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Optimal Closed-loop Control of Timed Event

Graphs in Dioids

C. A. Maia L. Hardouin R. Santos-Mendes B. Cottenceau

Abstract This paper deals with the model-reference control of timed event graphs using the

dioid algebra and the residuation theory. It proposes a control structure based on a precompensator

and a feedback controller to improve the controlled system performance. It is shown that this

approach always leads to an optimal behavior of the closed-loop system. An example is given

to illustrate the proposed approach.

Keywords : Discrete event dynamic systems, Timed Petri nets, (max, +) algebra, dioid,

Control, Just-in-Time.

I. I NTRODUCTION

Discrete Event Systems (DES) appear in many applications in manufacturing, computer and

communication systems and are often described by the Petri Net formalism (see [9]). Timed

Event Graphs (TEG) are Timed Petri Nets in which all places have single upstream and single

downstream transitions and appropriately model DES characterized by delay and synchronization

phenomena. TEG can be described by linear equations in the dioid algebra formulation ([1], [4],

[8]) and this fact has permitted many important achievements on the control of DES modelled by
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TEG, as detailed in [3], [6] , [7], [11] and [12]. TEG control problems are usually stated in a Just-

in-Time context, where the design goal is to minimize stocks while guaranteeing performance

(e.g. throughput). One possible approach for the control of TEG is the model-reference technique

in which a given model (written in dioid formalism) describes the desired performance limits

and the design goal is achieved through the calculation of a precompensator or of a feedback

controller [7], [11]. The techniques based on feedback control, although favoring stability, are

limited in the sense that the reference model must satisfy certain restrictive conditions. Those

based on precompensation can guarantee performance for any reference model, but not stability

(for the concept of stability in TEG, see [5]). The present paper proposes a new technique

for the design of controllers based on the simultaneous calculation of a precompensator and a

feedback controller. The main advantage of the approach is that it achieves optimality regarding

stocks while guaranteeing optimal compliance with any prescribed reference model. In addition

sufficient conditions for stabilization of the system are established.

The paper is organized as follows. Section II introduces some algebraic tools concerning the

Dioid and Residuation theories and their applications to TEG. Section III introduces some control

results and develops the proposed control structure and section IV shows an application to TEG

stabilization with an illustrative example. A conclusion is given in section V.

II. L INEAR SYSTEMS THEORY FORTEG USING DIOID THEORY

A dioid D is an algebraic structure with two internal operations denoted by⊕ and⊗ . The

operation⊕ is associative, commutative and idempotent, that is,a⊕ a = a. The operation⊗ is

associative (but not necessarily commutative) and distributive at left and at right with respect to

⊕. The neutral elements of⊕ and⊗ are represented byε ande respectively, andε is absorbing

for ⊗ (∀a ∈ D, ε⊗ a = a⊗ ε = ε ). In a dioid, a partial order relation is defined bya º b iff

a = a ⊕ b and x ∧ y denotes the greatest lower bound betweenx and y. A dioid D is said to

be complete if it is closed for infinite⊕-sums and if⊗ distributes over infinite⊕-sums. Most

of the time the symbol⊗ will be omitted as in conventional algebra, moreover,ai = a ⊗ ai−1

anda0 = e.

Theorem 1 ( [1], th. 4.75):The implicit equationx = ax ⊕ b defined over a complete dioid

D, admitsx = a∗b as least solution, wherea∗ =
⊕
i∈N

ai (Kleene star operator).
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TEG control problems, stated in a just-in-time context, usually involves the inversion of isotone

mappings1, that is, one must findx such thatf(x) = y (wheref is isotone). Residuation Theory

[2] deals with such problems stated in partially ordered sets and is based on the following

concepts. First, the subsolution set is defined as{x|f(x) ¹ y}. The residuated mapping is

defined as follows.

Definition 1 (Residual and residuated mapping):An isotone mappingf : D → E , whereD
andE are partially ordered sets, is aresiduated mappingif for all y ∈ E there exists a greatest

subsolution for the equationf(x) = y (hereafter denotedf ](y)). The mappingf ] is called the

residualof f .

