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Stochastic filtering scheme of implicit forms of
Uncertain Max-plus linear systems

Guilherme Espindola-Winck, Laurent Hardouin, Mehdi Lhommeau and Rafael Santos-Mendes.

Abstract—This work aims to improve the stochastic filtering
algorithm with bounded disturbances, proposed in [1]. This filter
is efficient for max-plus linear (MPL) systems in explicit form,
i.e., the Timed Event Graph (TEG) described by this system
is initially with one token on each place. Nevertheless, it needs
strong assumptions in order to be accurate for systems in implicit
form, i.e., the corresponding TEG is initially with some token-
free places which implies that some entries of the system state
vector are dependent on each other. In this paper, we consider a
more general method without these assumptions. It is based on
an iterative procedure that widely increases the accuracy of the
estimation.

Index Terms—Discrete event systems, Timed event graphs,
Max-plus linear systems, Stochastic state estimation, Interval
contractors

I. INTRODUCTION

Discrete Event Dynamic Systems (DEDS) are systems
whose dynamics are event-driven, i.e., the state evolution
depends entirely on the occurrence of asynchronous discrete
events over time. Manufacturing systems, telecommunication
networks, transportation networks, are example of DEDS [2].
To describe the behaviour of these systems the ordinary or
partial differential equations are not suitable, hence more
relevant theoretical setting are considered, among them the
following can be cited: languages and automata, Markov chain
and Petri nets, the reader is invited to consult [3] for an
overview.

The DEDS involving only delay and synchronization phe-
nomena, i.e., the starting of a task waits for a previous set
of tasks to be completed, is worth of interest. These systems
can be graphically depicted by Timed Event Graphs (TEGs)
which are a subclass of timed Petri nets where each place has
one and only one upstream transition and one and only one
downstream transition.

The max-plus algebra setting, which is an idempotent semi-
ring, is suitable to describe the behaviour of TEGs thanks to
linear state equations which are very analogous to those found
in classical linear system theory, i.e., the behaviour of a max-
plus linear system (MPL) can be depicted thanks to matrices
defined in this algebra.

These linear state equations are useful to deal with control
problems addressed similarly to the classical control theory,
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among the problems solved we can cite the optimal control
[4, 5], the model-predictive control [6, 7], the robust controller
design [8, 9]. These models are also useful to deal with state
estimation [10, 11, 12, 13] which is a fundamental problem
to address applications such as fault detection and diagnosis
[14] and state feedback control [15].

The observer approach, proposed by [10, 16], leads to an
estimation of the state as close as possible, from below, to
the real state. This approach is efficient for the deterministic
systems and to synthesize observer-based controller [17]. In
actual dynamical systems, sensor signals are to some extent
corrupted with noise, and the state transition of the actual
process is to some extent disturbed by exogenous events. If
stochastic properties of these noise sources are available, state
estimation may be performed more efficiently by considering
this knowledge. Then, a more sophisticated and general frame-
work for the state estimation is proposed in [1], it is based on
the stochastic filtering design.

The Stochastic Max-Plus Linear (SMPL) systems are de-
fined as MPL systems, where the entries of the system matrices
are defined by their probability densities. In this work, we are
interested in the Uncertain Max-Plus Linear (uMPL) systems,
a subclass of SMPL systems, with entries that are bounded
random variables with support in a real interval and are
also assumed statistically independent of each other. Recently,
[1] have proposed a stochastic filtering algorithm for these
systems. The algorithm proposed by the authors is decomposed
in two steps: a prediction phase based on the calculation of the
mathematical expectation E[observation|state] and an update
phase using available measurements and the prediction into
account in order to compute a state estimate, this latest pro-
cedure is based on a constraint satisfaction problem inspired
by [18].

This proposed filtering method assumes that the stochastic
entries of the system matrices are independent. Unfortunately,
in most applications, the entries of system matrices are a
summation of processing times, in which various processing
times appear in multiple entries. Therefore, the entries of the
matrices are not independent and the procedure of [1] is not
directly adapted. Indeed, it is based on an offline Monte Carlo
simulation, which is robust only if the system works in its
periodic behaviour. To overcome this problem, we propose a
new online strategy that is efficient even if the system works in
its transient behaviour. Hence, we do not need to perform the
imprecise offline Monte Carlo simulation, since an adaptive
tuning occurs in the loop.

This paper is organized as follows. In section II we present
some background on MPL systems, interval analysis and
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stochastic filtering for uMPL systems. Section III presents
the stochastic filtering strategy of implicit forms of uMPL
systems as an extension of Algorithm 3 in [1]. In Section
IV, simulations are presented to illustrate the efficiency of the
method proposed in this paper by considering the results from
[13, 1].

II. MATHEMATICAL BACKGROUND

A. Algebraic framework

In this section, we recall some notions we shall use in the
following [2, 19].

Define ε = −∞, e = 0 and Rmax = R ∪ {−∞} ∪ {+∞}
endowed with two internal operations: sum (⊕) and product
(⊗) are defined as x⊕ y = max{x, y} and x⊗ y = x+ y for
any x, y ∈ Rmax. Particularly, ⊤ =

⊕
x∈Rmax

x is the greatest
element of Rmax (⊤ is called top element of Rmax). The ⊕
and ⊗ operations can be extended to matrices as follows. If
A,B ∈ Rn×p

max and C ∈ Rp×q
max, then [A⊕B]ij = aij ⊕ bij

and [A⊗ C]ij =
⊕p

k=1 aik ⊗ ckj . As in classical algebra, the
operator ⊗ will usually be omitted in expressions for the sake
of readability.

