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Modeling and Control of Weight-Balanced Timed
Event Graphs in Dioids

Bertrand Cottenceau, Laurent Hardouin, and Jean-Louis Boimond

Abstract—The class of timed event graphs (TEGs) has widely
been studied thanks to an approach known as the theory of max-
plus linear systems. In particular, the modeling of TEGs via formal
power series in a dioid called has led to input–output
representations on which some model matching control problems
have been solved. Our work attempts to extend the class of sys-
tems for which a similar control synthesis is possible. To this end,
a subclass of timed Petri nets that we call weight-balanced timed
event graphs (WBTEGs) will be first defined. They can model syn-
chronization and delays (WBTEGs contain TEGs) and can also
describe dynamic phenomena such as batching and event dupli-
cations (unbatching). Their behavior is described by rational com-
positions (sum, product andKleene star) of four elementary opera-
tors , , , and on a dioid of formal power series denoted

. The main feature is that the transfer series of WBTEGs
have a property of ultimate periodicity (such as rational series in

). Finally, the existing results on control synthesis for
max-plus linear systems find a natural application in this frame-
work.

Index Terms—Controller synthesis, dioids, discrete-event sys-
tems, formal power series, residuation, weighted timed event
graphs (WTEGs).

I. INTRODUCTION

S INCE the beginning of the eighties, it has been known
that the class of timed event graphs (TEGs) can be studied

thanks to linear models in specific algebraic structures called
dioids (or idempotent semirings) [1], [5], [9], [14], [19]. Among
different representations, a description of TEGs by the means of
operators is possible. By denoting the semimodule of counter
functions1, one can describe their behavior by combining two
shift operators (see [1, Ch. 5], [5]) denoted, respectively,

and

(1)

The input–output behavior of a TEG is then described by a
transfer matrix the entries of which are elements of the rational
closure of the set , where (resp. ) is the null (resp.
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1A counter function gives the cumulative number of
occurrences of the event labeled at date . Such a function plays the role of
signal.

neutral) operator. In other words, the input–output behavior of
any TEG can be written with a finite expression involving these
operators. Moreover, it is shown in [1], [10], and [9] that a ra-
tional expression can be turned into a canonical form which is
ultimately periodic. The algebraic structure for the calculus of
transfer series for TEGs is a dioid called introduced
in [5]. It is a set of formal series in two variables and cor-
responding, respectively, to the event-shift operator and to the
time-shift operator given in (1). This modeling has made it pos-
sible to elaborate software tools to compute the transfer matrix
of any TEG in [7], [9]. These tools also contribute to
the performance evaluation of discrete event systems since the
ultimate periodicity of a TEG corresponds to its production rate
(number of events by time unit).
Moreover, an input–output model is well suited to address

some model matching control problems such as the ones studied
in [6], [15], [17], and [13]. These control strategies have clearly
been elaborated by analogywith the classical control theory, i.e.,
controllers are computed so that the closed-loop systemmatches
a given reference model. The role of the controller is to filter the
system input in order to achieve some given performance.When
applied on a manufacturing production system, the controller
obtained with that approach leads to improve the internal flows
of products and to reduce the internal stocks.
The objective of the work presented here is to study the class

of weighted timed event graphs (WTEGs) [18], i.e., TEGs the
arcs of which are valued by positive integers. In comparison
with TEGs, the modeling power is greatly increased since in
addition to synchronisations and delays, WTEGs can describe
batch constitution (several successive input events are neces-
sary to release one output event) and duplication (one input
event releases several output events). These phenomena are
usual in manufacturing systems (batch/unbatch) and cannot be
accurately modeled with ordinary TEGs.
In the literature of discrete event systems, the analysis of

WTEGs is discussed for instance in [2], [18], and also under
an equivalent graphical model called Synchronous Data Flow
graphs (SDF) in [16], [21]. In these works, WTEGs are consid-
ered as modeling tools both for manufacturing systems and for
computation in the field of concurrent applications. The main
concerns are the throughput computation of a given system [8]
and the possibility of elaborating a periodic schedule [2], [18].
Due to the importance of the synchronisation phenomena in
these systems, several papers based on the max-plus theory are
available. In [8], [11], the throughput of a SDF is computed
thanks to amax-plusmodel. In [4] and [12], a class of fluidTEGs
with multipliers (TEGMs) is modeled by formal series in a spe-
cific dioid. The TEGMs can be seen as a continuous approxi-
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mation of the (discrete) WTEGs considered here. Nevertheless,
as mentioned in the conclusion of [4], the fluid behavior can
be arbitrarily far from the discrete one. Therefore, the (discrete)
WTEGs deserve a specific study since they cannot be analysed
with the tools introduced in [4].
The main motivation of our work is to tackle the controller

