On the dual product and the dual residuation over idempotent semiring of intervals

L. Hardouin, B. Cottenceau, E. Le Corronc

Laboratoire d'Ingénierie des Systèmes Automatisés - EA 4014 ISTIA - University of Angers

June 22th 2010

1 / 21

Outline

• Idempotent Semirings in few words

- Interval analysis over idempotent semirings
- Residuation and dual residuation of isotone mappings
- Residuation and interval analysis
- Conclusion

Outline

- Idempotent Semirings in few words
- Interval analysis over idempotent semirings
- Residuation and dual residuation of isotone mappings
- Residuation and interval analysis
- Conclusion

Outline

- Idempotent Semirings in few words
- Interval analysis over idempotent semirings
- Residuation and dual residuation of isotone mappings
- Residuation and interval analysis
- Conclusion

Outline

- Idempotent Semirings in few words
- Interval analysis over idempotent semirings
- Residuation and dual residuation of isotone mappings
- Residuation and interval analysis
- Conclusion

$\begin{array}{l} \text{Idempotent Semiring in few words} \\ \text{Idempotent Semiring } \mathcal{S} \end{array}$

- Sum \oplus , associative, commutative, neutral element denoted ε ,
- Product ⊗, associative, neutral element denoted *e*,
- Product ⊗ distributes with respect to the sum,
 (a ⊕ b) ⊗ c = a ⊗ c ⊕ b ⊗ c,
- Neutral element ε is absorbing, $a \otimes \varepsilon = \varepsilon$
- The sum is idempotent, $a \oplus a = a$.
- $a \oplus b = a \Leftrightarrow b \preceq a \Leftrightarrow a \land b = b$

hence a semiring has a complete lattice structure, with (ε) as bottom element and ($T = \bigoplus_{x \in S} x$) as top element. Operator \oplus corresponds to operator \lor .

3 / 21

Subsemiring

A subset $\mathcal{C} \subset \mathcal{S}$ is called a subsemiring of \mathcal{S} if

• $\varepsilon \in \mathcal{C}$ and $e \in \mathcal{C}$;

• \mathcal{C} is closed for \oplus and \otimes , i.e, $\forall a, b \in \mathcal{C}$, $a \oplus b \in \mathcal{C}$ and $a \otimes b \in \mathcal{C}$.

Idempotent Semiring Examples

Max-plus algebra $\overline{\mathbb{Z}}_{max}$

Set $\overline{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty, +\infty\}$ endowed with the *max* operator as \oplus and the classical sum + as \otimes is a complete idempotent semiring of which $\varepsilon = -\infty$, e = 0 and $T = +\infty$ and the greatest lower bound $a \wedge b = min(a, b)$.

Min-plus algebra \mathbb{Z}_{min}

Set $\overline{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty, +\infty\}$ endowed with the *min* operator as \oplus and the classical sum as \otimes is a complete idempotent semiring of which $\varepsilon = +\infty$, e = 0 and $T = -\infty$ and the greatest lower bound $a \wedge b = max(a, b)$.

Max-min algebra

The set $\overline{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty, +\infty\}$ endowed with the *max* operator as \oplus and the *min* operator as \otimes is a complete idempotent semiring of which $\varepsilon = -\infty$, $e = +\infty$ and $\top = +\infty$ and the greatest lower bound $a \wedge b = min(a, b)$.

<ロ> (日) (日) (日) (日) (日)

Semiring of formal series $\overline{\mathbb{Z}}_{max}[\gamma]$ (Cohen, Quadrat et al. IEEE TAC 89)

Let $s = \bigoplus_{k \in \mathbb{Z}} s(k) \gamma^k$ a formal series where $s(k) \in \mathbb{Z}_{max}$. The set of formal series endowed with the following sum and Cauchy product :

$$s \oplus s' : (s \oplus s')(k) = s(k) \oplus s'(k),$$

 $s \otimes s' : (s \otimes s')(k) = \bigoplus_{i+j=k} s(i) \otimes s'(j),$

is a semiring denoted $\overline{\mathbb{Z}}_{\max}[\gamma]$.