The mappingsLa : x 7→ a ⊗ x and Ra : x 7→ x ⊗ a defined over a complete dioidD are

both residuated ([1], p. 181). Their residuals are isotone mappings denoted respectively by

L]
a(x) = a◦\x andR]

a(x) = x◦/a. Some useful dioid formulæ involving these residuals are given

below.

a(a◦\x) ¹ x (1)

a(a◦\(ax)) = ax (2)

a◦\a = (a◦\a)∗ (3)

(a∗)2 = a∗ (4)

A trajectory of a TEG transitionx is a firing date sequence{x(k)} ∈ Z. For each increasing

sequence{x(k)}, it is possible to define the transformationx(γ) =
⊕
k∈Z

x(k)γk whereγ is a

backward shift operator in event domain (that isy(γ) = γx(γ) ⇔ {y(k)} = {x(k − 1)}, see

[1], p. 228). This transformation is analogous to theZ-transform used in discrete-time classical

control theory and the formal seriesx(γ) is a synthetic representation of the trajectoryx(k). The

set of the formal series inγ is denoted byZmax[[γ]] and constitutes a dioid. For MIMO TEG,

vectorsU ∈ (Zmax[[γ]])p and Y ∈ (Zmax[[γ]])m will respectively represent the input and output

trajectories of the TEG. These trajectories can be related ([1], p. 243) by the equationY = HU ,

whereH ∈ (Zmax[[γ]])m×p is called the transfer matrix of the TEG. Entries of matrixH are

1f is isotone mapping if it preserves order, that is,a ¹ b =⇒ f(a) ¹ f(b).
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periodic series ([1], p. 260) in the dioidZmax[[γ]], usually represented by2 p(γ) ⊕ q(γ)(τγν)∗.

The asymptotic slope of a periodic seriess = p(γ) ⊕ q(γ)(τγν)∗ denotedσ∞(s) is defined as

the ratio3 σ∞(s) = ν
τ
.

Theorem 2 ([8], p. 196):Let s1 ands2 be two periodic series such thatν1, ν2 6= 0 andτ1, τ2 6=
0, then

σ∞(s1 ⊕ s2) = min(σ∞(s1), σ∞(s2)),

σ∞(s1 ⊗ s2) = min(σ∞(s1), σ∞(s2)),

σ∞(s1 ∧ s2) = max(σ∞(s1), σ∞(s2)).

If σ∞(s1) ≤ σ∞(s2) thenσ∞(s2◦\s1) = σ∞(s1), elses2◦\s1 = ε.

III. C ONTROL METHOD

The control method proposed herein is based on the Just-in-Time strategy and on the model

reference approach [7] and is described as follows. LetH ∈ (Zmax[[γ]])m×p be the transfer

matrix of the plant andGref ∈ (Zmax[[γ]])m×p be the reference model,i.e., the desired transfer

matrix for the controlled system. The precompensation problem is solved by finding the greatest

precompensatorP such thatHP ¹ Gref . The optimal solution, denoted byPop, is given by

Pop = H◦\Gref . (5)

This means that, for a given external input4 V ∈ (Zmax[[γ]])p, the input variable, given by

U = PV , will be maximal. In fact, for anyP such thatHP ¹ Gref , P ¹ Pop, therefore the

isotony property assures thatU = PV ¹ PopV .

In the feedback control context, the closed-loop transfer matrix betweenY andV , for a given

feedback controllerF , is given byH(FH)∗. Therefore the problem is solved by finding the

greatestF such thatH(FH)∗ ¹ Gref .

2p(γ) =
⊕n−1

i=0 pi γi, pi ∈ N, is a polynomial that represents the transient andq(γ) =
⊕ν−1

j=0 qj γj , qi ∈ N, is a polynomial

that represents a pattern which is repeated eachτ time units and eachν firings of the transition.

3Asymptotic slope in a manufacturing context can be viewed as the production rate of the system. The ratioσ∞(s) is calculated

in the conventional algebra.