synthesis for WTEGs. More specifically, we aim to solve some
model matching control problems (such as [6], [13], [17]) for
the class of WTEGs. Let us note that this adaptation of existing
results is not so immediate since all these works rely on an
input–output representation (transfer function) which was not
available yet for WTEGs. In that context, our main contribu-
tion is to provide a description of the input–output behavior of
WTEGs by formal power series the variable of which can be
assimilate to operators. In addition to operators and de-
fined in (1), two additional ones denoted and are in-
troduced to describe a batch operation (division operator) and
a duplication phenomenon (multiplier operator). The main re-
sult of our paper is to show that for a subclass of WTEGs that
we call weight-balanced timed event graphs (WBTEGs), the
input–output behavior is necessarily described by a rational ex-
pression (with operators , , , and ) that can be turned
into an ultimately periodic form. As for TEGs, periodic phe-
nomena are still a prevailing aspect of the behavior ofWBTEGs.
The algebraic structure used to obtain these results is a new dioid
called that encompasses dioid .
The paper is organized as follows. In Section II, the subclass

of weight-balanced timed event graphs is first defined. Then, the
modeling of WBTEGs thanks to the additive operators , ,
, and is presented. A new dioid of formal power series

denoted is introduced in Section III. The formal series
have a graphical representation that is also given in that section.
The results concerning the ultimate periodicity of WBTEGs’
transfer series are stated in Section IV. This part lies on tech-
nical proofs adapted from the work on the rational calculus in

introduced in [9], [10]. Finally, the question of con-
trol synthesis for WBTEGs is addressed in Section V after some
reminders on the residuation theory.

II. WEIGHT-BALANCED TIMED EVENT GRAPHS (WBTEGS)

Definitions

Weighted Event Graphs (WEGs) [18] constitute a sub-
class of generalized Petri Nets given by a set of places

and a set of transitions
(see [20] for a survey on Petri nets). An event graph cannot
describe concurrency phenomena, then every place
is defined between one input transition and one output
transition . The arcs and are oriented
and valued2 by strictly positive integers denoted respectively

and . A transition without input (resp. output)
place is called a source or input (resp. sink or output) transition.
An initial marking (a set of initial tokens depicted with black
dots) denoted is associated to each place . A
given transition is said enabled as soon as each input place
contains at least tokens. A transition can be fired only

2From a graphical point of view, the valuations are depicted directly on the
arcs.

Fig. 1. Weight-balanced timed event graph.

if it is enabled. At each firing of a transition, tokens are
removed from each input place , and tokens are added
to each output place .
1) Example 1: For the WEG depicted on Fig. 1, (resp. )

is an input (resp. output) transition. The initial marking is given
by , and . All arcs are
assumed to be 1-valued except when mentioned, for instance

and . Transition is enabled when
place has two tokens and place has one token. The firing
of transition adds three tokens to place .
Definition 1 (Gain of a Path): The gain of an elementary

(oriented) path is defined as
. For a general path passing through sev-

eral places, the gain corresponds to the product of elementary
paths, i.e., .
Definition 2 (Neutral and Weight-Balanced Event Graph): A

WEG is said neutral if all its circuits have a gain of 1. A WEG
is said weight-balanced if , all the paths from to
have the same gain (gains are balanced for parallel paths).

Therefore, a weight-balanced event graph is necessarily neutral.
A holding time denoted can be associated to each

place of aWEG. Each token entering in a place has to
wait time units before contributing to enable the output
transition. AWEGwith holding times is called a weighted timed
event graph (WTEG). Hereafter, we will only consider weight-
balanced timed event graphs (in short WBTEGs).
Definition 3 (Earliest Functioning): The earliest functioning

of a WTEG consists in firing transitions as soon as they are
enabled, except for input transitions that are fired in accordance
with input trajectories.
2) Example 2: For the WTEG depicted on Fig. 1, holding

times are attached to places: , ,
, and . This is a Weight-Balanced TEG since it is
neutral and all the parallel paths from to are balanced (they
have the same gain equal to ). For instance,

and . The input–output gain of rep-
resents the fact that the average functioning of the system pro-
duces three output events for each two input events.

A. Algebra of Additive Operators

A dioid [1, Ch. 4] (or idempotent semiring) is an algebraic
structure with two inner operations, a sum and a product. The
sum is commutative, associative and idempotent ( )
and the product is associative and distributive over the sum. The
neutral elements of these operations are usually denoted for
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the sum, and for the product. Since the sum is idempotent, a
natural order can be associated to a dioid:

(2)

When the sum of any finite or infinite subset of a dioid is defined,
and the product distributes over infinite sums, the dioid is said
complete. A complete dioid is a partially ordered set (poset) with
a complete lattice structure: the infimum operator is defined as

and . On a dioid, since
the order is partial, two elements and may be incomparable:

and , which is denoted by .
For WBTEGs modeling, a counter function

is associated to each transition : gives the cu-
mulative number of events at date . A counter function is
naturally non-decreasing: . The set of
counter functions denoted has a semimodule structure for the
internal operation and for the scalar operation defined
by . An operator is a map which
is said linear if , a) and
b) . An operator is said additive if only a) is
satisfied.
Definition 4 (Dioid of Additive Operators [19]): The set

of additive operators on , with the operations defined below,
is a non commutative complete dioid denoted : ,

