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Observer Design for (max, +) Linear Systems
Laurent Hardouin, Carlos Andrey Maia , Bertrand Cottenceau, Mehdi Lhommeau

Abstract—This paper deals with the state estimation for max-
plus linear systems. This estimation is carried out following the
ideas of the observer method for classical linear systems. The
system matrices are assumed to be known, and the observation of
the input and of the output is used to compute the estimated state.
The observer design is based on the residuation theory which is
suitable to deal with linear mapping inversion in idempotent
semiring.

Index Terms—Discrete Event Dynamics Systems, Idempotent
Semirings, Max-Plus Algebra, Residuation Theory, Timed Event
Graphs, Dioid, Observer, State Estimation.

I. INTRODUCTION

Many discrete event dynamic systems, such as transporta-
tion networks [21], [12], communication networks, manu-
facturing assembly lines [3], are subject to synchronization
phenomena. Timed event graphs (TEGs) are a subclass of
timed Petri nets and are suitable tools to model these systems.
A timed event graph is a timed Petri net of which all places
have exactly one upstream transition and one downstream
transition. Its description can be transformed into a (max,+)
or a (min,+) linear model and vice versa [5], [1]. This
property has advantaged the emergence of a specific control
theory for these systems, and several control strategies have
been proposed, e.g., optimal open loop control [4], [20], [16],
[19], and optimal feedback control in order to solve the model
matching problem [6], [18], [14], [19] and also [22]. This
paper focuses on observer design for (max,+) linear systems.
The observer aims at estimating the state for a given plant by
using input and output measurements. The state trajectories
correspond to the transition firings of the corresponding timed
event graph, their estimation is worthy of interest because it
provides insight into internal properties of the system. For
example these state estimations are sufficient to reconstruct
the marking of the graph, as it is done in [10] for Petri
nets without temporization. The state estimation has many
potential applications, such as fault detection, diagnosis, and
state feedback control.

The (max,+) algebra is a particular idempotent semiring,
therefore section II reviews some algebraic tools concerning
these algebraic structures. Some results about the residuation
theory and its applications over semiring are also given.
Section III recalls the description of timed event graphs in a
semiring of formal series. Section IV presents and develops the
proposed observer. It is designed by analogy with the classical
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Luenberger [17] observer for linear systems. It is done under
the assumption that the system behavior is (max,+)-linear.
This assumption means the model represents the fastest system
behavior, in other words it implies that the system is unable
to be accelerated, and consequently the disturbances can only
reduce the system performances i.e., they can only delay the
events occurrence. They can be seen as machine breakdown
in a manufacturing system, or delay due to an unexpected
crowd of people in a transport network. In the opposite,
the disturbances which increase system performances, i.e.,
which anticipate the events occurrence, could give an upper
estimation of the state, in this sense the results obtained are
not equivalent to the observer for the classical linear systems.
Consequently, it is assumed that the model and the initial
state correspond to the fastest behavior (e.g. ideal behavior
of the manufacturing system without extra delays or ideal
behavior of the transport network without traffic holdup and
with the maximal speed) and that disturbances only delay the
occurrence of events. Under these assumptions a sufficient
condition allowing to ensure equality between the state and
the estimated state is given in proposition 4 in spite of
possible disturbances, and proposition 3 yields some weaker
sufficient conditions allowing to ensure equality between the
asymptotic slopes of the state and the one of the estimated
state, that means the error between both is always bounded. We
invite the reader to consult the following link http://www.istia.
univ-angers.fr/∼hardouin/Observer.html to discover a dynamic
illustration of the observer behavior.

