⋂

i=1

Li, U ≡ {x ∈ R
n

max : x ⪯ X}, with X = C◦\z,

(12)

with Li = {x ∈ R
n

max : zi ⪯ (Cx)i} ≡
⋃n

j=1{x ∈ R
n

max :

xj ⪰ cij◦\zi}. Then,

I−1
[C]{z} = L ∩ U =

(
q⋂

i=1

Li

)
∩ U =

q⋂
i=1

Li ∩ U, (13)

is a set of cardinality bounded by nq and Li ∩ U =⋃n
j=1 set

i
j{X} where

setij{X} = {x ∈ R
n

max : xj ⪰ cij◦\zi}∩{x ∈ R
n

max : x ⪯ X},

such that setij{X} = ∅ if cij◦\zi ≻ Xj . In addition, this
set can be represented with the same expressiveness as an
interval vector, i.e.,

setij{X} ≡ [(ε, . . . , cij◦\zi, . . . , ε)t,X]. (14)

Remark 6. As already mentioned in Subsection 2.2, in
order to make the set of intervals closed w.r.t. ∪, we can
use ⊔ to compute the interval hull of Li ∩ U as follows:[Li ∩ U ] =

n⊔
j=1

setij{X}

 ⊇
Li ∩ U =

n⋃
j=1

setij{X}

 .

Moreover, it is straightforward to remark if Li ∩ U has
cardinality greater than 1 then [Li∩U ] = [(ε, . . . , ε)t, C◦\z].
Remark 7. In (Candido et al., 2020, Algorithm 1) a gen-
eral procedure is described to compute I−1

[C]{z} The worst-
case complexity of this procedure is O(qnq+1) where

C,C ∈ R
q×n

max and z ∈ R
q

max. .

4. AN OVER-APPROXIMATION FOR THE
CONDITIONAL REACHABILITY PROBLEM

The conditional reachability problem consists in computing
the following set χ = [x]∩I−1

[C]{z} which is the intersection

between the over-approximation of the direct image [x]
(see (9)), i.e., the a priori information computed thanks
to the dynamic equation over [x0], and the inverse image
I−1
[C]{z} (see (10)), i.e., the a posteriori information ob-

tained thanks to the observation equation.

This problem is addressed in Cândido et al. (2018) and
is slightly different since it uses the exact direct image
instead of [x]. However, the overall complexity of comput-
ing χ is exponential for both representations of the direct
image (either the exact one or its over-approximation). In
order to avoid this computational burden, we propose to
compute the smallest interval [χ] that enclosures χ, which
is called over-approximation of the conditional reachability
problem.

Let

χ = [x] ∩ I−1
[C]{z}, (15)

= {x ∈ R
n

max : x ⪯ x ⪯ x} ∩ L ∩ U,

= {x ∈ R
n

max : x ⪯ x} ∩ L ∩ U ∩ {x ∈ R
n

max : x ⪯ x},
U ′ = U ∩ {x ∈ R

n

max : x ⪯ x}, (16)

= {x ∈ R
n

max : x ⪯ C◦\z} ∩ {x ∈ R
n

max : x ⪯ x},
= {x ∈ R

n

max : x ⪯ X
′},with X

′
= min{C◦\z,x},

S = L ∩ U ′ =

q⋂
i=1

Li ∩ U ′, (see (13)) (17)

[S] =

q⋂
i=1

[Li ∩ U ′] ⊇ S, (see Remark 6) (18)

χ = {x ∈ R
n

max : x ⪯ x} ∩ S, (19)

[χ] = {x ∈ R
n

max : x ⪯ x} ∩ [S]. (20)

Clearly, [χ] is calculated in polynomial-time whereas χ
is computed in exponential-time, as already pointed-out.
Nevertheless, in the sequel this result can purely be reinter-
preted working only with matrix operations with a direct
impact in the corresponding TEG’s behavior.

4.1 On the reinterpretation of the set S

Below, we propose results in order to reinterpret the set
S =

⋂q
i=1 Li ∩ U ′.