The null operator (neutral for and absorbing for ) is denoted
and the unit operator (neutral for )

is denoted .
For the sequel, we will simply denote (instead of )

the image of the counter by the additive operator
, and we will also often omit symbol for the product of ,

. Two additive operators are
equal if .
Definition 5 (Elementary Operators in WBTEGs): The

dynamical phenomena arising in WBTEGs can be described
thanks to the next additive operators in : let be a
counter

where is the greatest integer less than or equal to .
We can remark that the unit operator has various expres-

sions: .
Proposition 1: The next formal identities can be stated

(3)

(4)

(5)

(6)

Proof: For all counter we have (3):
and .

Equation (4): .
Since , then

. Equation (5): immediate equation (6):
and

.
Definition 6 (Kleene Star): The Kleene star of an operator is

defined by: ,
with ( times).
Theorem 1: On a complete dioid , the implicit equation

has as least solution.
Proof: see [1, Th. 4.75]

Theorem 2: For all operator , the next equalities are
satisfied: .

Proof: Since a counter function is monotone, then
. For the same reason,

. Therefore,
, .
Theorem 3: On a complete dioid , with , ,

one has

(7)

(8)

(9)

if is commutative (10)

Proof: These results can be found in [9, Prop. 4.1.6] and
in [1, Sec. 4.8]
Definition 7 (Redundancy): Let us consider an expression

, with . A term is said redundant
for if . In other words, removing
does not change the expression .
1) Example 3: In the following expression
, operator is redundant. Indeed, by applying (4),

.

B. Modeling of WBTEGs

The WBTEGs are analyzed here with the earliest functioning
rule (see Def. 3).We canmodel a path of aWBTEG by a product
of operators in , the synchronization of parallel paths by a
sum , and the circuits by the Kleene star of operators. Each
elementary path of a WBTEG, where is
the initial marking of place and its holding time,
can be described by the relation

(11)

where (resp. ) is the counter function associated to transi-
tion (resp. ).
1) Example 4 (WBTEG of Fig. 1): For the WBTEG depicted

in Fig. 1 and for the earliest functioning, we have

Therefore, the counter functions are linked by
and thanks to Theorem 1, . Sim-

ilarly, . Finally, the counter function as-
sociated to the output transition is

. The input–output be-
havior (or transfer function) of the WBTEG is described by the
rational expression in .
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Theorem 4 (Transfer Matrix of a WBTEG): The be-
havior of a WBTEG is described by a matrix the elements
of which belong to the rational closure of the set of opera-
tors where

and with .
Proof: For each place an operator [see

(11)] is associated. Therefore, the different graph compositions
(parallel, serial, feedback) are expressed by operations in

. Since a WBTEG is a finite graph, the rationality is
straightforward.

III. GRAPHICAL REPRESENTATIONS OF OPERATORS

According to (5) in Prop. 1, operator can commute
with any simple or composed event operator. For instance,

. Hence, in every
finite composition (product) of elementary operators in

, the time-shift operator can be factorized.
That is why operations can be evaluated separately, on the one
hand on event operators and on the other hand on time-shift
operators.

A. Bi-Dimensional Graphical Representation of E-Operators

1) Event Operators: The set of operators generated by sum
and composition of operators in , and has a dioid
structure.
Definition 8 (Dioid ): We denote by (for event) the dioid

of operators obtained by sums and compositions of operators in
, with , and . The elements

of are called E-operators hereafter.
Dioid is a complete subdioid of (additive operators).

Since operation is not commutative on , checking the
equality of two E-operators is not immediate. Nevertheless, the
comparison of E-operators is possible thanks to an associate
map called counter-to-counter (C/C) function. Since an E-oper-
ator induces modifications only on the event numbering
(no time shift), its instantaneous behavior is described by a
function denoted .
Definition 9 (C/C Function ): For a given E-operator in
, we denote by the mapping which
maps its input counter value to its output counter value .

is obtained by replacing by in the counter equation
where .

2) Example 5: For instance
. By replacing by a value , we obtain

(see Fig. 2). For operator
, if input events have occurred at a given date , then

output events have occurred at date .
The C/C function gives an unambiguous representation

of E-operator and leads to a natural bi-dimensional graphical
representation in . On the graphical representation, the axis
are labeled by I-count (input count) and O-count (output count).
Due to the non commutativity of product in , checking

the formal identity of operators is not immediate. Nevertheless,
when restricted to operators in , the equality can be checked
thanks to the C/C function

(12)

Fig. 2. (a) On the left, (black dots) and (white dots). (b)
On the right, (gray dots) and (black dots).