II. ALGEBRAIC SETTING

An idempotent semiring S is an algebraic structure with
two internal operations denoted by ⊕ and ⊗. The operation
⊕ is associative, commutative and idempotent, that is, a ⊕
a = a. The operation ⊗ is associative (but not necessarily
commutative) and distributive on the left and on the right with
respect to ⊕. The neutral elements of ⊕ and ⊗ are represented
by ε and e respectively, and ε is an absorbing element for the
law ⊗ (∀a ∈ S, ε⊗a = a⊗ε = ε). As in classical algebra, the
operator ⊗ will be often omitted in the equations, moreover,
ai = a⊗ai−1 and a0 = e. In this algebraic structure, a partial
order relation is defined by a � b⇔ a = a⊕ b⇔ b = a ∧ b
(where a∧ b is the greatest lower bound of a and b), therefore
an idempotent semiring S is a partially ordered set (see [1],
[12] for an exhaustive introduction). An idempotent semiring
S is said to be complete if it is closed for infinite⊕-sums and if
⊗ distributes over infinite ⊕-sums. In particular > =

⊕
x∈S x

is the greatest element of S (> is called the top element of
S).

Example 1 (Zmax ): Set Zmax = Z∪{−∞,+∞} endowed
with the max operator as sum and the classical sum + as
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product is a complete idempotent semiring, usually denoted
Zmax, of which ε = −∞ and e = 0.

Theorem 1 (see [1], th. 4.75): The implicit inequality x �
ax⊕b as well as the equation x = ax⊕b defined over S, admit
x = a∗b as the least solution, where a∗ =

⊕
i∈N

ai (Kleene star

operator).
Properties 1: The Kleene star operator satisfies the follow-

ing well known properties (see [9] for proofs, and [13] for
more general results):

a∗ = (a∗)∗, a∗a∗ = a∗, (1)
(a⊕ b)∗ = a∗(ba∗)∗ = (a∗b)∗a∗, b(ab)∗ = (ba)∗b. (2)

Thereafter, the operator a+ =
⊕
i∈N+

ai = aa∗ = a∗a is also

considered, it satisfies the following properties:

a+ = (a+)+, a∗ = e⊕ a+, (3)
(a∗)+ = (a+)∗ = a∗, a+ � a∗. (4)

Definition 1 (Residual and residuated mapping): An order
preserving mapping f : D → E , where D and E are partially
ordered sets, is a residuated mapping if for all y ∈ E there
exists a greatest solution for the inequality f(x) � y (hereafter
denoted f ](y)). Obviously, if equality f(x) = y is solvable,
f ](y) yields the greatest solution. The mapping f ] is called
the residual of f and f ](y) is the optimal solution of the
inequality.

Theorem 2 (see [2],[1]): Let f : (D,�) → (C,�) be
an order preserving mapping. The following statements are
equivalent

(i) f is residuated.
(ii) there exists an unique order preserving mapping f ] :
C → D such that f ◦ f ] � IdC and f ] ◦ f � IdD.

Example 2: Mappings Λa : x 7→ a⊗x and Ψa : x 7→ x⊗a
defined over an idempotent semiring S are both residuated
([1], p. 181). Their residuals are order preserving mappings
denoted respectively by Λ]a(x) = a◦\x and Ψ]

a(x) = x◦/a.
This means that a◦\b (resp. b◦/a) is the greatest solution of
the inequality a⊗ x � b (resp. x⊗ a � b).

Definition 2 (Restricted mapping): Let f : D → C be a
mapping and B ⊆ D. We will denote by f|B : B → C the
mapping defined by f|B = f ◦ Id|B where Id|B : B → D, x 7→
x is the canonical injection. Identically, let E ⊆ C be a set
such that Imf ⊆ E . Mapping E|f : D → E is defined by
f = Id|E ◦ E|f , where Id|E : E → C, x 7→ x.

Definition 3 (Closure mapping): A closure mapping is an
order preserving mapping f : D → D defined on an ordered
set D such that f � IdD and f ◦ f = f .

Proposition 1 (see [6]): Let f : D → D be a closure
mapping. Then, Imf |f is a residuated mapping whose residual
is the canonical injection Id|Imf .

Example 3: Mapping K : S → S, x 7→ x∗ is a closure
mapping (indeed a � a∗ and a∗ = (a∗)∗ see equation (1)).
Then (ImK|K) is residuated and its residual is (ImK|K)] =
Id|ImK . In other words, x = a∗ is the greatest solution of
inequality x∗ � a if a ∈ ImK, that is x � a∗ ⇔ x∗ � a∗.