Lemma 3. The term X
′
= min{C◦\z,x} is also given by

X
′
= Ĉ◦\z where Ĉ = z◦/X

′
.

Proof. From Lemma 1, the following holds: (z◦/X
′
)◦\z =

X
′
, hence X

′
= Ĉ◦\z. □

According to Lemma 3, set U ′ can be expressed equiva-

lently as: U ′ = {x ∈ R
n

max : x ⪯ X
′} ≡ {x ∈ R

n

max :

x ⪯ Ĉ◦\z} ≡ {x ∈ R
n

max : Ĉx ⪯ z}. Simultaneously, set
S = L ∩ U ′ can be characterized, in analogy with (11), as



S = {x ∈ R
n

max : z ⪯ Cx} ∩ {x ∈ R
n

max : x ⪯ Ĉ◦\z}
= {x ∈ R

n

max : z ⪯ Cx} ∩ {x ∈ R
n

max : Ĉx ⪯ z}

= {x ∈ R
n

max : Ĉx ⪯ z ⪯ Cx} =
q⋂

i=1

Li ∩ U ′. (21)

Proposition 1. Set S can be expressed equivalently as:
S = {x ∈ R

n

max : Ĉx ⪯ z ⪯ Cx} ≡ {x ∈ R
n

max : Ĉx ⪯ z ⪯
Ĉx}, with Ĉ defined as

ĉij =

{
ε if ĉij ≻ cij ,

cij otherwise.
(22)

for all i ∈ {1, . . . , q} and all j ∈ {1, . . . , n}.

Proof. First, we consider (Ĉx)i ⪯ zi ⪯ (Cx)i for all

i ∈ {1, . . . , q}, this implies (Ĉx)i ⪯ (Cx)i, i.e.,
n⊕

k=1

ĉik ⊗ xk = ĉi1 ⊗ x1 ⊕ · · · ⊕ ĉin ⊗ xn

⪯ ci1 ⊗ x1 ⊕ · · · ⊕ cin ⊗ xn =

n⊕
k=1

cik ⊗ xk.

Let us define a = ĉij ⊗ xj , c = cij ⊗ xj ,

b =

n⊕
k=1,
k ̸=j

ĉik ⊗ xk and d =

n⊕
k=1,
k ̸=j

cik ⊗ xk,

then it is straightforward to apply the Lemma 2 if c = cij⊗
xj ≺ a = ĉij ⊗ xj as shown below:

a⊕ b = ĉij ⊗ xj ⊕
n⊕

k=1,
k ̸=j

ĉik ⊗ xk =

n⊕
k=1

ĉik ⊗ xk

⪯ c⊕ d =

n⊕
k=1

cik ⊗ xk =

n⊕
k=1,
k ̸=j

cik ⊗ xk = ε⊕ d.

Furthermore, the following equivalence holds ∀xj , cij ⊗
xj ≺ ĉij ⊗xj ⇔ cij ≺ ĉij , hence, in S definition, matrix C

can be replaced by matrix Ĉ. □

In view of the previous Proposition 1, the observation part
of the corresponding TEG is potentially simplified when
evaluating its upper process time bound, i.e., some places
can be neglected, without loss of information.

4.2 On the lower bound of S = {x ∈ R
n

max : Ĉx ⪯ z ⪯
Ĉx}

As already pointed out, the inequality Ĉx ⪯ z has a unique

greatest solution given by X
′
= Ĉ◦\z but, in general, the

inequality z ⪯ Ĉx does not admit a unique least solution.
Nevertheless, we present below some assumptions ensuring
the existence of such solution.

Assumption 1. The matrix Ĉ is considered to be row
G-astic, i.e., it has no row with only ε elements (see
(Cuninghame-Green and Butkovic, 2003)).

In view of the previous assumption, it is straightforward
to see that S ̸= ∅.

Assumption 2. The i-th row of Ĉ has one and only one
index j′ ∈ {1, . . . , n}, such that ĉij′ ̸= ε.

