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Event-variant and Time-variant (max,+) systems
Johannes Trunk, Bertrand Cottenceau, Laurent Hardouin, Jörg Raisch

Abstract—This paper deals with the input-output representa-
tion of a class of timed Discrete Event Systems. The systems
considered are those that can be described using Timed Event
Graphs extended with weights on the arcs and clock rate
modifiers or time varying delays. The model relies on periodic
expressions using six elementary operators: shift, multiplication
and division of events and time. In this context, we show how
to develop the transfer matrix computation based on a matrix
decomposition called core decomposition.

Index Terms—Discrete Event Systems, Petri nets, Weighted
Timed Event Graphs, Time-variant systems, Dioids, Operators

I. INTRODUCTION

The analysis of Discrete Event Systems (DESs) by a de-
scription in the (max,+) algebra has known important devel-
opments since the eighties [18]. In the work presented here,
systems are modeled by combining elementary operators so
that it is possible to obtain an input-output description. More
precisely, we extend the approach detailed in [4],[1], where
Timed Event Graphs (TEGs) are described by means of formal
power series in a dioid denoted Max

in Jγ, δK whose variables cor-
respond to the event-shift operator γ and the time-shift oper-
ator δ. Within this context, TEGs satisfy event-invariance and
time-invariance properties that are formally expressed by: for
all input u, H(γ1u) = γ1H(u) and H(δ1u) = δ1H(u). The
systems considered in this paper are more general since they
exhibit event-variant and time-variant properties characterized
by : ∃K,K ′, T, T ′ ∈ N s.t. ∀u,H(γKδTu) = γK

′
δT

′
H(u).

TEGs are adapted to model parallelism, event/time shifts
and synchronizations. Some classes of DESs studied in
the literature extend TEGs in order to describe additional
phenomena. There are Weighted TEGs (WTEGs) [3],[12],
Synchronous Dataflow Graphs (SDF) [10] and Cyclo-static
SDF [11], which allow us to describe batching/unbatching
operations. We can also mention phenomena such as partial
synchronization [8] or time-varying holding times [17], which
cannot be modeled with the semantic of ordinary TEGs either.
For these different classes of systems, the shift operators γ
and δ are not sufficient anymore, and new operators have to
be introduced.

This contribution extends prior work by the authors. In
[5], the behavior of WTEGs is described by formal series
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s =
⊕

i wiδ
ti in a dioid denoted EJδK, where the time-shift

operator is denoted δ and coefficients wi are event-operators
composed of three basic operators denoted γ, µ and β. These
basic event-operators can model, respectively, the phenomena
of event-shift, event duplication and event batching. With
this model, WTEGs are event-variant/time-invariant systems:
∃K,K ′ ∈ N s.t ∀u,H(γKδ1u) = γK

′
δ1H(u). In [17],

periodic time-variant TEGs are described by formal series
s =

⊕
j vjγ

nj in a dioid denoted T JγK where the event-shift
operator is denoted γ and coefficients vj are time-operators
composed of two basic operators denoted δ and ∆T . These
time-operators can model respectively the time-shift and the
synchronization on dates in TZ (integer multiples of T ).
The systems are therefore time-variant/event-invariant: ∃T ∈
N s.t ∀u,H(γ1δTu) = γ1δTH(u). The symmetry between
the models developed in [5], respectively [17] simply follows
from the fact that dynamic phenomena in the event domain
also have their counterpart in the time domain. For instance
with WTEGs, it is possible to model a synchronization that
does not operate on all firings of a transition, but only every
K firings. This is a synchronization on events numbered in
KZ. The counterpart with periodic time-variant TEGs is to
model the synchronization on dates that are in TZ. Although
the models developed in [5] and [17] have a strong symmetry,
it is not straightforward to handle all basic event-operators
γ, µ, β and basic time-operators δ,∆T together. For instance,
for a series s =

⊕
wiδ

ti ∈ EJδK, there is a particular form
where coefficients satisfy: tj > ti ⇒ wj ≺ wi. The same
applies for series in T JγK. The formal simplifications obtained
in EJδK and T JγK rely heavily on this monotonicity property
which is no longer identifiable when all operators are used
simultaneously. In [15] and [16], a new representation of series
in EJδK and T JγK is given. It is written with a so-called
core decomposition mQb where m, b are vectors and Q a
matrix with entries in Max

in Jγ, δK. This viewpoint has led to
new algorithms to compute ⊕,⊗ and Kleene star operations
either on EJδK or on T JγK. This approach detailed in [19] is
necessary for the computation of formal expressions involving
all the event and time operators together.

Regarding related work, WTEGs/SDFs have been studied in
[10],[11],[2] where they are especially used to model commu-
nications between components with different rates in electronic
design. In those papers, the main objective is to determine the
maximum throughput or a schedule to achieve it. Compared to
those contributions, the transfer approach adopted here gives a
much more detailed representation since we obtain an exhaus-
tive description of the system behavior, especially its transient
part, for any input. This increases the computation time, but
our model makes it possible to synthesize controllers for the
considered class of time and event-variant systems adopting a
similar approach as presented in [13] for ”ordinary” (i.e., time-
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invariant and event-invariant) TEGs. Regarding time-variant
systems, to the best of our knowledge, the only related work
addresses partial synchronization [8]. The time-operators used
in that paper can be seen as a way to describe the effect of
periodic partial synchronizations on events.