Example 4: Mapping P : S → S, x 7→ x+ is a closure
mapping (indeed a � a+ and a+ = (a+)+ see equation (3)).

Then (ImP |P ) is residuated and its residual is (ImP |P )] =
Id|ImP . In other words, x = a+ is the greatest solution of
inequality x+ � a if a ∈ ImP , that is x � a+ ⇔ x+ � a+.

Remark 1: According to equation (4), (a∗)+ = a∗, there-
fore ImK ⊂ ImP .

Properties 2: Some useful results involving these residuals
are presented below (see [1] for proofs and more complete
results).

a◦\a = (a◦\a)∗ a◦/a = (a◦/a)∗ (5)

a(a◦\(ax)) = ax ((xa)◦/a)a = xa (6)

b◦\a◦\x = (ab)◦\x x◦/a◦/b = x◦/(ba) (7)

a∗◦\(a∗x) = a∗x (a∗x)◦/a∗ = a∗x (8)

(a◦\x) ∧ (a◦\y) = a◦\(x ∧ y) (x◦/a) ∧ (y◦/a) = (x ∧ y)◦/a
(9)

The set of n×n matrices with entries in S is an idempotent
semiring. The sum, the product and the residuation of matrices
are defined after the sum, the product and the residuation of
scalars in S , i.e.,

(A⊗B)ik =
⊕

j=1...n

(aij ⊗ bjk) (10)

(A⊕B)ij = aij ⊕ bij , (11)
(A ◦\B)ij =

∧
k=1..n

(aki ◦\bkj) , (B◦/A)ij =
∧

k=1..n

(bik◦/ajk). (12)

The identity matrix of Sn×n is the matrix with entries equal
to e on the diagonal and to ε elsewhere. This identity matrix
will also be denoted e, and the matrix with all its entries equal
to ε will also be denoted ε.

Definition 4 (Reducible and irreducible matrices): Let A
be a n × n matrix with entries in a semiring S. Matrix A is
said reducible, if and only if for some permutation matrix P ,
the matrix PTAP is block upper triangular. If matrix A is
not reducible, it is said to be irreducible.

III. TEG DESCRIPTION IN IDEMPOTENT SEMIRING

Timed event graphs constitute a subclass of timed Petri nets
i.e. those whose places have one and only one upstream and
downstream transition. A timed event graph (TEG) description
can be transformed into a (max,+) or a (min,+) linear
model and vice versa. To obtain an algebraic model in Zmax, a
“dater” function is associated to each transition. For transition
labelled xi, xi(k) represents the date of the kth firing (see
[1],[12]). A trajectory of a TEG transition is then a firing
date sequence of this transition. This collection of dates can
be represented by a formal series x(γ) =

⊕
k∈Z xi(k) ⊗ γk

where xi(k) ∈ Zmax and γ is a backward shift operator1 in
the event domain (formally γx(k) = x(k − 1)). The set of
formal series in γ is denoted by Zmax[[γ]] and constitutes a
complete idempotent semiring. For instance, considering the
TEG in figure 1, daters x1, x2 and x3 are related as follows
over Zmax: x1(k) = 4⊗ x1(k − 1)⊕ 1⊗ x2(k)⊕ 6⊗ x3(k).
Their respective γ-transforms, expressed over Zmax[[γ]], are
then related as:

x1(γ) = 4γx1(γ)⊕ 1x2(γ)⊕ 6x3(γ).

