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Abstract This paper deals with parametric SISO timed-
event graphs identification. First an appropriate model of the
graph is derived from the input-output transfer function. In
the following an identification algorithm is developed using
Residuation Theory. Some theoretical results are also provided.
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I. INTRODUCTION

Discrete Event Systems (DES) appear in many applications
in manufacturing, computer and communication systems and
are often described by the Petri Net formalism (see [1]).
If the concerned systems are characterized by delay and
sychonization phenomena, the Timed Event Graphs (TEG)
constitute interesting models. TEG are timed Petri nets in
which all places have single upstream and single downstream
transitions and therefore can be linearly described in dioid
algebra ([2], [3], [4]). This formulation has permitted many
important achievements on the control of TEG, as for instance
the internal model control [5], the closed-loop control via
output or state feedback ([6], [7]), and the predictive control
[8]. One should remark that the dioid formalism is useful in
DES contexts other than TEG control, as for example for the
modeling and control of continuous and hybrid Petri nets [9].

A central problem in TEG control is, as in classical control
theory, the identification of the model. Boimond et al. [10]
have proposed a parameter identification method based on
the system impulse response. The approach considers two
ARMA models: one for the transient and another for the
periodic behavior. Gallot et al. ([11], [12]) have considered
the identification of the system impulse response based on
a decomposition of the system into a sum of first order
sub-systems (the impulse response is split into a sum of so
called simple elements). Menguy et al. [13] have developed
an algorithm for the non-parametric (direct) identification of
the system impulse response.

This paper proposes a new method for parametric identifi-
cation based on the knowledge of the model structure. First we
develop an appropriate TEG model and then the identification
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algorithm. As one will notice, the method is not restricted to
the case of impulse response estimation, as the previous cited
papers, and it can be used in other input conditions. The main
advantage is that the obtained model is closer, in a dioid sense,
to the actual system model than the one obtained by a direct
calculation of the greatest impulse response.

The paper is organized as follows. Section II introduces
some algebraic tools concerning the Dioid theory . Residuation
and Linear Systems Theory is presented in sections III and
IV respectively. In section V the identification method is
developed and section VI gives an illustrative example. A
conclusion is given in section VII.

II. D1oID THEORY

A dioid D is a set supplied with two internal operations
denoted by ¢ and ® . The operation & is idempotent (aba =
a). The neutral elements of & and ® exist and are represented
by e and ¢ respectively. The operation ® is distributed at left
and at right with respect to & and ¢ is an absorbing element
(e®a=a®e=¢, Va). In a dioid, a partial order relation
is defined by a = b iff a =a 0.

A dioid D is said to be complete if it is closed for infinite
sums and if ® distributes over infinite sums. The greatest
element of a complete diod D noted by T is equal to @ ., 7.

The greatest lower bound of every set X of a complete dioid
D always exists and D is a distributive dioid if it is complete
and for all subsets C of D, (A ccc) @ a= A cc(c®a) and
(B .ccc)Na =D, cc(cAa), where z Ay denotes the greatest
lower bound between x and y.

Example 1 ( Zax dioid ): Consider the set Z = 7 U
{—00,+00} and define ¢ as the max operator and ® as the
classical sum +. This is a complete dioid in which € = —o0,
e=0and T = +o0.

Theorem 1 ([2]): The implicit equation z = ax ® b defined
over a complete dioid D admits x = a*b as least solution,
where a* = @ a® (Kleene star operator) with a° = e.

i€N

Example 2 (Zmax[7]) dioid): . The elements are given by

z(y) = @ x(k)®~* where + is a variable and x(k) € Zpax.

kez
The neutral elements are £(7) = @ (k) ® v* and e(y) =
kez

@D e(k) ® v* where

keZ .
c(k) = —o0,Vk, and e(k) — { 0 if k=0

—oo otherwise.

Remark 1: The variable v of dioid Zayx[] can be usually
regarded as a backshift operator in the event domain.
The support of a series () in the dioid Zyax[7] is defined

as supp(z(7)) = {klz(k) # €}.



Definition 1: The valuation val(z(7y)) of a series z(7) is
defined as the greatest lower bound of supp(x(7)).

IIT. RESIDUATION THEORY AND DIOIDS

Residuation deals with solutions of equations of the type
f(z) = b by assuming that f is an isotone map (¢ = b =
f(a) = f(b)). In this section some results on this theory
are summarized. Further details can be found in Blyth and
Janowitz [14].

Define the subsolutions (supersolutions) of the equation
f(x) = b as the elements of the set {z|f(z) X b} ({z|f(z) <
y}).

Definition 2 (Residual and residuated mapping): An
isotone mapping f : D — &, where D and £ are ordered
sets, is a residuated mapping if for all y € & there exists
a greatest subsolution for the equation f(xz) = y (hereafter
denoted f*(y)). The mapping f* is called the residual of f.

Theorem 2 ([2], Residuation ): Let f : D — & be an
isotone mapping where D and £ are ordered sets, then f is
residuated iff f* is the unique isotone mapping such that

fofiy) =y and ffof(z) =z (1)

Ve € DandVy € €.