In this paper, the contribution is twofold. First, we provide
a new interpretation of the operators of time multiplication,
denoted νv , and time division, denoted ωw. These operators
can be interpreted as clock rate modifiers. This gives the
possibility to model TEGs using several clocks (different time
scales) or with cyclic holding times, i.e., holding times that
depend in a cyclic manner on the time when tokens are
deposited in a place [17]. Second, we summarize relevant
results from the PhD thesis [19, Chap.5] to compute the
transfer matrix of a system using all the event-variant and time-
variant operators together. This amounts to bringing together
the symmetric and complementary approaches described in [5]
and [17] within a single model, i.e., a class of systems that are
both event-variant and time-variant. However, the presentation
here is slightly different from that given in [19, Chap.5] since
the core matrix obtained here is not a matrix in Max

in Jγ, δK.
The results presented here have allowed us to complete the
ETVO (Event-variant Time-Variant Operators) C++ library [7]
devoted to the calculation of transfer functions of event-variant
and time-variant (max,+) systems. In terms of application, this
class is large enough to uniformly describe periodic routings
[6], delays that depend on event numbers [6] and delays that
are time-varying (eg., traffic lights) [17].

Since the presentation here is based on many results from
our previous work, sometimes quite technical, we have cho-
sen a presentation mode where some preliminary results are
recalled without proof. In Section II, we introduce the 6
basic operators needed in the sequel and some notation. In
Section III, we recall how different classes of TEGs can be
modeled by operators. This section also recalls the main results
about the modeling of WTEGs and time-variant TEGs, and
shows the symmetry between the two models. Then, Section
IV shows how to adapt the core decomposition to carry
out calculations on event-variant and time-variant operators.
Finally, an example is given in Section V.

II. DIOIDS OF OPERATORS

A dioid [1][14] (or idempotent semiring) is an algebraic
structure with two inner operations, addition, denoted ⊕, and
multiplication, denoted ⊗. Addition is commutative, associa-
tive, idempotent (a ⊕ a = a) and has a neutral element
denoted ε, and multiplication is associative, distributive over
addition and has a neutral element denoted e. Since addition
is idempotent, a natural order can be associated with a dioid:
a � b ⇐⇒ a = a ⊕ b. For instance, Z ∪ {−∞} with
⊕ = max and ⊗ = + is a dioid denoted Zmax, also called
(max,+) algebra. Clearly, in the (max,+) algebra, the natural
order � corresponds to the standard ≥. A dioid is said to
be complete if infinite sums are defined and if the product
is distributive over infinite sums. In complete dioids, a∗b is
the least solution to the implicit equation x = ax ⊕ b, where
a∗ := e⊕ a⊕ a2 · · · =

⊕
i≥0 a

i is the Kleene star.

Figure 1. Synchronization of events

A dater function x : Z→ Zmax is introduced to describe a
sequence of events spread over time. The date x(k) is, by con-
vention, the date of the (k+1)−st occurrence of event x, with
∀k < 0, x(k) = −∞. Moreover dater functions x : Z→ Zmax

are non-decreasing, i.e., k ≥ k′ ⇒ x(k) � x(k′). In other
words, for k ≥ k′, the k − th occurrence of an event cannot
be before the k′ − th. Since x(k) ∈ Zmax, time is discrete. In
Fig.1, the occurrence of the events labeled a and b is depicted
on a discrete-time axis. Expressed as dater functions, we obtain
a(0) = 1, a(1) = 7, b(0) = 2, b(1) = 4, etc. The occurrence
of events is supposed to be synchronized with the ticks of a
clock, and the dates are then given as multiples of the clock
time unit. In the same figure, the event labeled c corresponds
to the synchronization of events a and b. The occurrence of
event c is described by the dater c = a ⊕ b, i.e., the dater
function s.t. ∀k, c(k) = max(a(k), b(k)) = a(k) ⊕ b(k). Let
us denote by Σ the set of non-decreasing functions from Z
to Zmax (the set of dater functions is a subset of Σ). An
operator ρ : Σ → Σ is a map which is said to be additive
if ∀a, b ∈ Σ, ρ(a⊕ b) = ρ(a)⊕ ρ(b).

Definition 1 (Dioid O): The set of additive operators on Σ,
with operations ⊕ and ⊗ defined below, is a non commutative
complete dioid denoted O: x ∈ Σ, ∀ρ1, ρ2 ∈ O,

(ρ1 ⊕ ρ2)(x) = ρ1(x)⊕ ρ2(x), (ρ1 ⊗ ρ2)(x) = ρ1(ρ2(x)).

The zero operator of O is denoted ε, and the unit operator
(identity) is denoted e. To simplify notation, we usually write
ρx instead of ρ(x), and the symbol ⊗ is sometimes omitted.
Let us note that Zmax is a dioid of numbers whereas O is a
dioid of maps (operators), and that we use the same symbols
(⊕ and ⊗) for inner operations in both dioids.