1Operator γ plays a role similar to operator z−1 in the Z − transform for
the conventional linear systems theory.
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In this paper TEGs are modelled in this setting, by the
following model :

x = Ax⊕Bu⊕Rw
y = Cx, (13)

where u ∈ (Zmax[[γ]])p, y ∈ (Zmax[[γ]])m and x ∈ (Zmax[[γ]])n

are respectively the controllable input, output and state vector,
i.e., each of their entries is a trajectory which represents
the collection of firing dates of the corresponding transi-
tion. Matrices A ∈ (Zmax[[γ]])n×n, B ∈ (Zmax[[γ]])n×p,
C ∈ (Zmax[[γ]])m×n represent the links between each tran-
sition, and then describe the structure of the graph. Vector
w ∈ (Zmax[[γ]])l represents uncontrollable inputs (i.e. distur-
bances2). Each entry of w corresponds to a transition which
disables the firing of internal transition of the graph, and then
decreases the performance of the system. This vector is bound
to the graph through matrix R ∈ (Zmax[[γ]])n×l.

Afterwards, each input transition ui (respectively wi) is as-
sumed to be connected to one and only one internal transition
xj , this means that each column of matrix B (resp. R) has one
entry equal to e and the others equal to ε and at most one entry
equal to e on each row. Furthermore, each output transition yi
is assumed to be linked to one and only one internal transition
xj , i.e each row of matrix C has one entry equal to e and
the others equal to ε and at most one entry equal to e on
each column. These requirements are satisfied without loss of
generality, since it is sufficient to add extra input and output
transition. Note that if R is equal to the identity matrix, w
can represent initial state of the system x(0) by considering
w = x(0)γ0 ⊕ ... (see [1], p. 245, for a discussion about
compatible initial conditions). By considering theorem 1, this
system can be rewritten as :

x = A∗Bu⊕A∗Rw (14)
y = CA∗Bu⊕ CA∗Rw, (15)

where (CA∗B) ∈ (Zmax)m×p (respectively (CA∗R) ∈
(Zmax)m×l) is the input/output (resp. disturbance/output)
transfer matrix. Matrix (CA∗B) represents the earliest behav-
ior of the system, therefore it must be underlined that the un-
controllable inputs vector w (initial conditions or disturbances)
is only able to delay the transition firings, i.e. , according to
the order relation of the semiring, to increase the vectors x
and y.

If the TEG is strongly connected, i.e. there exists at least
one path between transitions xi, xj ∀i, j, then matrix A is
irreducible. If A is reducible, according to definition 4, there
exists a permutation matrix such that :

A =


A11 A12 ... A1k

ε A22 ... A2k

...
...

. . .
...

ε ε ... Akk

 (16)

where k is the number of strongly connected components
of the TEG, and each matrix Aii is an irreducible matrix
associated to the component i. Matrices Aij (with i 6= j)

2In manufacturing setting, w may represent machine breakdowns or failures
in component supply.

represent the links between these strongly connected compo-
nents. Consequently, for the TEG depicted fig.1, the following
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Fig. 1. Timed event graph, ui controllable and wi uncontrollable inputs.

matrices are obtained: A =

4γ 1 6
γ2 2γ ε
ε ε 3γ

 , B =

ε ε
e ε
ε e

 ,

C =

(
e ε ε
ε ε e

)
, R =

e ε ε
ε e ε
ε ε e

 , and leads to the following

A∗ matrix:

A∗ =

 (4γ)∗ 1(4γ)∗ 6(4γ)∗

γ2(4γ)∗ e⊕ 2γ ⊕ 4γ2 ⊕ 6γ3 ⊕ 9γ4(4γ)∗ 6γ2(4γ)∗

ε ε (3γ)∗


According to assumptions about matrices C, B, and R, the
matrices (CA∗B) and (CA∗R) are composed of some entries
of matrix A∗. Each entry is a periodic series [1] in the
Zmax[[γ]] semiring. A periodic series s is usually represented
by s = p⊕ qr∗, where p (respectively q) is a polynomial de-
picting the transient (resp. the periodic) behavior, and r = τγν

is a monomial depicting the periodicity allowing to define
the asymptotic slope of the series as σ∞(s) = ν/τ (see
figure 2). Sum, product, and residuation of periodic series are
well defined (see [9]), and algorithms and software toolboxes
are available in order to handle periodic series and compute
transfer relations (see [7]). Below, only the rules between
monomials and properties concerning asymptotic slope are
recalled :

t1γ
n ⊕ t2γn = max(t1, t2)γn,

tγn1 ⊕ tγn2 = tγmin(n1,n2),
t1γ

n1 ⊗ t2γn2 = (t1 + t2)γ(n1+n2),
(t1γn1)◦/(t2γn2) = (t2γn2)◦\(t1γn1) = (t1 − t2)γ(n1−n2),

