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Idempotent Semiring in few words
Idempotent Semiring S

Sum ⊕, associative,commutative, neutral element denoted ε,

Product ⊗, associative, neutral element denoted e,

Product ⊗ distributes with respect to the sum,
(a⊕ b)⊗ c = a⊗ c ⊕ b ⊗ c ,

Neutral element ε is absorbing, a⊗ ε = ε

The sum is idempotent, a⊕ a = a.

a⊕ b = a⇔ b � a⇔ a ∧ b = b
hence a semiring has a complete lattice structure, with (ε) as bottom
element and (T =

⊕
x∈S x) as top element. Operator ⊕ corresponds

to operator ∨.

Subsemiring

A subset C ⊂ S is called a subsemiring of S if

ε ∈ C and e ∈ C ;

C is closed for ⊕ and ⊗, i.e, ∀a, b ∈ C, a⊕ b ∈ C and a⊗ b ∈ C.
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Idempotent Semiring Examples

Max-plus algebra Zmax

Set Z = Z ∪ {−∞,+∞} endowed with the max operator as ⊕ and the
classical sum + as ⊗ is a complete idempotent semiring of which ε = −∞,
e = 0 and T = +∞ and the greatest lower bound a ∧ b = min(a, b).

Min-plus algebra Zmin

Set Z = Z ∪ {−∞,+∞} endowed with the min operator as ⊕ and the
classical sum as ⊗ is a complete idempotent semiring of which ε = +∞,
e = 0 and T = −∞ and the greatest lower bound a ∧ b = max(a, b).

Max-min algebra

The set Z = Z∪{−∞,+∞} endowed with the max operator as ⊕ and the
min operator as ⊗ is a complete idempotent semiring of which ε = −∞,
e = +∞ and > = +∞ and the greatest lower bound a ∧ b = min(a, b).
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Idempotent Semiring of formal series

Semiring of formal series Zmax[[γ]] (Cohen, Quadrat et al. IEEE TAC
89)

Let s =
⊕

k∈Z s(k)γk a formal series where s(k) ∈ Zmax. The set of
formal series endowed with the following sum and Cauchy product :

s ⊕ s ′ : (s ⊕ s ′)(k) = s(k)⊕ s ′(k),

s ⊗ s ′ : (s ⊗ s ′)(k) =
⊕

i+j=k

s(i)⊗ s ′(j),

is a semiring denoted Zmax[[γ]].
A series with a finite support is called a polynomial, and a monomial if
there is only one element.
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Idempotent Semiring of Intervals IS (Litvinov 2001,
Lhommeau 2003, Hardouin 2010)

A (closed) interval

it is a set of the form x = [x , x ] = {t ∈ S|x � t � x}, where , x ∈ S
(respectively, x ∈ S) is said to be the lower (respectively, upper) bound of
the interval x. If x = x the interval is said to be degenerated.

Semiring of Interval IS
The set of intervals, denoted by IS, endowed with the following
coordinate-wise algebraic operations :

x
−
⊕ y ,

[
x ⊕ y , x ⊕ y

]
and x

−
⊗ y ,

[
x ⊗ y , x ⊗ y

]
(1)

is an idempotent semiring, denoted IS, where interval εεε = [ε, ε] is the neutral
element of the sum, and e = [e, e] is the identity element.
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Idempotent Semiring of Interval IS (Litvinov 2001,
Lhommeau 2003, Hardouin 2010)

Order Relation

Let x = [x , x ] and y = [y , y ] two intervals with bounds in S

x �IS y⇔ x �S y and x �S y
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Residuation Theory, Mapping inversion
Definition (Croisot 56, Blyth 72, Cuninghame-Green 79, Baccelli 92)

Let S,� and T ,� be two complete lattices, f : S → T an order
preserving mapping is residuated if ∃f ] : T → S an order preserving
mapping such that

f ◦ f ] � IdT , f ] ◦ f � IdS

f ] is the residual mapping.