Fig. 3. Input–output equivalence: .

Moreover, we have an isomorphism between and the set of
C/C functions

and (13)

In other words, the calculus on C/C functions is an alternative
to the formal calculus on .
3) Example 6: Thanks to (12) and (13), we can check

the equality , even if Prop. 1
does not give all the formal equalities necessary to obtain that
result. On the right-hand side of Fig. 2, is depicted
with gray dots, and on the left-hand side, is depicted
with black dots and with white dots. Obviously,

. When translated into
a WBTEG model, the previous identity means that the two
WBTEGs depicted in Fig. 3 are equivalent from an input–output
point of view: the same input sequence will produce the same
output sequence.
4) Graphical Considerations: The relation on E-operators

can be viewed from a geometrical point of view.
Partial Order on : thanks to (2), the comparison in is

interpreted as follows:

In Fig. 2, the gray zone corresponds to the domain of E-op-
erators less than according to the order (2). For instance,
we can see on the right-hand side of Fig. 2 that

, which corresponds to . The right
side of Fig. 2 shows that operator dominates3 operator

. From a practical point of view, if these two operators
are synchronized, the behavior of operator is dominant.

3The domination designation comes from [5].
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Left and Right Product by : For , the left and the
right product by are graphically described by shifts in ,
say

shifted by units to the top in

shifted by units to the left in

B. Periodic E-Operators

Definition 10 (Periodic E-Operator): An E-operator
is said -periodic, or simply periodic, if satisfies

.
Clearly, are periodic E-operators since

is -periodic, is -periodic and is -pe-
riodic. The set of periodic E-operators is denoted .
Definition 11 (Gain of ): Let be

a -periodic E-operator. The gain of is defined as
. It is the average slope of . An E-operator is

said conservative if .
Proposition 2: Let be two periodic E-opera-

tors. We have

and

if then

then

Proof: Since and are periodic then
and . Hence,

and

. Therefore, operator is a periodic operator the gain
of which is . For the sum of operators with the
same gain, both operators can be written with the same peri-
odicity: and

with since
. Hence, is also periodic. By symmetry,

the max ( ) of two periodic E-operators with the same gain is
also periodic.
Proposition 3: The E-operators arising in WBTEGs are

periodic.
Proof: Due to the definition of WBTEGs (see Def. 2), the

parallel paths have the same gain. Thanks to Prop. 2, the pe-
riodicity of E-operators is therefore kept by the serial and the
parallel compositions of WBTEGs.
A periodic E-operator can be handled by the

means of a finite representation, which will make a finite data
description adapted to a software implementation possible.
A -periodic E-operator can be represented by a pair

describing the gain and the values
of for one period . The canonical
form of a periodic E-operator is strongly linked to the possi-
bility of describing a periodic C/C function with a canonical
form. First, it is clear that a -periodic C/C function is
also -periodic, for . Conversely, a -pe-

riodic C/C function may have a shorter periodicity if there
exists such that . All the
periodicities of a given E-operator are therefore totally ordered.
Definition 12 (Least Periodicity): The periodicity of a

periodic operator is defined as the least pair such that
.

Remark 1: For a given representation of a -pe-
riodic operator , finding the least periodicity
amounts to finding the greatest integer such that is
also -periodic.
The canonical decomposition of an operator is

based on a sum of specific E-operators defined hereafter.
Definition 13 ( Operator): Let us denote by and
the next composed E-operators and

Let us note that is -periodic and that it is graph-
ically represented by a staircase C/C function:

, say , and
. For instance in Fig. 2, operator ,

which is -periodic, is depicted on the right-hand side with
black dots.
Proposition 4 (Canonical Form of ): A periodic

E-operator has a canonical form which is a finite sum given
by without redundant terms and such
that .

Proof: First, is written with its least periodicity
(see Def. 12). This form is a canonical -periodic form
of . Then, can be expressed as the minimum of
functions where function is a

-periodic function given by
and . Each function
is a staircase -periodic function which is also the

C/C function of an operator , more specifically
. Finally, the canonical form of

is obtained by summing and by
removing all the redundant E-operators from that expression,
if any. At the end, is expressed by a sum of incomparable
E-operators which is unique since the considered representation
of is canonical.
1) Example 7: Let us consider operator the C/C

function of which is . This
-periodic function is such that and

. Therefore, the canonical form of is
, or simply since

is the unit operator (see Fig. 2). As a second example, let us
consider the E-operator . We have
which is -periodic. Then, by expressing the values of the
C/C function for one period we obtain: ,

and . Hence, we have
.

In this expression is redundant since
. Finally, the canonical form of is

.