Definition 2 (Basic operators): The following operators in
O are called basic operators: x ∈ Σ, n, t ∈ Z,m, b, v, w ∈
N,∀k ∈ Z,

(γnx)(k) = x(k − n) (δtx)(k) = x(k) + t (1)
(µmx)(k) = x(bk/mc) (νvx)(k) = x(k)× v (2)

(βbx)(k) = x(bk + b− 1) (ωwx)(k) = dx(k)/we (3)

where b c and d e represent respectively the floor and the
ceiling function.
Operators γn, µm and βb have an effect on event numbering
and are refered to as E-operators (E for event), whereas δt, νv
and ωw imply modifications only in the date (time) of events
and are refered to as T-operators (T for time). The identity
operator e of O can be expressed differently: e = γ0 = δ0 =
µ1 = β1 = ν1 = ω1.

Remark 1: The definition of operators µm and βb is different
from [5] because they operate here on dater functions, instead
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of on counter functions.
Definition 3 (Dioids E , T and ET ): Let E ⊂ O be the

dioid of operators obtained by finite sums and products in
{ε, γn, µm, βb} (with n ∈ Z,m, b ∈ N) and let T ⊂ O be
the dioid of operators obtained by finite sums and products in
{ε, δt, νv, ωw} (with t ∈ Z, v, w ∈ N). Finally, we denote by
ET the dioid of operators obtained by sums and products in
E ∪ T .

The product of operators in ET is not commutative, even
though any E-operator (E) commutes with any T-operator (T ).
For instance, δ1µ3ν2β

2 = µ3β
2δ1ν2.

Proposition 1: In dioid ET , the following equalities are
satisfied:

∀ρ ∈ E ,∀σ ∈ T , ρσ = σρ (4)

γnγn
′

= γn+n
′

δtδt
′

= δt+t
′

(5)

γn ⊕ γn
′

= γmin(n,n′) δt ⊕ δt
′

= δmax(t,t′) (6)
µmµm′ = µm×m′ νvνv′ = νv×v′ (7)

βbβb′ = βb×b′ ωwωw′ = ωw×w′ (8)

µmγ
n = γn×mµm νvδ

t = δt×vνv (9)

γnβb = βbγ
n×b δtωw = ωwδ

t×w (10)

βαγ
nµα = γbn/αc ωαδ

tνα = δdt/αe (11)

Proof: These properties come from [4],[9],[5] and [16].

Remark 2: An operator ρ ∈ O is called event invariant if,
∀n, ργn = γnρ. It is called time invariant if ∀t, ρδt = δtρ.
Because of (9) and (10), operators µm and βb are event-variant
and operators νv and ωw are time-variant.

The operators introduced in Def.2 are used to model some
dynamic phenomena arising in DESs. They are illustrated
in Fig.2 and Fig.3. For instance, in Fig.2, the signals are
described by dater functions denoted u, x, y and z, with
x = γ2u, y = µ2u, z = β3u. For u(0) = −2, u(1) =
u(2) = 1, u(3) = 4, · · · (as shown), we have, according
to Def.2, x(0) = u(−2) = −∞, x(1) = u(−1) = −∞,
x(2) = −2, x(3) = x(4) = 1, · · · y(0) = y(1) = u(0) = −2,
y(2) = y(3) = u(1) = 1, y(4) = y(5) = u(2) = 1, · · ·
z(0) = u(2) = 1, z(1) = u(5) = 8, · · ·

The operators γn and δt (1) simply describe a shift in the
event numbering or in time. The operators µm and νv (2)
model a multiplication in the event numbering or in time, and
βb and ωw (3) describe a division, again in event numbering
or in time.

Remark 3: Within one system, several clocks can be used to
date/time events. For example in Fig.3, there are three different
clocks with clock intervals C1, C2 = C1/2 and C3 = 3C1.
Depending on the clock used, dates/times are therefore multi-
ples of C1, C2 or C3. More precisely, dates/times for signals
u′ and x′ are expressed as multiples of C1, for signal y′ as
multiples of C2 and for z′ as multiples of C3. In this context,
operators νv and ωw can be interpreted as clock rate modifiers,
where the clock rate is the inverse of the clock interval. These
operators describe how the clock interval (or clock rate) is
changed. Operator ν2 multiplies the clock rate by 2 (i.e., clock
intervals are divided by 2), and ω3 divides the clock rate by

Figure 2. E-operators γn (event shift), µm (event multiplication or duplica-
tion) and βb (event division or batch).

Figure 3. T-operators δt (time shift or delay), νv (clock rate multiplication)
and ωw (clock rate division).

3 (i.e., clock intervals are multiplied by 3). It is worth noting
that operator ω3 has, in addition, an effect of variant delay. In
Fig.3 we see that depending on the input date, the input-output
delay induced by ω3 is either 0 (no delay), or C1 or 2C1. For
instance, the first input event at time −1C1 (u′(0) = −1) is
delayed up to date 0 (z′(0) = 0), i.e., this is a delay of 1C1,
while the events at time 1C1 (u′(1) = u′(2) = 1) are delayed
up to time 3C1 = 1C3 (z′(1) = z′(2) = 1), i.e., this is a
delay of 2C1. Finally, the event at time 9C1 (u′(5) = 9) is
not delayed at all (z′(5) = 3), since 9C1 = 3C3.