The implicit equation x = ax ⊕ b admits x = a⋆b =
(
⊕

k∈N ak)b, where ak = a⊗ak−1 and a0 = e, as the smallest
solution. All these results admit a natural extension to the
matrix case (see [2] for more details concerning the Kleene
star operator).
Interval Arithmetic
Interval arithmetic is presented in [20]. An interval in Rmax

is defined as [x] = [x, x] = {x ∈ Rmax : x ≤ x ≤ x}.
The max-plus operations can be, therefore, extended to

intervals as follows [21, 22, 23, 8]:

[x]⊕ [y] = {x⊕y : x ∈ [x], y ∈ [y]} = [x⊕y, x⊕y] , (1)

[x]⊗ [y] = {x⊗y : x ∈ [x], y ∈ [y]} = [x⊗y, x⊗y] . (2)

The ⊕ and ⊗ are extended to interval matrices as follows: If
[A], [B] and [C] are, respectively, (n×p), (n×p) and (p×q)-
dimensional interval matrices, then ([A]⊕[B])ij = [aij ]⊕[bij ]
and ([A]⊗ [C])ij =

⊕p
k=1([aik]⊗ [ckj ]).

If we consider the max-plus equation [z] = [C]⊗x, with, [z]
an q-dimensional interval vector, [C] an (q × n)-dimensional
interval matrix and x an n-dimensional vector, then we can
write the i-th component of [z] as follows:

[z]i =

[
n⊕

j=1

cij ⊗ xj ,

n⊕
j=1

cij ⊗ xj

]
, for all i ∈ {1, . . . , q}. (3)

B. MPL Systems
The TEGs class can be modelled by max-plus state equa-

tions, in which the state is modified exclusively by the oc-
currence of events (see for example [3, 2, 19]). To establish
the equations describing the behaviour of a TEG with n
internal transitions, p input transitions (transitions without
upstream place), and q output transitions (transitions without
downstream place), each internal transition is labelled x̃i with
i ∈ {1, . . . , n}, then x̃i(k) represents the date of the k-th firing
of this transition, i.e., the occurrence date of the event labelled
x̃i. In the same way, each input transition is labelled ũi with
i ∈ {1, . . . , p} and each output transition is labelled z̃i with

i ∈ {1, . . . , q}. This labelling leads to the following implicit
max-plus linear equation:

x̃(k) =

M⊕
l=0

Ãlx̃(k − l)⊕
N⊕
l=0

B̃lũ(k − l), (4a)

z̃(k) = C̃x̃(k), (4b)

where x̃ = (x̃1(k), . . . x̃n(k))
T ∈ Rn

max is the state vector
and each entry of matrices Ãl ∈ Rn×n

max represents the minimal
holding time in the corresponding places, i.e., ãijl represents
the minimal holding time of the place linking the transition x̃j

to x̃i and being initially with l tokens1. The input (or control)
vector ũ ∈ Rp

max represents the input transitions, and B̃l ∈
Rn×p
max the influence of the input on the state variables, i.e., b̃ijl

represents the minimal holding time of the place linking the
transition ũj to x̃i and being initially with l tokens. In the
sequel, each place is assumed to be with initially one or zero
token, this assumption is done without loss of generality since
it is sufficient to add extra places in the corresponding TEG,
i.e., to increase n in a suitable way. Eq.(4b) is the observation
equation where z̃ ∈ Rq

max represents the output transition (or
measurement) and C̃ ∈ Rq×n

max depicts the holding time of the
corresponding places, which are assumed to be without tokens
(extra places can be added).

Thus, the following equations within a standard and implicit
form are considered:

x(k) = A0x(k)⊕A1x(k − 1)⊕B0u(k), (5a)
z(k) = Cx(k). (5b)

Furthermore, by removing the implicit form, the equation
above can be written as:

x(k) = A⋆
0A1x(k − 1)⊕A⋆

0B0u(k), (6a)
z(k) = Cx(k), (6b)

where A⋆
0 =

⊕
k∈N Ak

0 is with finite entries2 if the cor-
responding graph of this matrix is without circuit, i.e., the
corresponding TEG is live3. This assumption means that no
transition is frozen, which is, in practice, a non-restrictive
assumption.

C. Uncertain Max-Plus Linear Systems
The matrix entries of MPL systems depict mainly trans-

portation or processing times, then in order to take uncer-
tainties on these process duration into account, they have to
be considered as random values. In this paper, it is assumed
that at each event k the system matrices entries can take an
arbitrary value within a real interval. Hence, it is possible to
model Uncertain Max-Plus Linear (uMPL) systems [24, 25]
as follows:

x(k) = A0(k)x(k)⊕A1(k)x(k − 1)⊕B0(k)u(k), (7a)
z(k) = C(k)x(k), (7b)

1The number of tokens l in the initial marking is interpreted as backward
shift operators in the event domain (formally, x̃i with l tokens is shifted
l-times, i.e., x̃i(k − l)).