Necessary and Sufficient Condition

f is residuated iff f (
∨

x∈T x) =
∨

x∈T f (x) (f is lower semi
continuous).

Properties

f ◦ f ] ◦ f = f

f ] ◦ f ◦ f ] = f ]

(f ◦ g)] = g ] ◦ f ] with g : U → S another residuated mapping.
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Dual Residuation
Definition

Let S,� and Let T ,� be two complete lattices, f : S → T an order
preserving mapping is dually residuated if ∃f [ : T → S an order preserving
mapping such that

f ◦ f [ � IdT , f [ ◦ f � IdS

f [ is the dual residual mapping.

Necessary and Sufficient Condition

f is dually residuated iff f (
∧

x∈T x) =
∧

x∈T f (x) (f is upper semi
continuous).

Properties

f ◦ f [ ◦ f = f

f [ ◦ f ◦ f [ = f [

(f ◦ g)[ = g [ ◦ f [ with g : U → S another dually residuated mapping.
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Residuated Mapping

Example : Mapping La : x 7→ a ⊗ x (Baccelli et al. 92)

Mapping La : x 7→ a⊗ x defined over semiring S is l .s.c , then (La)] exists,
i.e. inequality a⊗ x � b admits a greatest solution , denoted, x = a◦\b.

For matrices

Practical computation is obtained as follows,

Cij = (A◦\B)ij =
∧

k=1...n

(Aki ◦\Bkj),

with A ∈ Sn×p, B ∈ Sn×m and C ∈ Sp×m.
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Residuated Mapping (La)] in (max ,+) algebra

A⊗ x � B

Let A =

1 2
3 4
5 6

 and B =

 8
9

10

 be matrices with entries in (max ,+)

algebra.
In (max ,+) algebra aij◦\bj = bj − aij then the greatest x such that
A⊗ x � B is given by :

x = A◦\B =

(
(1◦\8) ∧ (3◦\9) ∧ (5◦\10)
(2◦\8) ∧ (4◦\9) ∧ (6◦\10)

)
=

(
min((8− 1), (9− 3), (10− 5))
min((8− 2), (9− 4), (10− 6))

)
=

(
5
4

)
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(La)] in semiring of intervals (Lhommeau 2004, Hardouin
2010)
a⊗x � b over semiring of intervals IS
The greatest solution of a⊗x � b with a, x,b in semiring of intervals IS is
given by :

x = a◦\b = [a◦\b ∧ a◦\b, a◦\b]

where bounds of intervals, a, b, a, b are in S.

Example in IZmax

[5, 10]⊗ [x , x ] � [20, 21]

admits a greatest solution in IZmax, it is given by :

[x , x ] � [5◦\20 ∧ 10◦\21, 10◦\21] = [11, 11]

Skecth of proof

Semiring of intervals IS is a subsemiring of S ×S. The canonical injection
from a subsemiring into a semiring is residuated, i .e.
Id|IS : IS → S × S, x 7→ x is residuated. Its residual (Id|IS)] is a
projector :

PrIS(x ′, x”) = (x ′ ∧ x”, x”) = [x , x ]

Hence (La ◦ Id|IS)] = PrIS ◦ (La)] which yields the result.
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Dual Residuation
Mapping (La) is not u.s.c

Due to the lack of distributivity of operators ∧ over ⊗ mapping (La) is not
u.s.c hence is not dually residuated. Only sub-distributivity holds :

a⊗ (b ∧ c) � (a⊗ b) ∧ (a⊗ c)

Sufficient condition

If a admits an inverse, (i .e. ∃d s.t. a⊗ d = e) then
a⊗ (b ∧ c) = (a⊗ b) ∧ (a⊗ c) hence La is u.s.c ., i .e. dually residuated :
a⊗ x � b admits a lowest solution denoted (La)[(b) .