A series with a finite support is called a polynomial, and a monomial if there is only one element.

Idempotent Semiring of Intervals \mathcal{IS} (Litvinov 2001, Lhommeau 2003, Hardouin 2010)

A (closed) interval

it is a set of the form $\mathbf{x} = [\underline{x}, \overline{x}] = \{t \in S | \underline{x} \leq t \leq \overline{x}\}$, where , $\underline{x} \in S$ (respectively, $\overline{x} \in S$) is said to be the lower (respectively, upper) bound of the interval \mathbf{x} . If $\underline{x} = \overline{x}$ the interval is said to be degenerated.

Semiring of Interval \mathcal{IS}

The set of intervals, denoted by \mathcal{IS} , endowed with the following coordinate-wise algebraic operations :

 $\mathbf{x} \stackrel{-}{\oplus} \mathbf{y} \triangleq [\underline{x} \oplus \underline{y}, \overline{x} \oplus \overline{y}]$ and $\mathbf{x} \stackrel{-}{\otimes} \mathbf{y} \triangleq [\underline{x} \otimes \underline{y}, \overline{x} \otimes \overline{y}]$ (1)

is an idempotent semiring, denoted \mathcal{IS} , where interval $\boldsymbol{\varepsilon} = [\varepsilon, \varepsilon]$ is the neutral element of the sum, and $\mathbf{e} = [e, e]$ is the identity element.

・ロト ・ 日 ・ ・ ヨ ・

Idempotent Semiring of Interval \mathcal{IS} (Litvinov 2001, Lhommeau 2003, Hardouin 2010)

Order Relation

Let $\mathbf{x} = [\underline{x}, \overline{x}]$ and $\mathbf{y} = [y, \overline{y}]$ two intervals with bounds in \mathcal{S}

$$\mathbf{x} \preceq_{\mathcal{IS}} \mathbf{y} \Leftrightarrow \underline{x} \preceq_{\mathcal{S}} \underline{y} \text{ and } \overline{x} \preceq_{\mathcal{S}} \overline{y}$$

7 / 21

Residuation Theory, Mapping inversion Definition (Croisot 56, Blyth 72, Cuninghame-Green 79, Baccelli 92)

Let S, \leq and T, \leq be two complete lattices, $f : S \to T$ an order preserving mapping is residuated if $\exists f^{\sharp} : T \to S$ an order preserving mapping such that

$$f \circ f^{\sharp} \preceq Id_{\mathcal{T}}, \quad f^{\sharp} \circ f \succeq Id_{\mathcal{S}}$$

 f^{\sharp} is the residual mapping.

Necessary and Sufficient Condition ● *f* is residuated iff *f*(V_{×∈*T*}×) = V_{×∈*T*} *f*(×) (*f* is low

continuous).

Properties

Residuation Theory, Mapping inversion Definition (Croisot 56, Blyth 72, Cuninghame-Green 79, Baccelli 92)

Let S, \leq and T, \leq be two complete lattices, $f : S \to T$ an order preserving mapping is residuated if $\exists f^{\sharp} : T \to S$ an order preserving mapping such that

$$f \circ f^{\sharp} \preceq Id_{\mathcal{T}}, \quad f^{\sharp} \circ f \succeq Id_{\mathcal{S}}$$

f[‡] is the residual mapping.

Necessary and Sufficient Condition

f is residuated iff f(V_{x∈T} x) = V_{x∈T} f(x) (f is lower semi continuous).

Properties

• $f \circ f^{\sharp} \circ f = f$

• $f^{\sharp} \circ f \circ f^{\sharp} = f^{\sharp}$

• $(f \circ g)^{\sharp} = g^{\sharp} \circ f^{\sharp}$ with $g : \mathcal{U} \to \mathcal{S}$ another residuated mapping.

8 / 21

Residuation Theory, Mapping inversion Definition (Croisot 56, Blyth 72, Cuninghame-Green 79, Baccelli 92)

Let S, \leq and T, \leq be two complete lattices, $f : S \to T$ an order preserving mapping is residuated if $\exists f^{\sharp} : T \to S$ an order preserving mapping such that

$$f \circ f^{\sharp} \preceq Id_{\mathcal{T}}, \quad f^{\sharp} \circ f \succeq Id_{\mathcal{S}}$$

f[‡] is the residual mapping.