4In a Just-in-Time context,V represents the available catering of raw material andU represents the allowance of the raw

material into the system.
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This problem can be solved via residuation theory if some restrictions are imposed on the

reference model. The following result is due to [7].

Proposition 1: Let H ∈ (Zmax[[γ]])m×p be the transfer function of a TEG. For every reference

model Gref such thatGref = R∗H or Gref = HS∗ (where R ∈ (Zmax[[γ]])m×m and S ∈
(Zmax[[γ]])p×p) there exists a greatest feedback controllerF ∈ (Zmax[[γ]])p×m such that the transfer

function of the closed-loop system is less than or equal toGref . The greatest feedback controller

is:

Fop = H◦\Gref ◦/H.

In this strategy the transfer function betweenU andV is (FH)∗.

Property 1: If H(FH)∗ ¹ Gref , for given H andGref , then(FH)∗ ¹ Pop = H◦\Gref .

The proof comes from the fact thatax ¹ b ⇔ x ¹ a◦\b. This property means that the transfer

function betweenU andV for the optimal open-loop strategy is always greater than or equal to

the one obtained for any feasible feedback strategy.

The model-reference control scheme proposed in this paper is a generalization of the two

strategies described above, that is, it uses a precompensator and a feedback controller together.

The two main advantages of this strategy compared with the simple feedback is that it always

leads to an optimal control signal which is equal toPopV and there is no restriction concerning

the reference model choice. Fig. 1 illustrates the approach.

G r e f

U
H HP

Y V U Y V Y

R e f e r e n c e
M o d e l

G c

G E T  M o d e l

Å

F

C o n t r o l l e d  G E T

Fig. 1. Proposed Control Structure

By using theorem 1, one can obtain the closed-loop equations which relateU , V andY :

Y = GcV = (HPF )∗HPV = HP (FHP )∗V ; (6)

U = GuvV = P (FHP )∗V ; (7)
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whereGc = (HPF )∗HP andGuv = P (FHP )∗ represent closed-loop transfer functions between

Y and V and betweenU and V respectively. The problem can be stated as follows.Given a

TEG, what are the controller matricesP and F which assure the greatest transfer function

betweenU and V , i.e. Guv, such thatGc ¹ Gref? Again, considering the Just-in-Time context,

one seeks the controller which satisfies the reference specificationGc ¹ Gref while delaying as

much as possible the entrance of products to be processed. Formally, the problem can be stated

as follows:

⊕
P, F

Guv(P, F ) (8)

s.t. Gc = HP (FHP )∗ ¹ Gref .

This statement shows thatP = [ε]p×p is always a subsolution to the problem independently of

the choice ofF , meaning that the subsolution set is not empty. Furthermore, it is easy to notice

that the strategies using exclusively a precompensator (by settingF = [ε]p×m) or exclusively a

feedback controller (by settingP = Ip×p, whereIp×p is the identity matrix in dioid) are particular

cases of the above problem.

Proposition 2: For the proposed control scheme shown in Fig. 1, the three following inequal-

ities are equivalent:

HP (FHP )∗ ¹ Gref

P (FHP )∗ ¹ H◦\Gref

HP (FHP )∗ ¹ H(H◦\Gref )

Proof: The relationHP (FHP )∗ ¹ Gref ⇒ P (FHP )∗ ¹ H◦\Gref comes from the

residuation definition.P (FHP )∗ ¹ H◦\Gref ⇒ HP (FHP )∗ ¹ H(H◦\Gref ) comes from the

isotony of⊗. Finally HP (FHP )∗ ¹ H(H◦\Gref ) ⇒ HP (FHP )∗ ¹ Gref is due to inequality

(1), concluding the proof.

Lemma 1:Let Sa = {x | x∗ ¹ a∗} be a subset of the complete dioidD wherea ∈ D. Then

Sa = {x | x ¹ a∗} and as a consequence the greatest element ofSa is a∗.