Definition 4 (Gain): Let ρa, ρb ∈ ET . The event gain
Γe : ET → Q is defined by Γe(ρaρb) = Γe(ρa)Γe(ρb)
and Γe(ρa ⊕ ρb) = min(Γe(ρa),Γe(ρb)), with Γe(γ

n) =
Γe(δ

t) = Γe(νv) = Γe(ωw) = 1, Γe(µm) = m and
Γe(βb) = 1/b. Similarly, the clock rate gain Γt : ET → Q
is defined by Γt(ρaρb) = Γt(ρa)Γt(ρb) and Γt(ρa ⊕ ρb) =
max(Γt(ρa),Γt(ρb)), with Γt(γ

n) = Γt(δ
t) = Γt(µm) =

Γt(βb) = 1, Γt(νv) = v and Γt(ωw) = 1/w. Finally, the gain
is defined by Γ : ET → Q2, Γ(ρ) = (Γe(ρ),Γt(ρ)).

Example 1: Γ(β2ν4γ
1µ3ω3δ

2) = (3/2, 4/3).
For a given operator, the gain indicates how many output
events are produced in average for each input event and how
the clock rate is modified.

Definition 5 (Balanced operator): An operator ρ =
⊕

i ρi ∈
ET is said to be balanced if ∀i,Γ(ρ) = Γ(ρi).

Example 2: Operator γ1β2µ2δ
2 ⊕ γ4δ5ν3ω3 is balanced

since Γ(γ1β2µ2δ
2) = (2/2, 1) = Γ(γ4δ5ν3ω3) = (1, 3/3).

In this paper, we only consider balanced operators. In [5]
and [17], the following composed operators are introduced to
simplify notation:

∇m|b := µmβb and ∆v|w := νvωw. (12)
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Figure 4. Elementary timed Petri nets (left: Timed Event Graph, middle:
Weighted Timed Event Graph, right: Timed Event Graph with time-varying
holding times)

Proposition 2 ([5][17]): Let ρ ∈ E and σ ∈ T be two
operators. If ρ and σ are balanced then ∃m, b, v, w ∈ N s.t.

ρ =

αe⊕
i=1

γniµmβbγ
n′
i and σ =

αt⊕
j=1

δtjνvωwδ
t′j , (13)

with αe, αt finite integers and ni, n′i, tj , t
′
j ∈ Z.

It follows that ργb = γmρ and σδw = δvσ, and Γ(ρ) =
(m/b, 1) and Γ(σ) = (1, v/w).

Corollary 1: If χ ∈ ET is balanced, then ∃m, b, v, w ∈
N s.t.

χ =
⊕

i γ
niµmβbγ

kiδtiνvωwδ
si ,

=
⊕

i γ
ni∇m|bγkiδti∆v|wδ

si (14)

with ni, ki, ti, si ∈ Z. Moreover, χγbδw = γmδvχ and
Γ(χ) = (m/b, v/w).

III. TIMED EVENT GRAPHS EXTENSIONS

Timed Event Graphs (TEGs) constitute a subclass of timed
Petri nets, i.e., those whose places have one and only one
upstream and downstream transition and whose arcs have
weight 1. Places can have a holding time. This is the time a
token in this place has to wait before contributing to firing
the downstream transition. It is well known that a TEG
can be transformed into a (max,+) linear model [14], and
vice versa, provided that a transition fires as soon as it can
fire, i.e., the TEG operates under the earliest firing rule. To
obtain an algebraic model, a dater function is associated to
each transition in order to describe the firing sequence of
this transition. Then, the operators introduced in the previous
section are used to model the relations between transitions.
For TEGs with l input transitions, p output transitions and q
internal transitions1, one can describe the different signals by
vectors of daters u ∈ Σl, y ∈ Σp and x ∈ Σq , and the relation
between these signals are collected into matrices of operators
A ∈ Oq×q , B ∈ Oq×l, and C ∈ Op×q . The global evolution
of the system is then described by

x = Ax⊕Bu, y = Cx. (15)

Solving the first equation provides x = A∗Bu, hence

y = CA∗Bu,

where matrix H = CA∗B ∈ Op×l is called the transfer
matrix.

1a transition in a TEG is called input transition if it does not have
any upstream place. It is called output transition, if it does not have any
downstream place. All other transitions are called internal transitions.

A. Model of ordinary TEGs

Writing an ordinary TEG as (15) implies that Aij , Bij and
Cij are finite sums of operators γnδt. The system obtained is
then both time-invariant and event-invariant. For example, in
Fig.4, the relation between daters xa and xb is expressed by
xb = (δ3⊕γ2δ5)xa. It is shown in [9] that for ordinary TEGs,
each entry of H = CA∗B can be expressed in a ultimately
periodic form

s = p⊕ q(γκδτ )∗

=

α1⊕
i=1

γniδti︸ ︷︷ ︸
p

⊕

 α2⊕
j=1

γNjδTj


︸ ︷︷ ︸

q

(γκδτ )∗. (16)

Since only γn and δt are involved, the operators can be
described as formal power series in two commutating variables
γ and δ, i.e., in a dioid called Max

in Jγ, δK (see [4],[1]).
Example 3: In Fig.5, the sub-graph including u1, x1, x2

and y1 is an ordinary TEG. Its transfer relation in Max
in Jγ, δK

is y1 = δ2(γ1δ1)∗u1 = H1u1. This can be seen easily by
observing that y1 = δ1x2, x2 = δ1x1 and x1 = γ1x2 ⊕ u1.
The second and third equation provide x1 = γ1δ1x1 ⊕ u1,
which can be solved as x1 = (γ1δ1)∗u1.