Necessary and Sufficient Condition

f is residuated iff f(V_{x∈T} x) = V_{x∈T} f(x) (f is lower semi continuous).

Properties

•
$$f \circ f^{\sharp} \circ f = f$$

•
$$f^{\sharp} \circ f \circ f^{\sharp} = f^{\sharp}$$

• $(f \circ g)^{\sharp} = g^{\sharp} \circ f^{\sharp}$ with $g : \mathcal{U} \to \mathcal{S}$ another residuated mapping.

8 / 21

Dual Residuation Definition

Let S, \leq and Let T, \leq be two complete lattices, $f : S \to T$ an order preserving mapping is dually residuated if $\exists f^{\flat} : T \to S$ an order preserving mapping such that

$$f \circ f^{\flat} \succeq \mathit{Id}_{\mathcal{T}}, \quad f^{\flat} \circ f \preceq \mathit{Id}_{\mathcal{S}}$$

 f^{\flat} is the dual residual mapping.

Necessary and Sufficient Condition

f is dually residuated iff *f*(∧_{x∈T} *x*) = ∧_{x∈T} *f*(*x*) (*f* is upper sem continuous).

Properties

Dual Residuation Definition

Let S, \leq and Let T, \leq be two complete lattices, $f : S \to T$ an order preserving mapping is dually residuated if $\exists f^{\flat} : T \to S$ an order preserving mapping such that

$$f \circ f^{\flat} \succeq \mathit{Id}_{\mathcal{T}}, \quad f^{\flat} \circ f \preceq \mathit{Id}_{\mathcal{S}}$$

 f^{\flat} is the dual residual mapping.

Necessary and Sufficient Condition

f is dually residuated iff *f*(∧_{x∈T} x) = ∧_{x∈T} *f*(x) (*f* is upper semi continuous).

Properties

• $f \circ f^{\flat} \circ f = f$

• $f^{\flat} \circ f \circ f^{\flat} = f^{\flat}$

• $(f \circ g)^{\flat} = g^{\flat} \circ f^{\flat}$ with $g : \mathcal{U} \to S$ another dually residuated mapping.

Dual Residuation Definition

Let S, \leq and Let T, \leq be two complete lattices, $f : S \to T$ an order preserving mapping is dually residuated if $\exists f^{\flat} : T \to S$ an order preserving mapping such that

$$f \circ f^{\flat} \succeq \mathit{Id}_{\mathcal{T}}, \quad f^{\flat} \circ f \preceq \mathit{Id}_{\mathcal{S}}$$

 f^{\flat} is the dual residual mapping.

Necessary and Sufficient Condition

f is dually residuated iff *f*(∧_{x∈T} x) = ∧_{x∈T} *f*(x) (*f* is upper semi continuous).

Properties

• $f \circ f^{\flat} \circ f = f$

•
$$f^{\flat} \circ f \circ f^{\flat} = f^{\flat}$$

• $(f \circ g)^{\flat} = g^{\flat} \circ f^{\flat}$ with $g : \mathcal{U} \to \mathcal{S}$ another dually residuated mapping.

9 / 21

Example : Mapping $L_a : x \mapsto a \otimes x$ (Baccelli et al. 92)

Mapping $L_a : x \mapsto a \otimes x$ defined over semiring S is *l.s.c*, then $(L_a)^{\sharp}$ exists, i.e. inequality $a \otimes x \leq b$ admits a greatest solution, denoted, $x = a \diamond b$.

For matrices

Practical computation is obtained as follows,

$$C_{ij} = (A \diamond B)_{ij} = \bigwedge_{k=1...n} (A_{ki} \diamond B_{kj}),$$

10 / 21

with $A \in S^{n \times p}$, $B \in S^{n \times m}$ and $C \in S^{p \times m}$.