Lemma 4. If Assumption 2 holds for a particular i ∈
{1, . . . , n}, then the inequality zi ⪯ (Ĉx)i admits a unique

least solution x̂
(i)
j′ = ĉij′◦\zi.

Proof. From Assumption 2, we have (ĉi1, . . . , ĉin) =

(ε, . . . , ĉij′ , . . . , ε), and hence (Ĉx)i = ĉij′ ⊗ xj′ . Thus,

zi ⪯ ĉij′ ⊗ xj′ ⇔ x̂
(i)
j′ = ĉij′◦\zi ⪯ xj′ . □

Considering Lemma 4 we have that the inequality z ⪯ Ĉx

admits a solution given by X̂ =
⊕q

i=1 x̂
(i) where

x̂(i) =

{
(ε, . . . , ĉij′◦\zi, . . . , ε)t if Assumption 2 holds,

(ε, . . . , ε)t otherwise.
(23)

Moreover, for any j ∈ {1, . . . , n} if X̂j ̸= ε then we say

that X̂j is the least finite solution such that xj ⪰ X̂j .

4.3 Retrieving [S]

Now, we show that X̂ is indeed the lower bound of [S].

Proposition 2. x̂(i) is equivalent to the lower bound of

setij{Ĉ◦\z} given in (14) and X̂ is equivalent to the lower
bound of [Li ∩ U ′] given in (18).

Proof. Regarding setij{Ĉ◦\z} = [(ε, . . . , cij◦\zi, . . . , ε)t, Ĉ◦\z]
we have that if ĉij = ε for all j ∈ {1, . . . , n}\{j′} then

ĉij◦\zi = ε◦\zi = ⊤ ≻ (Ĉ◦\z)j and hence setij{Ĉ◦\z} = ∅.
In addition, for this j′ ∈ {1, . . . , n} we have ĉij′◦\zi =

ε◦\zi ⪯ (Ĉ◦\z)j and hence setij′{Ĉ◦\z} ≠ ∅ which can be

associated to the interval vector [x̂(i), Ĉ◦\z], where x̂(i) =
(ε, . . . , ĉij′◦\zi, . . . , ε)t.
Summing-up:

• if Assumption 2 holds, we have that Li ∩ U ′ =⋃n
j=1 set

i
j{Ĉ◦\z} = setij′{Ĉ◦\z} = [x̂(i), Ĉ◦\z] = [Li ∩

U ′];
• otherwise Li ∩ U ′ is a collection of finitely many

interval vectors, and we therefore are interested in its
over-approximation [(ε, . . . , ε)t, Ĉ◦\z], i.e., its interval
hull [Li ∩ U ′] (see Remark 6).

Finally, we intersect each interval vector along i ∈
{1, . . . , q}, and we clearly obtain X̂ as the lower bound
of [S]. □

From the previous Proposition 2 we therefore know that

z ⪯ Ĉx can have unique least solution that is different
from ε for a subset of states, which is represented by the
subset J ⊆ {1, . . . , n}, and consequently ∀j ∈ J we have
that the orthogonal projection of S over xj is equal to the
orthogonal projection of [S] over xj .

Thus, [S] is clearly given as follows:

[S] =


[

q⊕
i=1

x̂(i),X
′
]

if Lemma 1 holds,

∅ otherwise

(24)



where X
′
= Ĉ◦\z

Finally, if [S] ̸= ∅ then
[χ] = [max{x, S},X′

], (25)

which is exactly the same as the one obtained using (20)
but with a simpler interpretation of the physical meaning
of the TEG’s behavior. It is easy to interpret that if
ĉij ≻ cij then the process time cij can be neglected.
On the other hand, the physical meaning is not simply
interpreted when purely evaluating (18) and (20): from

X
′
= min{C◦\z,x} and cij◦\zi ≻ X

′
j we can say that

setij{X
′} is empty and that cij can be neglected.