B. Model of Weighted TEGs

When considering Weighted TEGs such as in [5], the
weights associated to arcs indicate how many tokens are
produced/consumed by the transition firings. In Fig.4, when xc
is fired, three tokens are added to the downstream place, and
the firing of xd removes two tokens from the upstream place.
We graphically indicate that an arc has a weight different from
1 by drawing a bar across the arrow representing the arc. In the
depicted simple WTEG, for xc, xd ∈ Σ, the relation between
xc and xd is given by xd = β2δ

4γ1µ3xc.
Example 4: In Fig.5, the sub-graph including u2, x3, x4,

x5, x6 and y2 is a Weighted TEG. The model in ET is y2 =(
δ1µ2δ

3(γ1δ3)∗β2γ
1δ1 ⊕ γ1δ1µ2δ

4(γ2δ4)∗β2
)
u2 = H2u2.

C. Model of Time-variant TEGs

T-operators allow one to describe both clock rate modifica-
tions and cyclic holding times (time-variant delays) [17]. In
Fig.4 (right), we denote by 〈2, 1, 3〉 the fact that a token enter-
ing the place connecting xe to xf needs to reside for 2 clock
intervals if its entry time is in 3Z, i.e., (· · · ,−3, 0, 3, 6, · · · ), 1
clock interval for entry times in 3Z+ 1, and 3 clock intervals
for the other entry times. A place with a cyclic holding
time can be modeled as a sum of T-operators. E.g., in Fig.4,
xf = δ2ν3ω3δ

−1xe = δ2∆3δ
−1xe. This can be easily seen

as, by definition, xf (k) = 2 + 3 × d(xe(k) − 1)/3e. Hence,
if xe fires (and deposites a token) at times 0, 1, 2, 3, 4, · · · ,
transition xf fires at times 2, 2, 5, 5, 5, 8, · · · and the holding
time of the deposited token is 2, 1, 3, 2, 1, 3, · · · time units.

Thanks to operators νv and ωw we can also describe a
multi-clock model (see Remark 3). Fig.5 describes a system
whose the overall behavior is written y2 = H2ν2ω3H1u1.
Although there is no standard graphical representation, we
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Figure 5. Time-variant WTEG

will nevertheless try to decompose the clock change mech-
anism described by u2 = ν2ω3y1. In Fig.5 we assume that
between transitions y1 and u2 there is a clock rate change.
It means there are two different clocks whose clock intervals
are denoted Ca and Cb, with Cb = (3Ca)/2. As, due to (11),
ω3ν3 = δ0 = e, we can decompose the clock rate modification
into: z = ∆3y1 = ν3ω3y1 and u2 = ν2ω3z. With the argument
given before, one sees that the relation between y1 and z can be
represented, as shown in Fig.5, by a place with time-variant
cyclic holding times 〈0, 2, 1〉. This implies that transition z
fires only at times that are multiples of 3Ca, where Ca is the
clock interval of the clock in the upper part of Fig.5. Then,
from z to u2, there is a clock rate change with the clock
interval Cb of the clock governing the evolution in the lower
part of Fig.5 given by Cb = (3Ca)/2 = 3

2Ca. It follows that
u2 fires only at time that are multiples of 2Cb. In other words,
transition z and u2 always fire simultaneously, but are timed
by different clocks, z by a clock with interval Ca, and u2 by
a clock with interval Cb.

Note that the system between u1 and y2 is both event-
variant (due to the weights) and time-variant (due to the clock
rate change). The computation of its transfer function requires
adapted tools that will be discussed in the sequel.

D. Review of results for WTEGs and Time-variant TEGs

The investigation of WTEGs and Time-variant TEGs, with
the help of basic operators, was first conducted in [5],[15],[16].
In these studies, one considers event-variant/time-invariant
systems (WTEGs) on the one hand, and time-variant/event-
invariant systems (Time-variant TEGs) on the other hand, the
two models being symmetrical. The preliminary results re-
ported in these studies were largely influenced by the model of
TEGs in Max

in Jγ, δK [1],[9], in particular the need to manipulate
operators described in ultimately periodic form such as (16).
We now provide here a brief summary of the available results.

In [5], the modeling of WTEGs relies on a dioid denoted
EJδK. It is the set of operators obtained by sums and products
in {ε, γn, µm, βb, δt}. In a symmetric way in [16], Time-
variant TEGs are described in a dioid denoted T JγK, which
is the set of operators obtained by sums and products in
{ε, δt, νv, ωw, γn}.

A balanced operator ρ ∈ EJδK or σ ∈ T JγK can be written

ρ =
⊕

i γ
niµmβbγ

n′
iδti

=
⊕

i γ
ni∇m|bγn

′
iδti

∣∣∣∣ σ =
⊕

i δ
tiνvωwδ

t′iγni

=
⊕

i δ
ti∆v|wδ

t′iγni

Definition 6 (Ultimately periodic): A balanced operator
se ∈ EJδK or st ∈ T JγK is said to be ultimately periodic
(abbreviated u.p.) if it can be written

se = pe ⊕ qe(γκδτ )∗ with
pe =

⊕α1
i=1 γ

ni∇m|bγn
′
iδti

qe =
⊕α2

j=1 γ
Nj∇m|bγN

′
j δTj

∣∣∣∣∣∣
st = pt ⊕ qt(γκδτ )∗ with
pt =

⊕α1
i=1 δ

ti∆v|wδ
t′iγni

qt =
⊕α2

j=1 δ
Tj ∆v|wδ

T ′
jγNj .