Residuated Mapping $(L_a)^{\sharp}$ in (max, +) algebra

$A \otimes x \preceq B$

Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$
 and $B = \begin{pmatrix} 8 \\ 9 \\ 10 \end{pmatrix}$ be matrices with entries in $(max, +)$

algebra.

In (max, +) algebra $a_{ij} \diamond b_j = b_j - a_{ij}$ then the greatest x such that $A \otimes x \preceq B$ is given by :

$$\begin{aligned} x &= A \& B &= \begin{pmatrix} (1\&8) \land (3\&9) \land (5\&10) \\ (2\&8) \land (4\&9) \land (6\&10) \end{pmatrix} \\ &= \begin{pmatrix} \min((8-1), (9-3), (10-5)) \\ \min((8-2), (9-4), (10-6)) \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \end{aligned}$$

11 / 21

$(L_a)^{\sharp}$ in semiring of intervals (Lhommeau 2004, Hardouin 2010)

 $\mathbf{a}\overline{\otimes}\mathbf{x} \preceq \mathbf{b} \text{ over semiring of intervals } \mathcal{IS}$

The greatest solution of $\mathbf{a} \otimes \mathbf{x} \leq \mathbf{b}$ with $\mathbf{a}, \mathbf{x}, \mathbf{b}$ in semiring of intervals \mathcal{IS} is given by :

$$\mathbf{x} = \mathbf{a}\overline{\mathbf{b}}\mathbf{b} = [\underline{a}\mathbf{b}\underline{b} \wedge \overline{a}\mathbf{b}\overline{b}, \overline{a}\mathbf{b}\overline{b}]$$

where bounds of intervals, $\underline{a}, \underline{b}, \overline{a}, \overline{b}$ are in \mathcal{S} .

Example in $\mathcal{I}\overline{\mathbb{Z}}_{max}$

Skecth of proof

 $[5,10]\otimes[\underline{x},\overline{x}] \preceq [20,21]$

admits a greatest solution in $\mathcal{I}\overline{\mathbb{Z}}_{max}$, it is given by :

 $[\underline{x},\overline{x}] \preceq [5 \verb+20 \land 10 \verb+21, 10 \verb+21] = [11, 11]$

L. Hardouin, B. Cottenceau, E. Le Corronc (IOn the dual product and the dual residuation

June 22th 2010 12 / 21

Dual Residuation

Mapping (L_a) is not u.s.c

Due to the lack of distributivity of operators \land over \otimes mapping (L_a) is not *u.s.c* hence is not dually residuated. Only sub-distributivity holds :

 $a \otimes (b \wedge c) \preceq (a \otimes b) \wedge (a \otimes c)$

Sufficient condition

If a admits an inverse, $(i.e. \exists d \text{ s.t. } a \otimes d = e)$ then $a \otimes (b \wedge c) = (a \otimes b) \wedge (a \otimes c)$ hence L_a is *u.s.c.*, *i.e.* dually residuated : $a \otimes x \succeq b$ admits a lowest solution denoted $(L_a)^{\flat}(b)$.

13 / 21

Particular Case : $L_a : \overline{\mathbb{Z}}_{max} \to \overline{\mathbb{Z}}_{max}$ is dually residuated

 $\forall a \in \mathbb{Z}_{\max}$ it exists an inverse, hence $L_a : \mathbb{Z}_{\max} \to \mathbb{Z}_{\max}$ is dually residuated, $a \otimes x \succeq b$ admits a lowest solution, $x \succeq b - a$.

Dual Product

Dual product $\Lambda_A : \mathcal{S}^{n \times q} \to \mathcal{S}^{p \times q}, x \mapsto A \odot x$

Let $A \in S^{p \times n}$ and $B \in S^{n \times q}$ be matrices, and the following product $A \odot B$ defined as follows :

$$(A \odot B)_{ij} = \bigwedge_{k=1}^n A_{ik} \odot B_{kj}$$

with the following rules $A_{ik} \odot B_{kj} = A_{ik} \otimes B_{kj}$, $x \odot \top = \top \odot x = \top$ and $\varepsilon \odot \top = \top \odot \varepsilon = \top$.