Particular Case : La : Zmax → Zmax is dually residuated

∀a ∈ Zmax it exists an inverse, hence La : Zmax → Zmax is dually
residuated , a⊗ x � b admits a lowest solution, x � b − a.
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Dual Product

Dual product ΛA : Sn×q → Sp×q, x 7→ A� x

Let A ∈ Sp×n and B ∈ Sn×q be matrices, and the following product A�B
defined as follows :

(A� B)ij =
n∧

k=1

Aik � Bkj

with the following rules Aik � Bkj = Aik ⊗ Bkj , x �> = >� x = > and
ε�> = >� ε = >.

Particular case, max-plus algebra

ΛA : Zn×q
max → Zp×q

max , x 7→ A� x corresponds to the (min,plus) product.
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Dual Residuation of Dual Product, A� x � B

Sufficient Condition

Let A ∈ Sp×n be a matrix . If each entry of A admits an inverse, mapping
ΛA is u.s.c and then is dually residuated, we denote

Λ[
A : x 7→ A•\x .

(A•\x)ij =
k=n⊕
l=1

Aki •\xkj .

with the following rules : >•\x = ε, ε•\x = > and ε•\ε = ε.
Hence, A•\B is the lowest solution of A� x � B.

Particular case, max-plus algebra

Λ[
A : Zp×q

max → Zn×q
max , x 7→ A•\x is a (max,plus) linear operator.
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Λ[A in semiring of intervals IS

What is happen for intervals ?

Intervals don’t admit inverse.

Sufficient Condition

Let a = [a, a] ∈ IS be an interval. If each bound of the interval admits an
inverse, mapping Λa is dually residuated, and

Λ[
a(b) = [Λ[

a(b),Λ[
a(b)⊕ Λ[

a(b)]

with b = [b, b] an interval. Hence, a�x � b admits a lowest solution :

a•\b = [a•\b, a•\b ⊕ a•\b].
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Λ[A in semiring of intervals IS
Sufficient Condition

Let a = [a, a] ∈ IS be an interval. If each bound of the interval admits an
inverse, mapping Λa is residuated, and

Λ[
a(b) = [Λ[

a(b),Λ[
a(b)⊕ Λ[

a(b)]

with b = [b, b] an interval. Hence, a�x � b admits a lowest solution :

a•\b = [a•\b, a•\b ⊕ a•\b].

Sketch of proof

Semiring of intervals IS is a subsemiring of S ×S. The canonical injection
from a subsemiring into a semiring is dually residuated (Blyth 72, Gaubert
92), i .e. Id|IS : IS → S × S, x 7→ x is dually residuated. Its dual residual

(Id|IS)[ is a projector :

(Id|IS)[(x ′, x”) = (x ′, x ′ ⊕ x”) = [x , x ]

Hence (Λa ◦ Id|IS)[ = (Id|IS)[ ◦ (Λa)[ which yields the result.
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Λ[A in semiring of intervals IZmax

Illustration in IZmax

In IZmax each bound of the interval admits an inverse. Let a = [5, 9] and
b = [8, 20] be intervals in IZmax.
The lowest solution of [5, 9]�x � [8, 20] is given by :

a•\b = [5•\8, 5•\8⊕ 9•\20]=[ 3,11 ].

A�x � B

Let A =

[1, 3] [2, 5]
[3, 7] [4, 6]
[5, 8] [6, 7]

 and B =

 [4, 9]
[5, 10]
[3, 8]

 be matrices with entries in

IZmax.

Greatest x such that A�x � B is given by : x = A•\B =

(
[3, 6]
[2, 4]

)
obtained by applying the following rules (A•\x)ij =

k=n⊕
l=1

Aki •\xkj .
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Conclusion

Conclusion

Residuation and dual residuation of product law in semiring of
intervals La : x 7→ a⊗ x

Useful in control theory to characterize state space achieving :

A⊗ x � x � A� x

where the entries are intervals, i .e. the system is known in an
uncertain way.

Illustration are given in IZmax but it runs also in semiring of series
IZmax[[γ]] and all semirings of intervals.

Questions ?
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