σ∞(s⊕ s′) = min(σ∞(s), σ∞(s′)), (17)
σ∞(s⊗ s′) = min(σ∞(s), σ∞(s′)), (18)
σ∞(s ∧ s′) = max(σ∞(s), σ∞(s′)), (19)

if σ∞(s) ≤ σ∞(s′) then σ∞(s′◦\s) = σ∞(s),
else s′◦\s = ε.

(20)

Let us recall that if matrix A is irreducible then all the
entries of matrix A∗ have the same asymptotic slope, which
will be denoted σ∞(A). If A is a reducible matrix assumed
to be in its block upper triangular representation, then matrix
A∗ is block upper triangular and matrices (A∗)ii are such
that (A∗)ii = A∗ii for each i ∈ [1, k]. Therefore, since Aii
is irreducible, all the entries of matrix (A∗)ii have the same
asymptotic slope σ∞((A∗)ii). Furthermore, entries of each
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Fig. 2. Periodic series s = (e⊕ 1γ1 ⊕ 3γ4)⊕ (5γ5 ⊕ 6γ7)(3γ4)∗.

matrix (A∗)ij with i < j are such that their asymptotic slope
is lower than or equal to min(σ∞((A∗)ii), σ∞((A∗)jj)).

IV. MAX-PLUS OBSERVER

R w

w

Fig. 3. Observer structure.

Figure 3 depicts the observer structure directly inspired from
the classical linear system theory (see [17]). The observer
matrix L aims at providing information from the system
output into the simulator, in order to take the disturbances
w acting on the system into account. The simulator is de-
scribed by the model3 (matrices A, B, C) which is assumed
to represent the fastest behavior of the real system in a
guaranteed way4, furthermore the simulator is initialized by
the canonical initial conditions ( i.e. x̂i(k) = ε, ∀k ≤ 0).
These assumptions induce that y � ŷ since disturbances and
initial conditions, depicted by w, are only able to increase
the system output. By considering the configuration of figure
3 and these assumptions, the computation of the optimal
observer matrix Lx will be proposed in order to achieve the
constraint x̂ � x. Optimality means that the matrix is obtained
thanks to the residuation theory and then it is the greatest one
(see definition 1), hence the estimated state x̂ is the greatest
which achieves the objective. Obviously this optimality is only

3Disturbances are uncontrollable and a priori unknown, then the simulator
does not take them into account.

4Unlike in the conventional linear system theory, this assumption means
that the fastest behavior of the system is assumed to be known and that the
disturbances can only delay its behavior.

ensured under the assumptions considered (i.e. ŷ � y). As
in the development proposed in conventional linear systems
theory, matrices A, B, C and R are assumed to be known,
then the system transfer is given by equations (14) and (15).
According to figure 3 the observer equations are given by:

x̂ = Ax̂⊕Bu⊕ L(ŷ ⊕ y)
= Ax̂⊕Bu⊕ LCx̂⊕ LCx (21)

ŷ = Cx̂.

By applying Theorem 1 and by considering equation (14),
equation (21) becomes :

x̂ = (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Bu
⊕(A⊕ LC)∗LCA∗Rw. (22)

By applying equation (2) the following equality is obtained :

(A⊕ LC)∗ = A∗(LCA∗)∗, (23)

by replacing in equation (22) :

x̂ = A∗(LCA∗)∗Bu⊕A∗(LCA∗)∗LCA∗Bu
⊕A∗(LCA∗)∗LCA∗Rw,

and by recalling that (LCA∗)∗LCA∗ = (LCA∗)+, this
equation may be written as follows :

x̂ = A∗(LCA∗)∗Bu⊕A∗(LCA∗)+Bu⊕A∗(LCA∗)+Rw.