2The series
⊕

k∈N Ak = E ⊕ A ⊕ A2 ⊕ · · · , where E is the identity
matrix in max-plus algebra (i.e., a square matrix with the same dimension
of A with e on the main diagonal and ε elsewhere), converges to a finite
matrix A⋆ iff λ(A) ⪯ e (its greatest eigenvalue). As a consequence A⋆ =
E ⊕A⊕A2 ⊕ · · · ⊕An−1 and λ(A⋆) = e.

3A TEG is said to be live if each transition can be fired infinitely often.
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where A0(k) ∈ [A0, A0], A1(k) ∈ [A1, A1], B0(k) ∈
[B0, B0], and C(k) ∈ [C,C] are matrices of independent
random variables with finite support and whose entries are
mutually independent4. For instance, matrices A0 and A0 are
the lower and upper bounds of [A0], respectively, with the
inputs such that aij0 (k) ∈ [aij0 , a

ij
0 ].

Remark 1: Thanks to the Kleene star matrix A⋆
0, Eq.(5a)

is equivalent to Eq.(6a) in the deterministic case. However,
in the uncertain case it is not possible to apply the same
transformation to Eq.(7a), indeed even if the inputs of A0(k),
A1(k) and B0(k) are assumed independent, the entries of
A⋆

0(k)A1(k) and of A⋆
0(k)B0(k) could be coupled since the

entries of these resulting matrices are composed of sums and
maximization, which results in multiple occurrences of the
same holding times in multiple entries of the resulting matrices
[2, 6]. This means that the assumption of independence of the
entries does not hold any more.

D. On State Estimation of explicit forms

Bayesian methods provide a rigorous general framework
for dynamic state estimation problems. Before providing the
main contribution, we shall introduce the stochastic filtering
background necessary to properly deal with the class of au-
tonomous systems5 whose dynamics are abstractly and purely
based on the system of discrete dynamic equations:{

x(k) = fk(x(k − 1)),

z(k) = gk(x(k)),
(8)

with x ∈ Rn the state vector, z ∈ Rq the observation at time k,
fk : Rn → Rn the nonlinear discrete state transition function
between k and k− 1 event-numbers and finally gk : Rn → Rq

the observation function.
Classical Bayesian formulation
The stochastic filtering scheme that will be carried out in this
work is conceptually very similar to those found in discrete
time dynamic systems [26] and can be briefly formulated as
follows.

From a given set of measurements Z(k) = {z(1), . . . , z(k)}
we will search for an estimate for the state vector since
the sequence X (k) = {x(0), . . . ,x(k)} is not directly mea-
sured. Classically, the estimate is the mathematical expectation
of the state vector conditioned to the set of observations
Z(k), i.e., is computed6 by x̂(k) = E[x(k)|Z(k)]. As
presented in [26, Section 6.6], this estimate can be com-
puted in a recursive way. The probability density function
(p.d.f.) p(x(k − 1),Z(k − 1)) is assumed to be known and

4This assumption of statistical independence between the system matrices
inputs means that the minimum task duration or transportation time are inde-
pendent of each other. This assumption is reasonable for practical problems,
e.g., in the field of transport systems, a failure of one train does not affect the
potential efficiency of the others, even if they are blocked due to precedence
constraint.

5Any system described by Eq.(6a) can be transformed into an augmented
autonomous model x(k) =Mx′(k − 1) by considering M = (AB) and
x′(k−1) = (xT (k−1) uT (k))T of appropriate dimensions, i.e., the control
input is part of the augmented state vector x′, and does not require further
interest.

6The calculation per row of E[x(k)|Z(k)] is given by the first mo-
ment of a real-valued variable xi(k) and defined as E[xi(k)|Z(k)] =∫+∞
−∞ tp(t|Z(k))dt, where p(xi(k)|Z(k)) is the probability density function

of xi(k) given Z(k).

p(x(k)|Z(k)) is obtained from it. As it will be clarified in the
sequel, this calculation is two-fold. The first phase, known
as prediction, is summarized by the following Chapman-
Kolmogorov equation7:

p(x(k)|Z(k − 1)) =

=

∫
p(x(k)|x(k − 1))p(x(k − 1)|Z(k − 1))dx(k − 1). (9)

The latter phase is referred to as correction and uses the
well known Bayes formula (with the fact of the use of the
property of conditional independence of measurements) to
finally calculate p(x(k)|Z(k)) from p(x(k)|Z(k − 1)).

p(x(k)|Z(k)) = p(x(k)|z(k),Z(k − 1)),

= p(z(k)|x(k),Z(k−1))p(x(k)|Z(k−1))
p(z(k)|Z(k−1)) ,

= p(z(k)|x(k))p(x(k)|Z(k−1))∫
p(z(k)|ξ)p(ξ|Z(k−1))dξ .

(10)
It should be noted that the above equations depend essentially
on p(x(k)|x(k − 1)) and p(z(k)|x(k)) (measurement likeli-
hood), which are related to the state transition function fk, the
observation function gk of Eq.(8) and on the prior distribution
p(x(k)|Z(k − 1)) obtained from Eq.(9).