C. Dioid

The previous subsection shows that E-operators generated
by WBTEGs are periodic and have a canonical form. Since
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Fig. 4. Graphical representation of (on the left) and (on the right).

time-shift operator can commute with all the E-operators (see
Prop. 1), then the operators generated by WBTEGs can be de-
scribed by the means of formal power series in one variable
denoted , where coefficients are taken in and
the exponents are in .
Theorem 5 ([1]): The set of formal power series in variable
with exponents in and coefficients in a complete dioid is
a complete dioid denoted .
Theorem 6 ([1]): The quotient of a dioid by an

equivalence relation compatible with and is a dioid de-
noted .
Definition 14 (Dioid ): We denote by the complete

dioid of formal power series in one variable with exponents
in and coefficients in the non commutative complete dioid .
We denote by the quotient where the equivalence
relation considered is defined as:

(14)

A series is written with .
For two series :

Adding the quotient structure by (14) allows us to assimilate
the variable in dioid to the time-shift operator

in dioid . Therefore, all the identities given
in Prop. 1 hold in . Dioid is the algebraic structure
the best adapted to handle operators given in Def. 5.
The series of have a graphical representation which

consists in describing each monomial in , where coef-
ficient is described by its C/C function in a

plane which is located at value along the T-shift axis.
To improve the readability, the three-dimensional representation
has been truncated to the positive values.
Thanks to equalities in Prop. 1, let us note that for
and , we have

and (15)

Therefore, a monomial in dominates all the
monomials such that and . For each mono-
mial, the subspace of which corresponds to the dominated
operators is depicted as a gray shadow.
1) Example 8: In order to give a graphical interpretation of

the partial order in , the representation of and
have been juxtaposed in Fig. 4. Each monomial is

depicted as well as the gray shadow corresponding to the do-
main of dominated monomials. Since (see
Fig. 2) and , then . From a
graphical point of view, if the representations of
and are merged into the same picture, the shadow of

clearly hides the representation of .
Remark 2 (Simplifications): By representing each monomial

of a series with its gray shadow in , the graphical
representation naturally hides the redundant monomials of the
series. It is the geometrical interpretation of the simplifications
that can be done in . Let us note that the gray shadow of
monomials in is the natural extension in of the south-
east cones used to describe monomials in (see [5]).

D. Polynomials in

Due to the specific structure of WBTEGs, we do not consider
the whole set of series of but only the series the coeffi-
cients of which are periodic E-operators. This subset is denoted

.
Definition 15 (Balanced Series in ): A series

is said balanced if all its coefficients
have the same gain. The gain of is denoted and

corresponds to the gain of all its coefficients. A balanced series
is said conservative if .
The series that can be described by finite sums

are called polynomials.
Proposition 5 (Canonical Form of Balanced Polynomials):

Let be a balanced polynomial of . The

canonical form of is the unique expression
such that are in the canonical form of Prop. 4 and coefficients
and exponents are strictly ordered, that is to say

and (16)

Proof: This form is obtained by sorting monomials ac-
cording to the exponents of . Then, each coefficient is modified
as follows . Finally, if and ,
monomial is redundant and can be removed. In the final



COTTENCEAU et al.: MODELING AND CONTROL OF WBTEGs IN DIOIDS 1225

Fig. 5. Ultimately periodic series in .

form (with ), coefficients and expo-
nents are strictly ordered. In other words, the remaining mono-
mials are incomparable (no further simplification is possible).

1) Example 9: Let us consider polynomial
. First, the monomials are

sorted according to the exponent of . Next, the coefficient of
is replaced by .
Then, the coefficient of is replaced by the sum

, and so on. At this step,

.Monomial is redun-
dant since the coefficients of and are the same. Once it is
removed, the form obtained is such that the coefficients and the
exponents are strictly ordered, say

.

IV. WBTEGS ARE DESCRIBED BY ULTIMATELY
PERIODIC SERIES OF

In this section, we will show that the behavior of aWBTEG is
described by ultimately periodic and balanced series of .
This result has to be compared to the well known result for ordi-
nary Timed Event Graphs [5, Th. 21]: the entries of the transfer
matrix of a TEG are ultimately periodic series of .
For TEGs, operations (and algorithms) on ultimately periodic
series of have already been investigated in [10] and
[9]. The developments given here are clearly in the same spirit.
Since we consider WBTEGs, only balanced series of

are considered hereafter.
Definition 16 (Ultimately Periodic Series of ): A bal-

anced series is said ultimately periodic if it can be
written as , where , and are bal-
anced polynomials , with

.
The property of periodicity has a natural graphical interpre-

tation. In the graphical representation of , the monomials of
are depicted as a group of C/C functions that are periodically
shifted by units to the increasing values along the T-shift axis
and by units towards the decreasing values along the I-count
axis.
1) Example 10: Fig. 5 gives the graphical description of

.