Equation (4) yields (LCA∗)∗ � (LCA∗)+, then the observer
model may be written as follows :

x̂ = A∗(LCA∗)∗Bu⊕A∗(LCA∗)+Rw
= (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw. (24)

As said previously the objective considered is to compute the
greatest observation matrix L such that the estimated state
vector x̂ be as close as possible to state x, under the constraint
x̂ � x, formally it can be written :

(A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw � A∗Bu⊕A∗Rw ∀(u,w)

or equivalently :

(A⊕ LC)∗B � A∗B (25)
(A⊕ LC)∗LCA∗R � A∗R. (26)

Lemma 1: The greatest matrix L such that (A⊕LC)∗B =
A∗B is given by:

L1 = (A∗B)◦/(CA∗B). (27)

Proof: First let us note that L = ε ∈ Zn×mmax is a
solution, indeed (A ⊕ εC)∗B = A∗B. Consequently, the
greatest solution of the inequality (A ⊕ LC)∗B � A∗B will
satisfy the equality. Furthermore, according to equation (2),
(A⊕LC)∗B = (A∗LC)∗A∗B. So the objective is given by :

(A∗LC)∗A∗B � A∗B
⇔ (A∗LC)∗ � (A∗B)◦/(A∗B) (see example 2)
⇔ (A∗LC)∗ � ((A∗B)◦/(A∗B))∗ (see eq.(5))
⇔ (A∗LC) � (A∗B)◦/(A∗B) (see example 3)
⇔ L � A∗◦\(A∗B)◦/(A∗B)◦/C (see example 2)
⇔ L � A∗◦\(A∗B)◦/(CA∗B) (see eq.(7))
⇔ L � (A∗B)◦/(CA∗B) = L1 (see eq.(8))
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Lemma 2: The greatest matrix L that satisfies (A ⊕
LC)∗LCA∗R � A∗R is given by:

L2 = (A∗R)◦/(CA∗R). (28)

Proof:

(A⊕ LC)∗LCA∗R � A∗R
⇔ A∗(LCA∗)∗LCA∗R � A∗R (see eq.(23)),
⇔ (LCA∗)∗LCA∗R � A∗◦\(A∗R) = A∗R

(see example 2 and eq.(8), with x = R),
⇔ (LCA∗)∗LCA∗A∗R = (LCA∗)+A∗R � A∗R

(see eq.(1) and a+ definition),
⇔ (LCA∗)+ � (A∗R)◦/(A∗R) = ((A∗R)◦/(A∗R))∗

(see eq.(5)),

according to remark 1 the right member is in ImP , then by
applying the result presented in example 4, this inequality may
be written as follows :

LCA∗ � (A∗R)◦/(A∗R)
⇔ L � (A∗R)◦/(A∗R)◦/(CA∗) = (A∗R)◦/(CA∗A∗R)

(see example 2 and eq. (8))
⇔ L � (A∗R)◦/(CA∗R) = L2

(see eq. (1)).

Proposition 2: Lx = L1∧L2 is the greatest observer matrix
such that:

x̂ = Ax̂⊕Bu⊕ L(ŷ ⊕ y) � x = Ax⊕Bu⊕Rw ∀(u,w).

Proof: Lemma 1 implies L � L1 and lemma 2 implies
L � L2, then L � L1 ∧ L2 = Lx.

Corollary 1: The matrix Lx ensures the equality between
estimated output ŷ and measured output y, i.e.