An analytical form of this calculation is very difficult
because of the nonlinearity of the max-plus equations in the
regular algebra, even numerically the computations are not
trivial. Therefore, the computation of the integrals in Eq.(9)
and in Eq.(10) is intractable in most cases.
Alternative Bayesian formulation
In order to overcome these non-feasible computations, an al-
ternative filtering problem was proposed in [1, Section IV] and
can be stated as follows. After each iteration k, we consider
the unknown state trajectory X (k) = {x(0), . . . ,x(k)} and
then we define an estimate x̂(k) of x(k) as

x̂(k) = E[x(k)|x̂(k − 1)], (11)

supposing that x̂(0) is known. Then, from a given sequence
of measurement Z♯(k) = {z♯(1), . . . , z♯(k)}, we will look for
the state x̂(k) such that it leads to

z♯(k) = E[z(k)|x̂(k)]. (12)

A sequence X̂ (k) = {x̂(0), . . . , x̂(k)}, ideally tracking X (k),
is obtained if it satisfies the above equations. This sequence
can be seen as the classical maximum likelihood estimator
in the sense that it is based on the likelihood function
p(z(k)|x(k)). The main difference is that instead of consid-
ering the maximum of this function, w.r.t. x(k), the estimate
x̂(k) (see Eq.(12)) chooses the value of x(k) such that z♯(k)
is equal to E[z(k)|x̂(k)].

It is important to note that the strategy summarized by
Eq.(11) and Eq.(12) effectively takes into account the prior
data8, since x̂(k) appears in both equations. Although concep-
tually useful, these equations are not adequate for the direct

7The joint distribution of x(k) and x(k − 1) given Z(k − 1) can
be computed by using the Markov property as follows: p(x(k),x(k −
1)|Z(k − 1)) = p(x(k)|x(k − 1),Z(k − 1))p(x(k − 1)|Z(k − 1)) =
p(x(k)|x(k − 1))p(x(k − 1)|Z(k − 1)).

8According to [26], estimators based on p(x(k)|z(k)) clearly are Bayesian
because they consider the probability density p(x(k)|x(k − 1)) (see Eq.(9)
and Eq.(10)). On the other hand, estimators purely based on p(z(k)|x(k))
are non-Bayesian.
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implementation of a filter, because there is no unique solution
x̂(k) guaranteed due to the nature of the max-plus operations.

Alternatively, we can define x♯(k) as a value that is con-
strained by z♯(k) = E[z(k)|x♯(k)] (even though in classical
filtering this is not mandatory) and is the closest to x̂(k) =
E[x(k)|x̂(k−1)] (predicted state). To retain this value, we use
a suboptimal solver based on interval contraction that will be
presented in the sequel.

In short, the approach is also two-fold and can be resumed
by the following equations:
Prediction phase

x̂(k|k − 1) = E[x(k)|x̂(k − 1|k − 1)]. (13)

Measure-update phase

x̂(k|k) = arg min
x

∥x− x̂(k|k − 1)∥∞ , (14a)

s.t. z♯(k) = E[z(k)|x]. (14b)

Remark 2: The filter scheme proposed by Eq.(13) and
Eq.(14) falls back on the same proposed by Eq.(11) and
Eq.(12) iff x̂(k|k − 1) = x̂(k|k) holds.

In the sequel, we will introduce the mathematical tools
necessary to properly compute Eq.(13) and Eq.(14).
Conditional expectation calculation
Consider the generic max-affine equation

zi =
n

max
j=1

{mij(k) + xj}, (15)

where mij(k) ∈ [mij ,mij ], with i ∈ {1, . . . , q} and j ∈
{1, . . . , n}, and x ∈ Rn. In the following, mij(k) will be
considered as independent and uniformly distributed random
variables. According to these assumptions the cumulative
distribution function (c.d.f.) of mij(k), denoted by Fmij

(t),
is given by:

Fmij (t) =


0 if t ≤ mij ,

t−mij

mij−mij
if mij < t ≤ mij

1 otherwise,

. (16)

Moreover, E[mij(k)] =
mij+mij

2 (for more details, see [1]).
Max-plus ”summation” (or supremum) of independent
random variables
Let v = maxnj=1{wj} be the result of max-plus summation,
if wj are independent random variables then Fv(t) = P [v ≤
t] = P [w1 ≤ t and w2 ≤ t and wn ≤ t] =

∏n
j=1 P [wj ≤

t] =
∏n

j=1 Fwj
(t). As a corollary, if each wj is shifted by

a constant bj , i.e., v = maxnj=1{wj + bj}, then Fv(t) =∏n
j=1 Fwj

(t− bj).
C.d.f. of zi
Summing-up, by analogy, we can calculate the c.d.f. of each
zi, denoted by Πzi(t), as

Πzi(t) =

n∏
j=1

Fmij (t− xj), for all i ∈ {1, . . . , q}. (17)

with the term Fmij
related to Eq.(16). The function Πzi(t) is

a piece-wise polynomial function of order bounded by n and
defined on [zi = maxnj=1{mij+xj}, zi = maxnj=1{mij+xj}]
according to Eq.(3). It can then be used to compute the
conditional expectation as follows:

E[zi|x] = zi −
∫ zi

zi

Πzi(t)dt, for all i ∈ {1, . . . , q}. (18)

Remark 3: Since the piece-wise polynomial c.d.f Fmij (t)
is given for the uniform law, Eq.(18) is a continuous (possibly
piece-wise) and isotonic function of x (see [1]). By consider-
ing other distribution laws (for instance triangular distribution)
the computation can become complex (see Eq.(17)). Any other
technique to calculate E[zi|x] can be alternatively considered
as long as it keeps the properties of continuity and isotony
w.r.t. x. We can mention the results proposed in [27, 13],
which are possible alternative methods. In [13], the authors
consider an approximation based on the moments of a ran-
dom variable and is focused on decreasing the computational
burden of E[maxnj=1{wj}]. This method will be used in the
numerical simulations for comparison purposes.
Inverse of E[z|x]
Consider the matrix form of the same equation z = M(k)x
written in max-plus algebra that was considered in Eq.(15).
This equation will be considered in the observation phase as
follows. Consider now the problem: given an observation (or
measurement) z♯, find x♯ such that z♯ = E[z|x♯], i.e., which
state x♯ leads to the output z♯. More formally, we seek to
characterize, the set χ = {x♯ ∈ Rn | z♯ = E[z|x♯]}.
Interval contractor
Contractors [18] are powerful tools to solve efficiently the
problem of characterization of the set χ ⊂ Rn. The operator
Cχ is a contractor for χ if it satisfies ∀[x] ∈ Rn,

Cχ([x]) ⊂ [x] (contractance) and
Cχ([x]) ∩ χ = [x] ∩ χ (completeness).

A contractor is said to be minimal if [x] ∩ χ = Cχ([x]). In
the following, it is assumed that: H1) χ is not empty, H2)
χ ⊂ [x], H3) E[z|x] ≤ z♯, H4) for all j ∈ {1, . . . , n},
E[z|x1, x2, . . . , xj , . . . , xn−1, xn)

T ] ≥ z♯. The Algorithm 1
summarizes the contractor Ωχ to contract the set χ.

Algorithm 1: Interval contractor

Data: F (M(k) ∈ [M ]) (c.d.f. of syst. matrix), [x], z♯
Result: I = Ωχ([x])

1 while x′ ̸= x and x′ ̸= x do
2 x′ ← x; x′ ← x ;
3 foreach i ∈ {1, . . . , q} do
4 foreach j ∈ {1, . . . , n} do

/* Lower dichotomy */
5 x← x; xj ← xj ;
6 if E[zi|x] < z♯i then
7 x← ∆L

ij([x,x]);
8 end

/* Upper dichotomy */
9 x← x; xj ← xj ;

10 if E[zi|x] > z♯i then
11 x← ∆U

ij([x,x]);
12 end
13 end
14 end
15 end
16 return [x,x];

The computation of ∆L
ij and ∆U

ij is a one-dimensional
search that can be efficiently performed by the dichotomy
method. Algorithm 2 summarizes this search for each
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Algorithm 2: One-dimensional search

Data: F (M(k) ∈ [M ]) (c.d.f. of syst. matrix), [x], (i, j), z♯i , type
L or U, tol (tolerance)

Result: w = ∆L
ij([x]) or ∆U

ij([x])

1 (y,w)←
{
(x,x) if L
(x,x) if U

;

2 while |xj − xj | > tol do
3 yj ← (xj + xj)/2;
4 if E[zi|y] > z♯i then
5 xj ← yj ;
6 else
7 xj ← yj ;
8 end
9 end

10 wj ← yj ;
11 return w;

row/column pair (i, j). We denote Ωχ the contractor ob-
tained from the iterated composition of 2qn operators ∆, i.e.,
Ωχ([x]) = (∆L

11 ◦∆U
11 ◦ . . .∆L

1n ◦∆U
1n ◦ . . . ◦∆L

q1 ◦∆U
q1 ◦ . . . ◦

∆L
qn ◦∆U

qn)([x]). Lines 6 and 10 of Algorithm 1 and line 4 of
Algorithm 2 refer to Eq.(18) and if they are not satisfied, then
the lower-dichotomy is mathematically seen as the identity
operator ∆L

ij([x]) = IdL([x]) = x and the upper-dichotomy is
seen as the identity operator ∆U

ij([x]) = IdU ([x]) = x.
Remark 4: The contractor Ωχ satisfies the contractance,

completeness and monotonic properties (see [1, Lemma 2] for
proofs).

Remark 5: Ωχ([x]) converges to a fixed point, i.e., to an
interval I such that Ωχ(I) = I. Moreover, I contains χ (see
[1, Lemma 3] for proofs).
Deprecation of I, the suboptimal solver Inv:
In the sequel, the second and last part of the inversion of
E[z|x♯] is drawn. Generally, the interval I = [xopt,xopt]
is not deprecated9 after the contraction procedure of the
initial interval [x]. Consider initially the deprecation procedure
described below [1, Section IV].