Remark 3: A periodic form is not unique. For instance,
and are two different

ultimately periodic forms of the same series.
Remark 4: Balanced polynomials in can always be

considered as ultimately periodic series since .
Proposition 6 (Left and Right Periodicity): An ultimately

right-periodic series in has also an
ultimately left-periodic form where is
a balanced polynomial. The left (resp. right) asymptotic slope
is defined as (resp. ), and the next
equality is satisfied .

Proof: Let be the gain of . The co-
efficients of polynomial are given by

with Let
us remark that thanks to (6),

. More gener-
ally, for , . There-
fore, if we take and , then

, and conse-
quently . By applying (9)

Finally, and and
.

2) Example 11: For the series depicted on Fig. 5, a right-
periodic form and a left-periodic form are given by

The way the coefficients are periodically shifted is illustrated by
a set of arrows depicted on the picture. For this series, the slopes
are, respectively, and .
The main result concerning the class of WBTEGs is that the

serial, the parallel and the feedback composition keep the ulti-
mate periodicity property. To obtain this result, one has to an-
alyze how the sum, the product and the Kleene star operations
behave on ultimately periodic series in .
For the next propositions, series and are pe-

riodic series defined as and
with ,

, , ,
and .
Proposition 7: Let and be two ultimately periodic series

of . If then is an ultimately
periodic series of such that

Proof: If , by taking
and , then

by applying (9) we can express
and
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. Therefore,
and .

Therefore, is
also ultimately periodic. If , according
to Lemma 4 (see the Appendix) we obtain that s.t.

, then is ultimately
greater than . In other words,
is ultimately greater than . Finally, is
ultimately periodic with the periodicity of .
Proposition 8: Let and be two ultimately periodic se-

ries of . If then is an ultimately
periodic series of .

Proof: (Sketch of proof) The proof is similar. Two
cases have to be considered. If then we
can write the infimum as

. The first three terms
are polynomials and the last one is an ultimately periodic
series the slope of which is . If , we
previously obtained that is ultimately greater than

. In other words, has the ultimate periodicity
of .
Proposition 9: Let and

be two ultimately periodic series of . Then
is an ultimately periodic series such that

Proof: Thanks to Prop. 6, we can write and , respec-
tively, with a right-periodic form and a left-periodic form such
as

.
The first term is a polynomial. The second and
the third term are explicitly equal to

and
. These terms are two

finite sums of periodic series with the same gain. Due
to Prop. 7, these terms are periodic too. In the last term,

is an ultimately periodic series in
(Th. 8 in the Appendix), and therefore in too.

The term is consequently a finite sum
of ultimately periodic series in . The product
is finally a finite sum of ultimately series with the same gain
which is periodic by applying Prop. 7 again.
Let us now focus on the behavior of circuits in WBTEGs.

They are algebraically described by Kleene star operations on
conservative series of .
Proposition 10: Let be a conservative

( ) ultimately periodic series in . Then is a
conservative ultimately periodic series.

Proof: Thanks to Lemma 7 in the Appendix, we can
write polynomials and with a non canonical form

and . By
taking , then monomial commutes with and ,
i.e., and . Thanks to (9), series can be written

.
Moreover, also commutes with , i.e., . By applying

(7), one has . Since
and thanks to (10), then . Finally, by using (8),
we can write .
In that expression, and are two conservative
polynomials. Thanks to Prop. 15 shown in the Appendix,

and are two conservative ultimately periodic
series. Finally, it can be inferred that is a
conservative ultimately periodic series, and thanks to Prop. 9,
is periodic as well.
Proposition 11 (Transfer of a WBTEG): The transfer matrix

of a weight-balanced timed event graph is composed of ulti-
mately periodic series of .

Proof: We recall first that all the elementary operators
and can be considered as ultimately periodic

series (see remark 4). Then, due to the specific structure of
WBTEGs, the modeling by series in is such that:
• the sum ( ) of series in is necessarily done on se-
ries with the same gain (balanced property) and the period-
icity is kept by the balanced synchronization (see Prop. 7);

• the product of ultimately periodic series is done when the
serial composition of systems arises, and the product keeps
the periodicity property (see Prop. 9);

• the Kleene star is done only on conservative ultimately
periodic series since the loops of a WBTEG are neutral.
Thanks to Prop. 10, the Kleene star of conservative ulti-
mately periodic series keeps the periodicity property.

Remark 5 (Canonical Form): The property of ultimate pe-
riodicity of WBTEGs does not depend on a specific periodic
form. However, by comparison to existing results for periodic
series in , we think that a canonical periodic form ex-
ists also for ultimately periodic series in . Such a canon-
ical form would be useful for a software tool dedicated to pe-
riodic series in (such as [7] for ). By trans-
posing the results given in [10] and [9] and by writing a series

with , ,
the canonical form of would be the unique one such that
and are in a canonical form ( , ,

, ), and (such a
form is called a proper form in [10]), and finally the number of
monomials in is as small as possible, and the periodic pattern
is also as short as possible (pair is as small as possible).