In [5] and [16], calculations (⊕,⊗, ∗) on operators in EJδK
and T JγK can only be carried out on u.p. operators. The
conditions for the ultimate periodicity property to be preserved
are recalled below.

Proposition 3 ([5][17]): Let se, s′e ∈ EJδK and st, s
′
t ∈

T JγK be u.p. operators.

• se ⊗ s′e is u.p.,
• Γ(se) = Γ(s′e) implies
se ⊕ s′e is u.p.,

• Γ(se) = (1, 1) implies
(se)

∗ is u.p..

∣∣∣∣∣∣∣∣∣∣
• st ⊗ s′t is u.p.,
• Γ(st) = Γ(s′t) implies
st ⊕ s′t is u.p.,

• Γ(st) = (1, 1) implies
(st)

∗ is u.p..

Recall from Def.4 that Γ(ρ) = (Γe(ρ),Γt(ρ)) with Γe(ρ) = 1
if ρ ∈ T JγK, and Γt(ρ) = 1 if ρ ∈ EJδK.

Based on Prop.3, WTEGs and Time-variant TEGs are
characterized by an ultimately periodic transfer matrix if all
paths of the graph are modeled by balanced operators. Under
this condition, the results proposed in [5][17] also provide
algorithms to calculate the transfer matrix.

IV. CORE DECOMPOSITION OF OPERATORS IN ET
Based on the results recalled in the previous section, we

show how the manipulation of operators in ET , both event-
variant and time-variant, is possible. For this purpose, we use
the techniques developped in [15] and [16]. In these papers, it
is shown how calculations involving u.p. operators in EJδK and
T JγK can be performed by means of matrix calculations on
u.p. series in Max

in Jγ, δK. With the same techniques, we show
here how computation with u.p. operators in ET reduces to
matrix calculation in EJδK or in T JγK. Our approach relies on
a matrix decomposition called core decomposition, which was
first introduced in [15].

Notation 1: Let us denote by mm ∈ EJδK1×m, bb ∈
EJδKb×1, vv ∈ T JγK1×v , ww ∈ T JγKw×1, m, b, v, w ∈ N
the following matrices

mm :=
(
µm γ1µm · · · γm−1µm

)
bb :=

(
βbγ

b−1 · · · βbγ
1 βb

)ᵀ
vv :=

(
νv δ−1νv · · · δ1−vνv

)
ww :=

(
ωwδ

1−w · · · ωwδ
−1 ωw

)ᵀ
Proposition 4 ([15] [16]): For a given α ∈ N, we have

mα ⊗ bα = e = vα ⊗ wα. (17)

Matrices Eα := bα ⊗ mα and Tα := wα ⊗ vα belong to
Max

in Jγ, δKα×α and are defined by : i, j ∈ {1, ..., α}

(Eα)ij =

{
e, j ≤ i,
γ1, j > i.

(Tα)ij =

{
e, j ≤ i,
δ−1, j > i.
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This follows immediately from (11). Because of (17), Eα ⊗
Eα = bαmαbαmα = bαmα = Eα, and Tα ⊗ Tα = Tα.

Proposition 5: Let s be a balanced operator in ET . Each
⊕-term can be factorized as follows

s =
⊕

i γ
liµm

(
δti∆v|wδ

siγci
)
βbγ

ri

where 0 ≤ li < m and 0 ≤ ri < b,
(18)

or,

s =
⊕

i δ
liνv

(
γki∇m|bγniδci

)
ωwδ

ri

where 0 ≥ li > −v and 0 ≥ ri > −w.
(19)

Proof: Because of (14), a balanced operator
can be written s =

⊕
i γ

niµmβbγ
kiδtiνvωwδ

si =⊕
i γ

ni∇m|bγkiδti∆v|wδ
si . By applying (9), γαµm =

γα−bα/mc×mµmγ
bα/mc, with α − bα/mc ×m ∈ [0,m − 1].

For instance, γ5µ3 = γ2µ3γ
1. Identically, with (10), βbγα =

γbα/bcβbγ
α−bα/bc×b with α− bα/bc × b ∈ [0, b− 1]. Finally,

as E-operators and T-operators commute, for each term we
have γniµmβbγ

kiδti∆v|wδ
si = γniµm(δti∆v|wδ

si)βbγ
ki =

γliµm(δti∆v|wδ
siγci)βbγ

ri , with li = ni − bni/mc × m,
ri = ki − bki/bc × b and ci = bni/mc + bki/bc. For
instance, γ5µ3β2γ

4δ5∆2|3δ
5 = γ2µ3(δ5∆2|3δ

5γ3)β2γ0. We
can use the same technique to obtain factorization (19).
For instance, γ5µ3β2γ

4δ5∆2|3δ
5 = γ5∇3|2γ

4δ5ν2ω3δ
5 =

δ−1ν2(γ5∇3|2γ
4δ5)ω3δ

−1, since δ5ν2 = δ−1ν2δ
3 and

ω3δ
5 = δ2ω3δ

−1.
We can remark that in (18), the left and right factors are
in EJδK whereas the central part in brackets is in T JγK.
Symmetrically, factorization (19) leads to a central part in EJδK
while the left and right factors are in T JγK. Since there is a
finite number of left and right factors in (19) and (18), these
factorizations lead to two decompositions where the core is a
matrix.