Procedure 1: For an arbitrary j ∈ {1, . . . , n}, let a ∈
[xj , xj ]. Moreover, let χ′ = χ ∩ {xj = a}, with {xj = a}
a hyperplane in Rn, and let I ′ = I ∩ {xj = a} Thus, χ′ ⊂ I ′

and, thanks to [1, Lemma 3], χ′ is not empty. In general, I ′

is not minimal (Remark 5) and the contraction algorithm must
be run again to obtain the minimal interval containing χ′.

The procedure above can be iteratively repeated until the
minimal interval is reduced to one point (all components are
fixed) that necessarily belongs to χ. The remaining question
is: which component should be fixed at each step and to which
value? To answer this, consider now that one holds a guess
value (obtained somehow) for a particular x♯, formally x0. We
shall look for a point x ∈ χ that is the closest to this value, i.e.,
x♯ = arg minx∈χ∥x− x0∥∞ (see Eq.(14a)). In general, x♯ is
not unique, i.e., multiple solutions yield the same minimum,
and an optimal value for this problem cannot be guaranteed.
However, following [1, Section IV], a suboptimal heuristic
procedure, based on the deprecation method described above,
is proposed to solve an alternative optimization problem, stated
as follows. As we already know, I, such that χ ⊂ I, is the
interval resulting from the Algorithm 1. Then, we consider the

9An interval [x] = [x, x] is said to be deprecated if x = x. The same is
applied to interval vectors and matrices.

alternative minimization x′ = arg minx∈I∥x− x0∥∞, whose
optimal solution10 is given by the line 7 of Algorithm 3.

Remark 6: The vector x′ not necessarily belongs to χ, but
it is useful to determine at each step which component must
be deprecated and to which value. Given that, χ ⊂ I then the
following statement holds min

x∈χ
∥x− x0∥∞ ≥ min

x∈I
∥x− x0∥∞.

The Algorithm 3 summarizes this procedure, and it should be
noticed the generation of the initial interval [x] must satisfy
H2, i.e., it must contain at least one solution of the problem
characterized by the set χ. A simple rule to guarantee this is
to chose x such that Cx < z♯ and x such that Cx > z♯ are
respected11.

Algorithm 3: Suboptimal solver

Data: F (M(k) ∈ [M ]) (c.d.f. of syst. matrix), z♯, x0

Result: x♯ = Inv(z♯,x0)
1 generate [x,x]; bool← true;
2 while bool do
3 [x,x]← Ωχ([x,x]) ; // Algorithm 1
4 bool← x ̸= x;
5 if bool then

/* Heuristic fixation of the j − th
coordinate of [x,x] based on x0. */

6 foreach j ∈ {1, . . . , n} do

7 x′
j ←


xj if x0

j ≤ xj

x0
j if xj < x0

j < xj

xj otherwise.
;

// x′ = arg minx∈[x,x]

∥∥x− x0
∥∥
∞

8 end
9 j♯ ← argmaxj∈{1,...,n} |x′

j − x0
j |;

/* Deprecation */
10 xj♯ ← x′

j♯
; xj♯ ← x′

j♯
;

11 end
12 end
13 return x ; // Notice that: x = x

Stochastic Filtering algorithm
Consider the uMPL system below:

x(k) = A(k)x(k − 1),

z(k) = C(k)x(k),
(19)

with an n-dimensional vector x, an q-dimensional vector z.
An (n × n)-dimensional matrix A(k) ∈ [A] and an (q × n)-
dimensional matrix C(k) ∈ [C] such that its entries (for
instance, aij(k) ∈ [aij , aij ]) are independent random variables
and uniformly distributed according to the c.d.f.: F (A(k) ∈
[A]) and F (C(k) ∈ [C]).

Summing-up, the filtering algorithm, is given by Algorithm
4.

Algorithm 4: Filtering algorithm of explicit forms

Data: F (A), F (C), and z♯(k)
Result: x̂(k|k) = Filter(z♯(k), x̂(k − 1|k − 1))

1 x̂(k|k − 1) = E[x(k)|x̂(k − 1|k − 1)] ; // Eq.(18)
2 x̂(k|k)← Inv(z♯(k), x̂(k|k − 1)); // Algorithm 3
3 return x̂(k|k)

10As for x♯, there exist multiple solutions for x′, but minx∈I∥x− x0∥∞
is unique.

11H4 implies E[z|x] ≥ z♯ and it must always be respected, otherwise x
must be properly modified.
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III. ON STATE ESTIMATION OF IMPLICIT FORMS

A. Towards the implementation of a filtering strategy
According to Remark 1, Eq.(7a) can not be directly written

in explicit form, however, in practice, the associated TEG
is assumed to be live (otherwise some transitions would be
frozen), this implies that there is an appropriate permutation
of the transitions numbering such that A0 can be written in
strictly lower triangular form (aij0 = ε for all i ≤ j). Thus,

x(k) = A0(k)x(k)⊕ y(k),

where A0(k)x(k) represents the implicit part and y(k) =
A1(k)x(k− 1)⊕B0(k)u(k) represents the explicit part. This
equation can be component-wise depicted as follows:

x1(k) = y1(k),

x2(k) = a21
0 (k)x1(k)⊕ y2(k),

x3(k) = a31
0 (k)x1(k)⊕ a32

0 (k)x2(k)⊕ y3(k),

...

xn(k) =
(⊕n−1

l=1 anl
0 (k)xl(k)