Example 2. Let [x] = ([0, 4], [−2, 1])t, z = (5, 4)t and

[C] =

(
[1, 4] [2, 3]
[1, 2] [e, 4]

)
. Then

(
1 2
1 e

)
x ⪯ z ⪯

(
4 3
2 4

)
x. From

(1) we calculate(
1 2
1 e

)
x ⪯

(
5
4

)
⇔ x ⪯ X =

(
1 2
1 e

)
◦\
(
5
4

)
=

(
3
3

)
and we obtain U = {x ∈ R

n

max : x ⪯ (3 3)t}. From

(16) we obtain U ′ = {x ∈ R
n

max : x ⪯ X
′} where

X
′
= min{X,x} = min{(3 3)t, (4 1)t = (3 1)t.

In the Figure below, we use (Candido et al., 2020, Algo-
rithm 1) to compute exactly I−1

[C]{z} = L ∩ U :

I−1
[C]{z}

[x]

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

x1

x
2

Fig. 1. Sets I−1
[C]{z} and [x] of Example 2

In order to compute the smallest interval that enclosures
χ = [x] ∩ I−1

[C]{z}, we compute [S] using (24) that makes

it possible to replace C with Ĉ =

(
2 4
1 3

)
=

(
4 ε
2 4

)
since

Ĉ = z◦/X
′
=

(
5
4

)
◦/

(
3
1

)
=

(
2 4
1 3

)
is such that ĉ12 ≻ ĉ12.

Thus, S = X
′
= (3, 1)t and

S = x̂(1) ⊕ x̂(2) = (ĉ11◦\z1 = 4◦\5 = 1, ε)t ⊕ (ε, ε)t,

= (1, ε)t.

Finally, χ ⊆ [χ] (see (25)) is given by:

[χ] = [max{x, S}, S] = [max{(0,−2)t, (1, ε)t}, (3, 1)t],
= ([1, 3], [−2, 1])t.

5. INTERVAL FILTER

This section deals with the solution of a filtering problem
by using an interval approach, herein named Interval
Filtering (IF).

The first stage given by (9) can be associated to the
prediction stage of the Bayesian approach, and we obtain
an interval vector [x]. In the second stage, the new in-
formation z is used to calculate the smallest interval [χ]
(see (25)) that enclosures χ = [x] ∩ I−1

[C]{z} (see (15)).

This phase can be associated to the correction stage of the
Bayesian approach and defined as a conditional reachabil-
ity problem. At the end, our approach is also two-fold as
classical filtering algorithms.

Indeed, in a closed-loop system relying on state-estimation
(Hardouin et al., 2017), an observer-based controller is
expecting an estimated vector x̂ and not an interval vector.
Thus, we have to select one point in [χ]. For instance, the
estimated state can be chosen as the center of the interval.
For all types of choices, the trajectory estimated by the
IF is in general less precise than those considering the
probabilistic aspects (Cândido et al., 2013; Mendes et al.,
2019).

Problem 1. Consider the uMPL system given by (7) with:

A(k) ∈
(
[4, 6] [5, 7]
[2, 5] [1, 3]

)
, C(k) ∈

(
[1, 8] [2, 3]
[1, 3] [e, 4]

)
,

and B = ε (autonomous system). In addition, consider
that the nondeterministic matrices entries are random
variables uniformly distributed in the given intervals,
e.g. the element a12(k) of A(k) is uniformly distributed
between 5 and 7, and x̂(0|0) ∈ [x](0|0) = ([0, 2], [0, 2])t.

The following procedure describes a general method for
computing an estimated vector x̂(k|k) ∈ [χ](k|k):
Interval Filtering:

(1) From x(k − 1|k − 1) ∈ [x](k − 1|k − 1) compute
[x](k|k − 1) as [A x(k − 1|k − 1), Ax(k − 1|k − 1)]
(see (9));

(2) Compute X(k|k) = min{x(k|k − 1), C◦\z(k)} accord-
ing to (16);

(3) Compute [S](k|k) according to (24);
(4) Compute [χ](k|k) = [max{x(k|k−1), S(k|k)}, S(k|k)]

according to (25);
(5) Compute x̂(k|k) = midpoint([χ](k|k)) 4 ;
(6) Update [x](k− 1|k− 1) with [χ](k|k) (backshift oper-

ation);
(7) k ← k + 1;