Proposition 6 (Core decomposition): A balanced operator
s ∈ ET can be described by two equivalent decompositions

s = mmQtbb (with Qt ∈ T JγKm×b)
= vvQeww (with Qe ∈ EJδKv×w)

Proof: Factorizations (18) and (19) are simply written as
a matrix product.

Proposition 7: Let s ∈ ET be an u.p. balanced operator,
say

s = p⊕ q(γκδτ )∗,
with p =

⊕α1

i=1 γ
ki∇m|bγniδti∆v|wδ

si ,
and q =

⊕α2

j=1 γ
Kj∇m|bγNjδTj∆v|wδ

Sj .

The core decompositions s = mmQtbb = vvQeww are such
that all entries (Qt)ij are u.p. operators in T JγK and (Qe)ij
are u.p. operators in EJδK.

Proof: First, we can write q(γκδτ )∗ by developing
(γκδτ )∗ = (

⊕n−1
i=0 γ

iκδiτ )(γnκδnτ )∗. Then, q(γκδτ )∗ =

(q(
⊕n−1

i=0 γ
iκδiτ ))(γnκδnτ )∗ = q′(γnκδnτ )∗. Moreover, we

can choose n so that nκ be a multiple of b. If now, as in
(18), we write q′ =

⊕
j γ

L′
jµm

(
δT

′
j ∆v|wδ

S′
jγC

′
j

)
βbγ

R′j ,

since βb(γ
nκδnτ )∗ = (γ(nκ)/bδnτ )∗βb, then we obtain

γL
′
jµm

(
δT

′
j ∆v|wδ

S′
jγC

′
j (γ(nκ)/bδnτ )∗

)
βbγ

R′j , where the ul-
timate peridocity is applied to the central part.

Because of Prop.6 and Prop.7, operations on u.p. operators
in ET can be converted to operations on matrices in EJδK or
T JγK.

Proposition 8 (Operations via core decomposition): Let
s, s′ ∈ ET be u.p. balanced operators.
• If s = mmQtbb = vvQeww and s′ = mmQ′tbb =

vvQ
′
eww, then s⊕ s′ = mm(Qt ⊕Q′t)bb = vv(Qe ⊕Q′e)ww.
• If s = mmQtbα1 = vvQewα2 and s′ =

mα1Q
′
tbb = vα2Q

′
eww, then s ⊗ s′ = mm(QtEα1Q

′
t)bb =

vv(QeTα2Q
′
e)ww.

• If s = mα1Qtbα1 = vα2Qewα2 then s∗ = mα1(Id ⊕
Qt(Eα1Qt)

∗)bα1 = vα2(Id ⊕ Qe(Tα2Qe)
∗)wα2, where Id is

the identity matrix of appropriate size with e on the diagonal
and ε elsewhere.
Prop.8 requires that the core matrices are of compatible size.
To solve a possible problem of matrix size, the following
proposition provides a scaling operation.

Proposition 9 (Extension): Let s = mmQtbb = vvQeww
be an u.p. balanced operator. The core decompositions can
be extended s = mmnQ

′
tbbn = vvnQ

′
ewwn where Q′t ∈

T JγKmn×bn and Q′e ∈ EJδKvn×wn.
Proof: Because of (17), we can write s = mmQtbb =

mmnbmn (mmQtbb)mbnbbn = mmn (bmnmmQtbbmbn) bbn
and therefore Q′t = bmnmmQtbbmbn. It is shown in [15,
Prop.8], and in [16, Prop.6] that by defining Q̂t = EmQtEb
and Q̂e = TvQeTw, then

Q′t =

βnγ
n−1Q̂tµn · · · βnγ

n−1Q̂tγ
n−1µn

...
...

βnQ̂tµn · · · βnQ̂tγ
n−1µn



Q′e =

ωwδ
1−nQ̂eνv · · · ωwδ

1−nQ̂eδ
1−nνv

...
...

ωwQ̂eνv · · · ωwQ̂eδ
1−nνv


Finally, although some βb and µm operators appear in the
expression of Q′t, because of (11), all entries in Q′t stay in
T JγK. For the same reason, all entries in Q′e stay in EJδK.

Proposition 10: Let s, s′ be u.p. (balanced) operators in ET .

•s⊗ s′ is u.p.,
•Γ(s) = Γ(s′) implies s⊕ s′ is u.p.,
•Γ(s) = (1, 1) implies s∗ is u.p..

For an event-variant and time-variant system, typically a Time-
variant WTEG, it follows from Prop.10 that if all the paths are
described by balanced operators in ET , then one can develop
the transfer matrix computation. The practical computations
then rely on operations with u.p. operators in EJδK and T JγK
for which we have software tools (ETVO [7]), with scaling
operations on the core decompositions when necessary (see
Prop.9).