Particular case, max-plus algebra

 $\Lambda_A: \overline{\mathbb{Z}}_{\max}^{n \times q} \to \overline{\mathbb{Z}}_{\max}^{p \times q}, x \mapsto A \odot x \text{ corresponds to the (min, plus) product.}$

Dual Residuation of Dual Product, $A \odot x \succeq B$

Sufficient Condition

Let $A \in S^{p \times n}$ be a matrix. If each entry of A admits an inverse, mapping Λ_A is *u.s.c* and then is dually residuated, we denote

$$(A X)_{ij} = \bigoplus_{l=1}^{k=n} A_{ki} X_{kj}.$$

15 / 21

with the following rules : $\top \langle x = \varepsilon, \varepsilon \rangle \langle x = \top \rangle$ and $\varepsilon \langle \varepsilon = \varepsilon \rangle$. Hence, $A \langle B \rangle$ is the lowest solution of $A \odot x \succeq B$.

Particular case, max-plus algebra

 $\Lambda^{\flat}_{\mathcal{A}}: \overline{\mathbb{Z}}_{\max}^{p \times q} \to \overline{\mathbb{Z}}_{\max}^{n \times q}, x \mapsto \mathcal{A}(x \text{ is a (max,plus) linear operator.})$

$\Lambda^{\flat}_{f A}$ in semiring of intervals ${\cal IS}$

What is happen for intervals?

Intervals don't admit inverse.

Sufficient Condition

Let $\mathbf{a} = [\underline{a}, \overline{a}] \in \mathcal{IS}$ be an interval. If each bound of the interval admits an inverse, mapping $\Lambda_{\mathbf{a}}$ is dually residuated, and

 $\Lambda^{\flat}_{\mathbf{a}}(\mathbf{b}) = [\Lambda^{\flat}_{\underline{a}}(\underline{b}), \Lambda^{\flat}_{\underline{a}}(\underline{b}) \oplus \Lambda^{\flat}_{\overline{a}}(\overline{b})]$

with $\mathbf{b} = [\underline{b}, \overline{b}]$ an interval. Hence, $\mathbf{a} \odot \mathbf{x} \succeq \mathbf{b}$ admits a lowest solution :

 $\mathbf{a}\mathbf{b} = [\underline{a}\mathbf{b}, \underline{a}\mathbf{b} \oplus \overline{a}\mathbf{b}].$

$\Lambda^{\flat}_{{\pmb{\Delta}}}$ in semiring of intervals \mathcal{IS} Sufficient Condition

Let $\mathbf{a} = [\underline{a}, \overline{a}] \in \mathcal{IS}$ be an interval. If each bound of the interval admits an inverse, mapping $\Lambda_{\mathbf{a}}$ is residuated, and

 $\Lambda^{\flat}_{\mathbf{a}}(\mathbf{b}) = [\Lambda^{\flat}_{\underline{a}}(\underline{b}), \Lambda^{\flat}_{\underline{a}}(\underline{b}) \oplus \Lambda^{\flat}_{\overline{a}}(\overline{b})]$

with $\mathbf{b} = [\underline{b}, \overline{b}]$ an interval. Hence, $\mathbf{a} \odot \mathbf{x} \succeq \mathbf{b}$ admits a lowest solution :

 $\mathbf{a}\mathbf{b} = [\underline{a}\mathbf{b}, \underline{a}\mathbf{b} \oplus \overline{a}\mathbf{b}].$

Sketch of proof

Semiring of intervals \mathcal{IS} is a subsemiring of $\mathcal{S} \times \mathcal{S}$. The canonical injection from a subsemiring into a semiring is dually residuated (Blyth 72, Gaubert 92), *i.e.* $Id_{|\mathcal{IS}} : \mathcal{IS} \to \mathcal{S} \times \mathcal{S}, x \mapsto x$ is dually residuated. Its dual residual $(Id_{|\mathcal{IS}})^{\flat}$ is a projector :

$$(\mathsf{Id}_{|\mathcal{IS}})^{\flat}(x',x") = (x',x'\oplus x") = [\underline{x},\overline{x}]$$

Hence $(\Lambda_{\mathbf{a}} \circ \mathsf{Id}_{|\mathcal{IS}})^{\flat} = (\mathsf{Id}_{|\mathcal{IS}})^{\flat} \circ (\Lambda_{\mathbf{a}})^{\flat}$ which yields the result.