)
⊕ yn(k),

(20)

where each yi is either maxnj=1{a
ij
1 (k) + xj(k − 1)} or

maxpj=1{b
ij
0 (k)+uj(k)}, where aij1 (k) and bij0 (k) are assumed

to be independent random variables, and xj(k− 1) and uj(k)
are fixed. Hence, the entries of the vector y(k) are assumed to
be independent. Moreover, the first part of the right-hand side
of Eq.(20) is maxi−1

l=1{ail0 (k) + xl(k)} for all i ∈ {1, . . . , n}
and depends on xl(k) from l = 1 up to i − 1. By assuming
that the computation of Eq.(20) is done from i = 1 up to
n and the terms xl(k) are fixed and known, we will be able
to ensure the independence of the components of the vector
x(k), which is worth of interest in the main contribution of
this work12.

B. Filtering algorithm

The stochastic systems described by Eq.(20) are implicitly
component-wise dependent. Hence, to properly calculate the
expectation of the i-th component of x it would be necessary
to take into account its joint distribution w.r.t. the other com-
ponents, which seems to be an intractable problem for most of
the cases. From this fact, the stochastic filter scheme that was
proposed in the previous section is no longer allowed to be
straightforwardly used if we are not interested in conservative
results13.

In the sequel, we will introduce an alternative way to
properly design the component-wise filtering scheme.
Stochastic Filtering algorithm of implicit forms
Consider the uMPL system below:

x(k) = A0(k)x(k)⊕A1(k)x(k − 1),

z(k) = C(k)x(k),
(21)

with an n-dimensional vector x, an q-dimensional vector z.
The (n×n)-dimensional matrices A0(k) ∈ [A0] and A1(k) ∈
[A1], and an (q×n)-dimensional matrix C(k) ∈ [C] such that

12We consider that each xi(k) is recursively known at each subsequent
row.

13From Remark 1, we can consider a conservative result by taking into
account the augmented autonomous and explicit form of Eq.(7a), which is
given by: x(k) = H(k)r(k), where H(k) ∈ ([A0] [A1] [B0]) and r(k) =
(xT (k) xT (k − 1) uT (k))T .

their entries (for instance, aij0 (k) ∈ [aij0 , a
ij
0 ]) are independent

random variables and uniformly distributed according to the
c.d.f.: F (A0(k) ∈ [A0]), F (A1(k) ∈ [A1]) and F (C(k) ∈
[C]).

Following Eq.(20), A0 can be given in lower triangular
form, and hence we can write

xi(k) =

(
i−1⊕
j=1

aij
0 (k)xj(k)

)
⊕ yi(x(k − 1)), (22)

with yi(x(k−1)) the i-th entry of y(x(k−1)) = A1(k)x(k−
1) (assuming the components of x(k − 1) are obtained from
the previous iteration).

By considering Eq.(18) the prediction equation for all i ∈
{1, . . . , n} is given as follows:

x̂i(k|k − 1) = E

[(
i−1⊕
j=1

aij
0 (k)x̂j(k|k)

)
⊕ yi(x(k − 1))

]
. (23)

In order to properly obtain x̂(k|k), one must call n-times the
procedure Inv. Clearly, this does not refer to a classical two-
fold filter scheme because we update separately the prediction
for each i-th component of the state vector.

Summing-up, the filtering algorithm of implicit forms, is
given by Algorithm 5.

Algorithm 5: Filtering algorithm of implicit forms

Data: F (A0), F (A1), F (C), and z♯(k)
Result: x̂(k|k) = Filter(z♯(k), x̂(k − 1|k − 1))

1 y = A1(k)x̂(k − 1|k − 1);
2 x̂(k|k − 1)← (ε, . . . , ε)T ; // initialize
3 foreach i ∈ {1, . . . , n} do
4 x̂i(k|k − 1) = E[(

⊕i−1
j=1 a

ij
0 (k)x̂j(k|k))⊕ yi]; // Eq.(23)

5 x̂(k|k)← Inv(z♯(k), x̂(k|k − 1)) ; // Algorithm 3
6 end
7 return x̂(k|k);

The Algorithm 5 uses n-times the Algorithm 3. This Al-
gorithm 3 returns an estimate x̂(k|k) for all components of
the state vector x, which is the solution of the constrained
minimization problem (see Eq.(14a) and Eq.(14b)). The input
x̂(k|k − 1) of the Algorithm 3 is updated at each step i,
with x̂i(k|k − 1) which is the corresponding entry of the
prediction vector. At this step i, we must note that entries
j ∈ {i + 1, . . . , n} of x̂(k|k − 1) are still equal to ε, hence
these entries j of the estimate x̂(k|k) given by Algorithm 3
are equal to xj since x0

j ≤ xj (see line 7).

IV. NUMERICAL SIMULATION

Example: Consider the third-order non-autonomous uMPL
system governed by the equation below:

x(k) = A0(k)x(k)⊕A1(k)x(k − 1)⊕Bu(k), (24)

with A0(k) ∈


ε ε ε

[1, 2] ε ε

[6, 10] [7, 11] ε

, A1(k) ∈


[7, 11] ε [2, 9]

ε [6, 12] [4, 8]

ε ε [6, 8]

and

B =


e ε

ε ε

ε e

 .