Proof: It is sufficient to show the equivalencex∗ ¹ a∗ ⇔ x ¹ a∗. If x∗ ¹ a∗ then

x∗ = e⊕ x⊕ x2⊕ ... ¹ a∗ so x ¹ a∗. On the other hand, ifx ¹ a∗, thenx2 ¹ xa∗ ¹ a∗a∗ ¹ a∗
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because of the isotony of the multiplication and equation (4). By induction, one obtains∀i ≥ 1,

xi ¹ a∗, which leads tox∗ = e⊕ x⊕ x2 ⊕ ... ¹ a∗.

Lemma 2:A solution to problem 8 must satisfyP ¹ Guv ¹ H◦\Gref .

Proof: Straightforward from the problem definition and from the observation thatGuv =

P (FHP )∗ = P ⊕⊕∞
i=1 P (FHP )i which implies thatP ¹ Guv.

Proposition 3: A solution to the optimization problem proposed in (8) is given by:

Pop = H◦\Gref . (9)

Fop = (HPop)◦\(HPop)◦/(HPop). (10)

Proof: From lemma 2,Guv is maximum (it is equal to the upper bound) ifP = H◦\Gref

andF = ε. So the greatestF for this value ofP is given by the greatest subsolution of inequality

Pop(FHPop)
∗ ¹ H◦\Gref , which in turn (by proposition 2) is equivalent toHPop(FHPop)

∗ ¹
H(H◦\Gref ) = HPop. Moreover, from the residuation definition this inequality is equivalent to

(FHPop)
∗ ¹ (HPop)◦\(HPop). Equation (3) yields((HPop)◦\(HPop))

∗ = (HPop)◦\(HPop) then,

thanks to lemma 1,FHPop ¹ (HPop)◦\(HPop). Finally, by solving this last inequality one obtains

Fop = (HPop)◦\(HPop)◦/(HPop).

One must observe here that unlike the approach depicted in proposition 1, the proposed approach

does not restrict the reference model choice.

Property 2: The solution given by proposition 3 assures thatGuv = H◦\Gref andGc = HPop.

This property follows directly from proposition 3, lemma 2 and from the observation thatGc =

HGuv given by equations (6) and 7. It means that the proposed solution always assures that

greatest closed-loop transfer functionsGuv andGc are equal to their upper bounds, that is,Pop

andHPop respectively.

Property 3: If there exists a matrixD such thatGref = HD then the optimal solution for

the proposed control structure leads toGc = Gref . This condition means that the closed-loop

system effectively matches the reference model.

Proof: According to property 2, it is sufficient to show thatHPop = Gref under the given

conditions. Equation (9) givesPop = H◦\(HD). ThereforeHPop = H(H◦\(HD)) which is equal

to HD by equation (2).

If the goal is to preserve the system impulse response, that isGref = H, an optimal solution is

achieved ifPop = H◦\H andFop = H◦\H◦/H. Again one uses the fact thata(a◦\a) = a, thanks to
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equation (2).

IV. A PPLICATION: TEG STABILIZATION

Consider the TEG depicted in Fig. 2 as an illustrative example. It represents a workshop with

3 machines(M1 to M3) and its input-output equation is given by

y = [7(3γ)∗ 9(4γ)∗]u. (11)

It is important to observe that this TEG is unstable since production rates of machineM1 and

M2 are different. This means that the number of tokens in the place betweenM1 andM3 can be

unbounded for some inputs. However it is known that a TEG is stable under certain conditions,

e.g., the TEG is strongly connected [5]. By definition ([1], p. 305) an event graph is structurally

controllable if every internal transition can be reached by a path from at least one input transition.

It is structurally observable if, from every internal transition, there exists a path to at least one

output transition. These concepts allow the following.

Proposition 4 (TEG Stabilization):Let H be a transfer function of a TEG structurally con-

trollable and observable and denoteσ∞(H) = Min1≤i≤m, 1≤j≤p(σ∞(Hij)). If Gref is such that

σ∞([Gref ]ij) = λ ≤ σ∞(H) ∀i ∈ [1, m] and∀j ∈ [1, p], then equations (9) and (10) lead to

optimal controllers,Pop andFop, which assure stability of the closed-loop system.