$\Lambda^{\flat}_{\mathbf{A}}$ in semiring of intervals $\mathcal{I}\overline{\mathbb{Z}}_{max}$ Illustration in $\mathcal{I}\overline{\mathbb{Z}}_{max}$

In $\mathcal{I}\overline{\mathbb{Z}}_{max}$ each bound of the interval admits an inverse. Let $\mathbf{a} = [5, 9]$ and $\mathbf{b} = [8, 20]$ be intervals in $\mathcal{I}\overline{\mathbb{Z}}_{max}$. The lowest solution of $[5, 9]\overline{\odot}\mathbf{x} \succeq [8, 20]$ is given by :

 $\mathbf{a}\mathbf{b} = [5\mathbf{b}8, 5\mathbf{b}8 \oplus 9\mathbf{b}20] = [3,11].$

 $\overline{\mathbf{A}} \overline{\odot} \mathbf{x} \succeq \mathbf{B}$

Let
$$A = \begin{pmatrix} [1,3] & [2,5] \\ [3,7] & [4,6] \\ [5,8] & [6,7] \end{pmatrix}$$
 and $B = \begin{pmatrix} [4,9] \\ [5,10] \\ [3,8] \end{pmatrix}$ be matrices with entries in $\mathcal{I}\mathbb{Z}_{max}$.

Greatest x such that $A \overline{\odot} x \succeq B$ is given by : $x = A \setminus B = \begin{pmatrix} [3, 6] \\ [2, 4] \end{pmatrix}$

obtained by applying the following rules $(A \setminus x)_{ij} = \bigoplus_{i=1}^{k=n} A_{ki} \setminus x_{kj}$.

Conclusion

Conclusion

- Residuation and dual residuation of product law in semiring of intervals L_a : x → a ⊗ x
- Useful in control theory to characterize state space achieving :

 $\mathbf{A}\otimes\mathbf{x}\preceq\mathbf{x}\preceq\mathbf{A}\odot\mathbf{x}$

19 / 21

where the entries are intervals, i.e. the system is known in an uncertain way.

• Illustration are given in $\mathcal{I}\mathbb{Z}_{max}$ but it runs also in semiring of series $\mathcal{I}\overline{\mathbb{Z}}_{max}[\![\gamma]\!]$ and all semirings of intervals.

• Questions ?

Bibliography

References

- T.S. Blyth and M.F. Janowitz, Residuation Theory, Pergamon press, 1972.
- G. Cohen, P. Moller, J.P. Quadrat and M. Viot, Algebraic Tools for the Performance Evaluation of Discrete Event Systems, IEEE Proceedings : Special issue on Discrete Event Systems, vol. 77 :1,pp 39-58, 1989.
- R. Croisot,

Applications Résiduées, Annales Scientifiques, Paris Ecole Normale Supérieure, 73, 1956, pp 453-474.

• R.A. Cuninghame-Green, Minimax Algebra,

Lecture notes in Economics and Mathematical Systems, 166, 1979.

Bibliography

References

- S. Gaubert, Théorie des Systèmes Linéaires dans les Dioïdes, PhD, 1992.
- L. Hardouin, B. Cottenceau, M. Lhommeau and E. LeCorronc, Interval systems over idempotent semiring, Linear Algebra and Applications, 2009, 431, 5-7, pp 855-862, dx.doi.org/10.1016/j.laa.2009.03.039.
- G.L. Litvinov and A.N. Sobolevski, Idempotent Interval Analysis and Optimization Problems, Reliable Computing, 2001, 7 :5, pp 353-377.
- M. Lhommeau, L. Hardouin, B. Cottenceau and L. Jaulin, Interval Analysis and Dioid : Application to Robust Controller Design for Timed Event graphs, Automatica, 2004, 40, pp 1923-1930, doi:10.1016/j.automatica.2004.05.013.