V. CONTROL OF WBTEGS

The input–output model obtained in the previous section for
WBTEGs allows us to consider some model matching control
problems such as the ones studied in [6], [12], [13], [15], and
[17]. We only need to express the residuation of the product in

. The first step consists in expressing the residuation of
the product in .

A. Residuation in

On a complete dioid, the product is not invertible, but the
theory of residuation developped in [3], and applied to idem-
potent semirings in [1], can be used to find optimal solutions to
some inequalities. On a complete dioid, mappings
and are residuated. It means that ,
and have maximal solutions, that are, respectively,



COTTENCEAU et al.: MODELING AND CONTROL OF WBTEGs IN DIOIDS 1227

denoted and
. Mappings and are said residual map-

pings of and . When the dioid product is commutative,
then .
Theorem 7 ([1], [3]): On a complete dioid ,

(17)

(18)

(19)

(20)

The dioid of E-operators denoted is complete. It is then
possible to define the residual mappings of and on .
More precisely, concerning the elementary operators of , the
following results can be obtained.
Proposition 12: Let be an E-operator, then

(21)

(22)

(23)

Proof: Since operator is invertible (
), then we obtain (21). For (22), the right product by

is invertible since . For the left product, by defi-
nition of the residual mapping: .
Since , then we have

. Finally, must satisfy
, which is equivalent to

,
where denotes the least integer greater than or equal to .
Translated into operators, we have .
For (23), we know that the left product by is invertible.

For the right product, we have

Therefore, the C/C function of has to satisfy the fol-
lowing constraints:

Since is a non decreasing function, must sat-
isfy say

, which amounts to .
1) Example 12: Let us develop the computation of

. By applying results from Prop. 12
and from Prop. 1, we obtain

Let us note that the canonical form of is
. Since residuation is not an exact

inversion, we can remark here that the canonical form of
is different

from .
Proposition 13: Let us consider . Then

and are periodic E-operators such that
and .

Proof: Thanks to Th. 7 and Prop. 12, and sincewe canwrite
periodic E-operators as finite sums, and

, then

It is then a finite infimum of periodic E-operators, that is also a
periodic E-operator thanks to Prop. 2.

B. Residuation in

Let us note that . Thanks to (19)
and (20), we can express the residuation of the product of bal-
anced polynomials. Let and
be two balanced polynomials in . Then, we can write

and as

and

The computation of operations and on balanced polyno-
mials is based on the residuation of coefficients in (see the
previous subsection), and it is then equivalent to the infimum
operation on a finite set of polynomials in which is a
balanced polynomial.
When we extend the computation of operations and to ul-

timately periodic series of , we can show that the residu-
ation of two periodic series can be computed with a fixed-point
iteration method.
Lemma 1 ([1]): The greatest fixed-point of

(resp. ) is (resp. ).
Proposition 14: Let and

be two periodic series in . If the mapping
has a fixed point, then is a periodic

series.
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Proof: We can write
(according to (19)). Thanks to

Lemma 1, if has a fixed point, then
is shown to be expressed as the infimum ( ) of a finite set
of periodic series with the same slope. Thanks to Prop. 8, the
result is also periodic.
Remark 6: Prop. 14 gives a practical way to compute the

residuation of two ultimately periodic series in . How-
ever, it should be kept in mind that the fixed-point iteration
method does not necessarily terminate in a finite number of
steps. The convergence depends on the ultimate slopes of se-
ries. This aspect would need more developments to be clarified.

C. Example of Output Feedback Synthesis

This modeling is applied in this section to obtain an output
feedback control for the WBTEG of Fig. 1. First, we state the
transfer relation of Fig. 1 in an ultimately periodic form. In Ex. 4
we obtained ,
i.e., . The transfer function is expressed as a sum
of two periodic series. The first term of can be written in
a left-periodic or in a right-periodic form,

. The second one can also be
written as

. According to Prop. 7, the sum of these se-
ries is ultimately periodic with and

(the slope of the second term). The
gain of series is clearly the gain of all paths from to ,

. A left and a right periodic form of are given
below (where coefficients are described in their canonical form
in ):

with
,

and
.

Thanks to results obtained in [6], we can compute the
greatest neutral output feedback for the WBTEG described by
the transfer matrix . From a practical point of view, it is the
slowest controller that we can add between the output and the
input so that the closed-loop system has the same behavior as
the system alone. The benefit from this controller is to reduce
the internal stocks as much as possible while keeping the
system throughput. By knowing , this controller is expressed
by (see [6]) . Series is computed first with
the fixed-point iteration given in Prop. 14 which terminates in a
finite number of steps. Then, the same method is applied again
to obtain the result of . For the WBTEG of Fig. 1, the
computation gives

Fig. 6. Greatest neutral output feedback.