Proof: If a TEG is structurally controllable and observable, in every row and in every

column ofH there exists a non null entry. According to matrix residuation([1], p.198),[Pop]ij =
∧m

k=1 Hkj◦\[Gref ]ki, ∀i, j ∈ [1, p]. Since σ∞([Gref ]ki) = λ ≤ σ∞(H) then by theorem 2,

σ∞([Pop]ij) = λ, ∀i, j ∈ [1, p]. This result means that matrixPop is full and all its entries

have the same asymptotic slope. Furthermoreσ∞([HPop]ij) = λ ≤ σ∞(H) ∀i ∈ [1, m] and

∀j ∈ [1, p]. Therefore the TEG resulting from a composition ofP and H is also structurally

controllable and observable. Similarly from equation (10), one getsσ∞([Fop]ij) = λ ∀i ∈ [1, p]

and∀j ∈ [1, m]. So every entry[Fop]ij 6= ε have the same asymptotic slope which implies that

each output of the system is connected to each input. As a result, since the system is structurally

controllable and observable, the closed-loop system is strongly connected. Therefore, as remarked

before [5], it is stable.
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For the example modelled by equation (11),σ∞(H) = 1
4
. If the reference model is chosen

as5 Gref = [10(4γ)∗ 10(4γ)∗] all the conditions required in the theorem 4 are fulfilled . The

optimal solutions given by equations (9) and (10) are respectively6 Pop = (4γ)∗
(

3 3

1 1

)
and

Fop = (4γ)∗
(
−10

−10

)
. This feedback is not causal because there are negative coefficients in matrix

entries meaning a negative date for the transition firings (see [1], p.259, for a strict definition of

causality in dioid). However the canonical injection7 from the set of causal elements ofZmax[[γ]]

(denotedZ+

max[[γ]]) in Zmax[[γ]] is also residuated (see [6] for details). Its residual is denotedPr+

and its computation for alls ∈ Zmax[[γ]] is given by

Pr+

(⊕

k∈Z
s(k)γk

)
=

⊕

k∈Z
s+(k)γk

wheres+(k) =





s(k) if (k, s(k)) ≥ (0, 0),

ε otherwise.
In practice, this result means that the negative coefficients of the series can be simply eliminated.

In [6] it is demonstrated, in a slightly different context, that the application of operatorPr+ to the

solution of the proposed problem preserves optimality. This result can be extended to the problem

stated in this paper, that is,(Pr+(Pop), Pr+(Fop)) is an optimal solution to the problem stated

in equation (8) whenP and F are restricted to the causal set. Actually, sinceGuv ¹ H◦\Gref

a causal upper bound forGuv is Pr+(H◦\Gref ). As a result, ifP = Pr+(H◦\Gref ) and F = ε

then Guv is maximum. By using an argument similar to that presented in proposition 3, one

can demonstrate that the maximal causal feedback is given byPr+((HPop)◦\(HPop)◦/(HPop)).

Therefore the greatest causal feedback for the example isFop+ = Pr+(Fop) = 2γ3(4γ)∗
(

e

e

)
. Fig.

2 shows one realization of the controlled workshop system.

5This reference does not satisfy the conditions of the proposition 1. IndeedGref 6= R∗H andGref 6= HS∗.

6Softwares to handle dioid algebra using Scilab language can be downloaded from the sites [13].

7I : V 7→ W with V ⊂ W , x 7→ x.
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Fig. 2. Controlled Workshop System

V. CONCLUSION

This paper presents a new method for the TEG model-reference control in the context of dioid

theory. A structure based on precompensation as well as on feedback assures an optimal solution

to the just-in-time control problem together with optimal compliance with any model reference.

The results herein presented generalize the results found in the literature based exclusively on

precompensation or exclusively on feedback control. A main result is the absolute absence of

restrictions concerning the choice of the reference modelGref . Moreover, sufficient conditions

are derived to guarantee the closed-loop system stabilization and an example illustrates the

applicability of the results. The proposed conditions are not necessary and a complete solution

for the TEG stabilization problem is yet a concern in the context of TEG control theory. As

well, robustness analysis issues remain to be explored in future works, as indicated by [10].
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