C(A⊕ LxC)∗B = CA∗B, (29)
C(A⊕ LxC)∗LxCA∗R = CA∗R. (30)

Proof: Let L̃ = e◦/C be a particular observer matrix.
Definition 1 yields L̃C � e then (A ⊕ L̃C)∗ = A∗. This
equality implies (A ⊕ L̃C)∗B = A∗B, therefore according
to lemma 1 L̃ � L1, since L1 is the greatest solution. That
implies also that L1 is solution of equation (29). Equality
(A ⊕ L̃C)∗ = A∗ and inequality L̃C � e yield (A ⊕
L̃C)∗L̃CA∗R = A∗L̃CA∗R � A∗R then according to lemma
2 L̃ � L2 since L2 is the greatest solution. That implies also
that L̃ and L2 are such that C(A ⊕ L̃C)∗L̃CA∗R � C(A ⊕
L2C)∗L2CA

∗R � CA∗R. The assumption about matrix C
(see section III) yields CCT = e and L̃ = e◦/C = CT ,
therefore C(A ⊕ L̃C)∗L̃CA∗R = CA∗L̃CA∗R = (CL̃ ⊕
CAL̃ ⊕ ...)CA∗R � CL̃CA∗R = CCTCA∗R = CA∗R.
Therefore, since L̃ � L2, we have C(A ⊕ L̃C)∗L̃CA∗R =
C(A ⊕ L2C)∗L2CA

∗R = CA∗R and both L̃ and L2 yield
equality (30). To conclude L̃ � L1∧L2 = Lx, hence, Lx � L1

yields the equality (29) and Lx � L2 yields (30). Therefore
equality ŷ = y is ensured.

Remark 2: By considering matrix B =
(
B R

)
, equa-

tions (12) and (9), matrix Lx may be written as : Lx =
(A∗B◦\(CA∗B).

According to the residuation theory (see definition 1), Lx
yields x = x̂ if possible. Nevertheless, two questions arise,
firstly is it possible to ensure equality between the asymptotic
slope of each state vector entries ? Secondly is it possible
to ensure equality between these vectors ? Below, sufficient
conditions allowing to answer positively are given.

Proposition 3: Let k be the number of strongly con-
nected components of the TEG considered. If matrix C ∈
Zmax[[γ]]k×n is defined as in section III and such that each
strongly connected component is linked to one and only one
output then σ∞(xi) = σ∞(x̂i)∀i ∈ [1, n].

Proof: First, assuming that matrix A is irreducible (i.e.,
k = 1), then all entries of matrix A∗ have the same asymptotic
slope σ∞(A∗). As said in section III entries of matrices
B, R, and C are equal to ε or e, therefore, according to
matrices operation definitions (see equations (10) to (12)
and rules (17) to (20)), all the entries of matrices A∗B,
A∗R, CA∗B, CA∗R and Lx have the same asymptotic slope
which is equal to σ∞(A∗). Consequently, by considering
equation (24), σ∞(((A ⊕ LxC)∗B)ij) = σ∞((A∗B)ij) and
σ∞(((A⊕ LxC)∗LxCA∗R)ij) = σ∞((A∗R)ij), which leads
to σ∞(xi) = σ∞(x̂i) ∀i ∈ [1, n].
Now the reducible case is considered. To increase the read-
ability, matrices B and R are assumed to be equal to e and
the proof is given for a graph with two strongly connected
components. The extension for a higher dimension may be
obtained in an analogous way. As said in section III, matrix
A∗ is block upper diagonal :

A∗ =
(

(A∗)11 (A∗)12
ε (A∗)22

)
,

all the entries of the square matrix (A∗)ii have the same
asymptotic slope σ∞((A∗)ii) and all the entries of matrix
(A∗)12 have the same asymptotic slope, σ∞((A∗)12) =
min(σ∞((A∗)11), σ∞((A∗)22)). Assumption about matrix
C ∈ Zmax[[γ]]2×n, i.e. one and only one entry is linked to
each strongly connected component, yields the following block
upper diagonal matrix :

CA∗ =
(

(CA∗)11 (CA∗)12
ε (CA∗)22

)
,

where
(
(CA∗)11 (CA∗)12

)
is one row of matrix(

(A∗)11 (A∗)12
)

and
(
ε (CA∗)22

)
is one row of

matrix
(
ε (A∗)22

)
, hence σ∞((CA∗)ij) = σ∞((A∗)ij).