In order to show that the reduction of computational
burden of our approach might not affect the precision
of the estimation if compared with the probabilistic one,
we present some numerical results, comparing accuracy,
i.e., the distance from the true value of the state to
its estimation, and computational times. For the sake of
comparison we use the method presented in Mendes et al.
(2019), which computes an estimate x̂(k|k) as close as
possible from x̂(k|k−1) = E[x(k)|x̂(k−1|k−1)] but subject
to the constraint z(k) = E[z(k)|x̂(k|k)] (assuming x̂(0|0) is
known, and in this case, equal to the mid point of [x](0|0)).
We also consider the computational times T involed in the
simulation x(k) and the computation of x̂(k|k) for each
approach.

4 The midpoint of an interval vector {[xi, xi)]}ni=1 is defined as
{(xi + xi)/2}ni=1.



We define a criterion to evaluate the outcome of our
approach as the number of times (N) that x(k|k − 1) ̸=
χ(k|k), i.e., if the measurement is capable to reduce the
hypervolume of [χ](k|k) as k evolves.
Table 1 shows the obtained results for simulations up to
the occurrence of kmax = 4000 firings, i.e., 0 ≤ k ≤ kmax.
Each position of the table corresponds to mean-absolute-
percentage-error 5 MAPE(xi(k), x̂i(k|k)). F1 corresponds to
the proposed IF and F2 to the filter of Mendes et al. (2019).

State i MAPE(xi(k), x̂
F1
i (k|k)) MAPE(xi(k), x̂

F2
i (k|k))

1 0.0286% 0.0690%
2 0.0590% 0.0971%

Table 1. IF estimation results of Problem 1

with Nscore = 100× N
kmax

= 48.05% indicating the success

rate of contracting the hypervolume of [χ](k|k).
For the computational times, we have TF1 = 0.77 s and
TF2 = 52.56 s.

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

Fig. 2. IF graphical results of Problem 1 for up to occur-
rence of kmax = 9 firings.

Problem 2. Consider the same problem defined in Problem
1 but with c11 = 5 instead of 8.

Table 2 shows the obtained results of Problem 2 with the
same kmax.

State i MAPE(xi(k), x̂
F1
i (k|k)) MAPE(xi(k), x̂

F2
i (k|k))

1 0.0337% 0.0394%
2 0.0600% 0.0849%

Table 2. Estimation comparison of Problem 2

with Nscore = 100× N
kmax

= 34.72%.

For the computational times, we have TF1 = 0.81 s and
TF2 = 60.52 s.

Simulation results
The analysis of the two tables indicates that the perfor-
mance of IF is intrinsically linked to the success of the
criterion N , i.e., we obtain better results as N increases.
Nevertheless, we have shown that our approach has a lower
perfomance as N decreases. These results are instrinsly
linked to the fact that the noise in [C] of Problem 1 is
higher than the noise in [C] of Problem 2. Computation-
ally, it is interesting to use this approach with high noise
observation if compared to Mendes et al. (2019).

5 Notation: MAPE(a,b) = 100%
N

∑N

i=1

∣∣ai−bi
ai

∣∣ where ai is the true

value and bi is its estimated value.

6. CONCLUSIONS

In this work, we have presented an approach based on the
residuation theory over interval matrices to compute the
guaranteed interval w.r.t. a uMPL system. The procedure
presented is computed in polynomial-time and is equiv-
alent to the smallest interval that enclosures the inter-
section of the inverse image obtained thanks to (Candido
et al., 2020, Algorithm 1) with the interval obtained in
(9). Although the approach is an over-approximation of
the exact intersected region, we have obtained a suitable
method for Interval Filtering. As future work the authors
aim to combine the probabilistic aspects in order to de-
velop an Interval Stochastic Filtering, which corresponds
to a classical Stochastic Filtering (e.g. the one proposed
in Mendes et al. (2019)) with the aid of an IF: it uses
a consistency approach to select the smallest interval in
which the real state is included before we consider for
instance the probability density function of the variables.
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