Remark 4 (Balanced graphs): To satisfy the conditions
of Prop.10, the considered graphs must be gain-balanced,
i.e., parallel paths must have the same event-gain (as for
Weight-Balanced TEGs [5],[6]), and the same clock rate gain.
In particular, loops must have an event-gain and a clock
rate gain equal to 1. Considering unbalanced graphs describe
either inconsistencies (synchronisation of signals with different
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clocks) or can asymptotically lead to deadlock problems. Re-
stricting ourselves to the conditions of Prop.10 (gain-balanced
graphs) is therefore not very restrictive.

V. EXAMPLE

The transfer function of the Time-variant WTEG given in
Fig.5 is to be computed. There are two parts. First, a Time-
variant TEG from u1 to u2, and then a WTEG from u2 to
y2. Previously, we obtained u2 = ν2ω3δ

2(γ1δ1)∗u1 = Hau1
and y2 = (δ1µ2δ

3(γ1δ3)∗δ1β2γ
1⊕ γ1δ1µ2δ

4(γ2δ4)∗β2)u2 =
Hbu2. Therefore, the overall transfer function is y2 = Hu1 =
(Hb ⊗ Ha)u1. Arbitrarily, we choose to decompose the op-
erators with core matrices in T JγK. First, Hb = m2Qbb2
with (Qb)11 = δ5(γ1δ3)∗, (Qb)12 = γ1δ5(γ1δ3)∗, (Qb)21 =
δ5(γ1δ3)∗ and (Qb)22 = δ5 ⊕ γ2δ9 ⊕ γ3δ11(γ1δ3)∗. Then
for Ha, the decomposition is Ha = m1(ν2ω3δ

2(γ1δ1)∗)b1,
but this decomposition is not adapted for the product Hb ⊗
Ha. According to Prop.9, we can extend the core ma-
trix as Ha = m2(b2(ν2ω3δ

2(γ1δ1)∗)m2)b2 and we obtain
Ha = m2Qab2 with (Qa)11 = δ2ν2ω3δ

−1(γ1δ2)∗, (Qa)12 =
δ2ν2ω3γ

1(γ1δ2)∗, (Qa)21 = δ2ν2ω3(γ1δ2)∗ and (Qa)21 =
δ2ν2ω3δ

−1(γ1δ2)∗. Finally, we obtain H = Hb ⊗ Ha =
m2Qbb2m2Qab2 = m2Qtb2 with Qt = QbE2Qa ∈ T JγK2×2.
This calculation can be processed in dioid T JγK and the result
is

(Qt)11 = (δ7∆2|3δ
−1 ⊕ δ10∆2|3δ

−1γ1)(γ2δ9)∗

(Qt)12 = (δ7∆2|3γ
1 ⊕ δ10∆2|3γ

2)(γ2δ9)∗

(Qt)21 = (δ7∆2|3 ⊕ δ10∆2|3δ
−1γ1 ⊕ δ13∆2|3δ

−1γ2)(γ2δ9)∗

(Qt)22 = δ7∆2|3δ
−1 ⊕ δ9∆2|3δ

−2γ1 ⊕ δ10∆2|3γ
2

⊕δ11∆2|3δ
−1γ2 ⊕

(
δ13∆2|3γ

3 ⊕ δ16∆2|3γ
4
)

(γ2δ9)∗

To obtain a flat version in ET , we can expand m2Qtb2 and
we obtain the transfer function as an ultimately periodic
operator: H = ∇2|2γ

1δ−1∆2|3δ
11 ⊕ γ1∇2|2γ

1δ−1∆2|3δ
12 ⊕

γ1∇2|2δ
−1∆2|3δ

11 ⊕ γ2∇2|2δ
−1∆2|3δ

12 ⊕ γ3∇2|2δ
−1∆2|3δ

13 ⊕
γ2∇2|2γ

1∆2|3δ
14 ⊕ γ4∇2|2∆2|3δ

15 ⊕ γ5∇2|2δ
−1∆2|3δ

17 ⊕
(γ4∇2|2γ

1δ−1∆2|3δ
20⊕γ6∇2|2δ

−1∆2|3δ
21⊕γ6∇2|2γ

1∆2|3δ
23⊕

γ8∇2|2∆2|3δ
24)(γ4δ9)∗.

Remark 5: Let us note that this computation could be devel-
opped as well with core matrices in EJδK, say H = v2Qew3

with Qe ∈ EJδK2×3 (see Prop.6).

VI. CONCLUSION

Weighted Timed Event Graphs (WTEGs) and Time-variant
TEGs represent two well-known extensions of standard TEGs.
Input-output models of WTEGs, respectively Time-variant
TEGs, can be conveniently written in terms of the dioids
EJδK, respectively T JγK, see [5], respectively [16]. In this
paper, we have shown how a more general class of event-
variant and time-variant TEGs encompassing WTEGs and
Time-variant TEGs as special cases can be modeled in a
unified framework involving six elementary operators. If the
system can be modelled by a balanced graph (the same event
gain and clock rate gain on parallel paths), then the input-
output relation can be calculated using a matrix decomposition.
This framework allows us to perform the required calculations
with adapted software tools. Possible applications are in the
manufacturing domain, where our approach can be used for the

evaluation of internal inventory levels or for the development
of input flow controllers, such as the ones presented in [13] for
standard TEGs. In particular, it was used to control a realistic
production cell, modeled with ETVO; the details are given in
the example section of the internal report [7] dedicated to the
presentation of the software library.
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