The controller is described by an ultimately periodic series the
slopes of which are and . We natu-
rally obtain that is equal to : the additional
circuit due to the feedback loop is neutral, and therefore the
closed-loop system is still a WBTEG. Controller can be de-
scribed by a WBTEG which is depicted in Fig. 6. The gray zone
corresponds to the realization of controller . Let us note that
the closed-loop system becomes bounded since it is a strongly
connected WBTEGs.

VI. CONCLUSION

This work presents a modeling approach for the class of
WBTEGs in a dioid of additive operators. Four elementary
operators denoted and are necessary to de-
scribe the dynamical phenomena modeled by a WBTEG. The
input–output behavior of WBTEGs can be embedded into ra-
tional formal power series in a non commutative dioid denoted

. More specifically, we show that the transfer series of
WBTEGs expressed in have an ultimate periodicity
property. This input–output representation is well suited to
address some model matching control problems already tackled
in literature for TEGs. As an example, the computation of a
neutral output feedback controller for a WBTEG is given in
this paper. The main contribution of this work is to show that
the study of WBTEGs can be done with algebraic tools similar
to the ones presented in [1] for the analysis and the control of
TEGs.

APPENDIX

A. Rational Calculus in

Definition 17 ( ): Dioid is the set
of formal power series in two commutative variables and
with boolean coefficients quotiented by the equivalence

.
Theorem 8 (Operations on Periodic Series): Let

and be two periodic series
of , where , , , and are
polynomials in . The asymptotic slope of (resp.
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) is denoted (resp. ). Let
and , then
• is a periodic series such that

;
• is a periodic series such that

;
• is a periodic series
Proof: Proofs are detailed in [9] and in a more concise way

in [10].

B. Intermediate Results in

First, we recall a result given in [5, Lem 6], the proof of which
is detailed in [9, Lem. 4.1.4]. This result is stated in
and is still valid in since is a subdioid.
Lemma 2 (Domination Lemma): Let

and be two simple periodic series in
such that . There exists an integer

such that

Remark 7: The previous lemma means that in the
expression , monomials

are redundant. Asymptoti-
cally, series dominates series .
Lemma 3: Let and

be two periodic E-operators in such
that . There exists a positive integer such
that .

Proof: First we show that for all there exists an integer
such that . For all

counter value , must satisfy

(24)

Since for all , if is chosen such that
, ,

then (24) is satisfied too. By assumption, ;
therefore, the previous inequality does not depend on . It suf-
fices to take . Finally,
by taking , we have .
The next Lemma is an extension of Lemma 2 in .
Lemma 4: Let us consider and

with such that .
If , there exists a positive integer such that

Proof: Thanks to Lemma 3 we can find an integer s.t.
. By applying Lemma 2, since , then
is asymptotically greater than .

Therefore, since then is asymp-
totically greater than .
Lemma 5: In , operator can be written in a non

canonical form as

Proof: TheC/C function of is clearly -periodic.
By considering as a -periodic function, we ob-
tain this non canonical form.
1) Example 13: For instance, we can write in a non

canonical form as .
Lemma 6: In , we have

where is the greatest integer
in less than or equal to .

Proof: , we have
. Since , we have

.
Lemma 7: Let

be a conservative ( ) balanced polynomial of .
Polynomial can be written in a non canonical form as

where .
Proof: By applying Lemma 5, each coefficient of

can be developed as a sum of operators with
.

2) Example 14: Let . Thanks
to Lemma 5, we can write as a sum of opera-
tors:

.
Thanks to Lemma 7, a conservative polynomial can always

be written as (see Ex.
14), i.e., all terms depend on the same operator . Thanks
to this form, the expression of the Kleene star of can now be
studied. In the expression of , the products of elements in

is central. First, we introduce the following
notation with :

Operator is obtained by summing all the products of ex-
actly operators from the set and such that
the left factor is and the right factor is , with

. Thanks to the notation above, can be expressed as
follows:

(25)

First, let us focus on product such that
:

By applying Lemma 6, one can simplify as follows:

with
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Finally, such an operator can be written

It can be inferred that expression such that

and can be written .
Lemma 8: Let be a finite integer, then we have

where is a square matrix of defined by

Proof: According to this definition of , for the exponent
of matrix we have

Lemma 9: The infinite sum is described by the
following equivalent expression:

with .
Proof: By using Lemma 8 for operators where ,

we obtain

Proposition 15: Let be a conservative polynomial defined
as with .
The Kleene star of is a conservative and ultimately periodic
series in defined by

(26)

Proof: Thanks to Lemma 9 and (25), then

The Kleene star of matrix , since it is a matrix of , is
known to be composed of periodic series of (thanks

to Th. 8, rational series periodic series in ).
Then, for all , series is ultimately pe-
riodic in . Therefore, the Kleene star is obtained by
summing ultimately periodic series of . Thanks to
proposition 7, the result is periodic too.
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