The output measurement is defined by

z(k) = C(k)x(k), (25)

with C(k) ∈ ([1, 3] [2, 4] ε).
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For instance, the prior knowledge of state x̂(k−1|k−1) ≡
x(k − 1) is initialized with the initial state x(0) = (2 5 1)

T .
Also, it should be mentioned that every calculation of

x̂i(k|k−1) = E[xi(k)|(x(k−1)T u(k)T )T ] takes into account
a pseudo-random value u(k) drawn from the standard uniform
distribution on the closed interval vector between (2, 2)T and
(40, 40)T .

A. Filter scenarios

In this section, we compare three different filters strategies
for non-autonomous systems in implicit form.

Filter F1 uses the original filtering method given by Algo-
rithm 5. In order to take the input action into account, the line
1 is replaced by y = A1(k)x̂(k − 1|k − 1)⊕Bu(k).

Filter F2 considers Algorithm 4 with line 1 given by:

x̂i(k|k − 1) = E[xi(k)|(x̂T (k − 1|k − 1) uT (k))T ],

with the right-hand side calculated by
E[
⊕i−1

j=1 a
ij
0 (k) (αj · x̂j(k|k − 1)) ⊕

⊕n
j=1 a

ij
1 (k)x̂j(k −

1|k − 1) ⊕
⊕p

j=1 b
ijuj(k)], for all i ∈ {1, . . . , n} and

with · corresponding to the scalar multiplication in regular
algebra. It corresponds to the strategy given in [1, Section
III] for systems with periodic behaviour14 with αj = 1 for all
i ∈ {1, . . . , n}.

Filter F3 considers an alternative method to deal with the
calculation of the expectation, as given in [13]. The authors
consider an approximation method for E[maxni=1{wj}], with
wi independent and uniformly distributed random variables
such that wi ∈ [wi, wi]. It is based on lower and up-
per bounds: lower(E[maxni=1{wi}]) ≤ E[maxni=1{wi}] ≤
upper(E[maxni=1{wi}]).

The lower and upper bounds [13, Section 3] of the expec-
tation of max-affine functions are given respectively by

lower
(

E
[

n
max
i=1

{wi}
])

=
n

max
i=1

{E [wi]} ,

upper
(

E
[

n
max
i=1

{wi}
])

=

(
n∑

i=1

E [|wi − L|p]

) 1
p

+ L.

with L = minni=1{wi} (with a careful handling of infinite
values).

The upper-approximation can be extended to uMPL sys-
tems and will replace all calculations of E[z|x] in the proce-
dure Inv of filter F1. This method (with p = 10)15 will be
addressed as F3 in the comparison Table I.

B. Simulation results

Table I shows the obtained results for simulations up to
the occurrence of 4000 events. Each position of the table
corresponds to root-mean-square-error16 RMSE(xi(k), x̂i(k|k))
with the usage of the corresponding filter.

14The set of parameters {α1, · · · , αn−1} is computed only once (offline
phase) using Monte Carlo techniques. This set is robust under periodic
steady-state regime, but if exogenous inputs modify the system behaviour,
the parameters should be tuned online. For more details, the reader is invited
to refer to [1, Section III].

15The definition of p-value is properly discussed in [13]. Here the p-value
is experimentally tuned by increasing it while the result is improved, indeed
for a larger p-value the result deviates from the exact solution.

16Notation: RMSE(a,b) =
√

1
N

∑N
i=1 (ai − bi)

2.

State i Filter F1 Filter F2 Filter F3

1 2.8883 4.5451 2.9020
2 1.1299 1.7783 1.1418
3 1.7233 16.7846 1.7410

TABLE I
ESTIMATION COMPARISON OF EXAMPLE.

The analysis of Table I indicates that the RMSE between
the estimation provided by the F1 and the true value of the
state is almost equal to the RMSE between the estimation
provided by the F3 and the true state. This fact is not surprising
since we only changed the way to calculate the mathematical
conditional expectation and the interval contraction scheme re-
mains unchanged. However, the RMSE between the estimation
provided by the F2 method and the true value of the state
is higher than the two other methods with special attention to
i = 3 (unobserved state). Indeed, as x3(k) is not observed and
is the noisiest state, then this noise propagates throughout the
TEG thanks to A1(k) and it penalizes the estimate of x1(k)
and x2(k).

V. CONCLUSION

In this work, we fully explored the capacity of the stochastic
filtering algorithm developed in [1] for systems within implicit
forms. The optimization is performed such that the state
estimated respects the measurement but, in a future work,
it would be interesting to consider a criterion ensuring a
trade-off between the noise in prediction versus the noise in
the measurement as it is performed in the Kalman filtering
approach. Another interesting perspective would be to mix the
tools developed in [1] and the approximation method of [13,
Theorem 8] to circumvent the difficulty of the computation of
the joint probabilities involved in the Kleene star operation.
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gree from the Paul Sabatier University/LAAS-CNRS
(Toulouse, France, 1988). Currently, he is an Asso-
ciate Professor in the School of Electrical and Com-
puter Engineering, UNICAMP. His research interests
include Discrete Event Dynamic Systems, Dioid
Algebra, Modal Logic and Stochastic Filtering.