Matrix Lx is also block upper diagonal :

Lx = A∗◦/C =
(
Lx11 Lx12
ε Lx22

)
,

where
(
Lx11 ε

)T
is one column of matrix(

(A∗)11 ε
)T

and
(
Lx12 Lx22

)T
is one column of

matrix
(
(A∗)12 (A∗)22

)T
, hence σ∞(Lxij) = σ∞((A∗)ij).

Therefore LxCA∗ is block upper diagonal :

LxCA
∗ =

(
Lx11(CA

∗)11 Lx11(CA
∗)12 ⊕ Lx12(CA

∗)22
ε Lx22(CA

∗)22

)
=

(
(LxCA

∗)11 (LxCA
∗)12

ε (LxCA
∗)22

)
, (31)
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and by considering rules (17) and (20), the sub matrices
are such that σ∞((LxCA∗)ij) = σ∞((A∗)ij). By recalling
that (A ⊕ LxC)∗ = A∗(LxCA∗)∗, we obtain σ∞(((A ⊕
LxC)∗)ij) = σ∞((A∗)ij) and σ∞(((A⊕LxC)∗LxCA∗)ij) =
σ∞((A∗)ij), which leads to σ∞(xi) = σ∞(x̂i) ∀i ∈ [1, n].

Proposition 4: If matrix A∗B is in ImΨCA∗B , matrix Lx
is such that x̂ = x.

Proof: First, let us recall that

A∗B ∈ ImΨCA∗B ⇔ ∃z s.t. A∗B = zCA∗B
⇔ ((A∗B)◦/(CA∗B))(CA∗B) = A∗B.

If ∃z s.t. A∗B = zCA∗B then
LxCA

∗B = ((A∗B)◦/(CA∗B))CA∗B
= ((zCA∗B)◦/(CA∗B))CA∗B
= zCA∗B = A∗B (see eq. (6),

by recalling that B =
(
B R

)
, this equality can be written(

LxCA
∗B LxCA

∗R
)

=
(
A∗B A∗R

)
.

Therefore (A⊕LxC)∗LxCA∗R = A∗(LxCA∗)∗LxCA∗R =
A∗(LxCA∗)+R = A∗(LxCA∗R ⊕ (LxCA∗)2R ⊕
(LxCA∗)3R ⊕ ...) (see equation (23) and a+ definition).
Since LxCA

∗R = A∗R, the following equality is satified
(LxCA∗)2R = LxCA

∗A∗R = LxCA
∗R = A∗R and more

generally (LxCA∗)iR = A∗R, therefore Lx ensures equality
(A ⊕ LxC)∗LxCA∗R = A∗(LxCA∗)+R = A∗R. On the
other hand lemma 1 yields the equality (A⊕LxC)∗B = A∗B,
which concludes the proof.

Remark 3: This sufficient condition gives an interesting test
to know if the number of sensors is sufficient and if they are
well localized to allow an exact estimation. Obviously, this
condition is fulfilled if matrix C is equal to the identity.

Below, the synthesis of the observer matrices Lx for the
TEG of figure 1 is given:

Lx =

 (4γ)∗ 6(4γ)∗

γ2(4γ)∗ 6γ2(4γ)∗

ε (3γ)∗


Assumptions of proposition 3 being fulfilled, it can easily be
checked, by using toolbox Minmaxgd (see [7]), that σ∞(xi) =
σ∞(x̂i) ∀i ∈ [1, n] and that Cx = Cx̂ ∀(u,w) according to
corollary 1.

V. CONCLUSION

This paper5 has proposed a methodology to design an
observer for (max,+) linear systems. The observer matrix
is obtained thanks to the residuation theory and is optimal in
the sense that it is the greatest which achieves the objective.
It allows to compute a state estimation lower than or equal to
the real state and ensures that the estimated output is equal to
the system output. As a perspective, this state estimation may
be used in state feedback control strategies as proposed in [6],
[19], and an application to fault detection for manufacturing
systems may be envisaged. Furthermore, in order to deal
with uncertain systems an extension can be envisaged by
considering interval analysis as it is done in [15],[11] and
more recently in [8].

5The authors are grateful to V. Reverdy for her valuable linguistic help
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