Theorem 3 ([2]): Let f : D — & where D and & be
complete dioids whose bottom elements are respectively
denoted ep and e¢. Then, f is residuated iff f(sp) = e¢ and

YACD. (@ x) = @ flx).
z€A z€A

Theorem 4 ([2]): Mappings L, r — a ® x and
R, : x — = ® a defined over a complete dioid D are both
residuated. Their residuals are isotone mappings denoted
respectively by L# (z) = az = & and Rf,(z) = zga = £,

Remark 2: These results can be extended to a matrix dioid
(see [2)]).

It is important to notice that in a commutative dioid L (z)
=R (z).

The concept of dual residuation can be defined in similar
way from the equation f(x) = b.

Definition 3 ([2], Dual Residuation): An isotone mapping
f: D — & where D and £ are ordered sets, is a dually
residuated mapping if for all y € & there exists the least
supersolution for f(x) = y. It is denoted f°(y) and it is called
the dual residual of f.

Theorem 5 ([2], Dual Residuation): Let f : D — & be an
isotone mapping where D and £ are ordered sets, then f is
dually residuated if f” is the unique isotone mapping such that

foflyy=y and fPof(zx)<a )
Ve €D and Vy € &.

Theorem 6 ([2]): The isotone mapping T, : * — a =
from a complete dioid into itself is dually residuated. Its dual
residual is denoted 77 (z) = z & a.

Remark 3: o a=¢ < a > x.

The table I gives some useful equations involving the
residuation ( e ), in dioids (see[2]).

TABLE I
FORMULZ OF RESIDUATION

el <a (1

a

ax
a— = ax 2)

a
(zdy)ea=(zea)®(ye a) 3)
(zea)®a=(z®a) “
(z®a)e a=(xze a) )
zo (adb)=(xrea)eb=(xrebd)ea| (6

Property I: Tn the Zpyax[7] dioid,
{@ y(k)y*} o {D 2(i)r'} = D (y(k) ©

kEZ = kEZ
(k)"
Proof: Directly from table I, formule (3) and (6),
and observing that y(k)y* e {@® 2(i)y'} = y(k)y* and
i>k

y(k)y* o {_€<ka(i)vi} = (y(k) o (k)" u
Remark 4: The associated dater (a nondecreasing trajec-

tory) to the series w(y) = y(y)e z(y) is given by
w(k) = @ (y(i) e x(i)). As a result, if w(y) # () then
i<k

w(val(w(v))) = y(val(w(y))).
Property 2: 1f y(7) & z(7) # £(7) then val(y(y) e (7))
> val(y(7))-
Proof: Obtained by using property 1 and definition 1. W

y(y) e x(y) =

IV. LINEAR SYSTEMS THEORY

Given a TEG, it is possible to associate to each transition
a sequence r = {x(k)}, ., where x(k) represents the date
of the k" firing of the transition 2. Such a sequence, usually
called a dater, is a nondecreasing function of k. The trajectory
of the transition = can also be represented by a formal series
z(y) = @ =(k) @ v* where z(k) € Zmax -
k

€z
The following example, which represents a workshop with
3 machines (M to Ms), illustrates this idea.

Fig. 1. Example of Timed Event Graph (TEG)



Let u and y be respectively the daters of the input and
output transistions and z; to x3 be the daters of the internal
transitions in TEG of figure 1. The system equations (3) gives
the relationship of these variables in the dioid Z,ax[Y] (When
there is no confusion, the operator ® will be omitted).

ri(y) = 6vz1(7) © 3u(y)

z2(y) = 3yxa(y) © 10u(y) 3)
r3y = 4dyxzs(y) ©6x1(7) S 3z2(7)

y(y) = 4x3(7)

y(y) = (17 ® 21y ® (259°)(67))u(v). 4)

This result can be generalized for every TEG. Baccelli et al.
[2] have shown that transfer functioE h has periodic behavior
and the output of the system in the Zyax[v] dioid is given by

y(7) = h(y)u(v)- ©)

where
h(y) = p(7) ® a(v)7"(s7")", (6)
with p(y) = EB;:OI pi 7' pi € N, a polynomial which

describes the transient behavior of the system and ¢(vy) =
@;;é ¢; v, ¢; € N, a polynomial which represents a pattern.
This pattern is reproduced for each r events and lasts s time
units.

Baccelli et al. [2] also have shown that in the set of daters

one may write

k

y(k) = P h(l) @ u(k —1), )

=0

where h is the system impulse response (y = h when u = e,
i.e., transition v fires infinitely many times at ¢ = 0).
Property 3 ([2]): Let z and y be two daters, then the dater

xRy exists and is given by [z8y](k) = A\, oy 2(s) §y(k + s).

V. IDENTIFICATION METHOD

This paper assumes that there exists a model for a TEG
SISO as expressed in equation (5). Its structure, i.e. parameters
v and r (see equation (6)) are assumed to be known .
The purpose of the identification method is to estimate the
unknown polynomials p(v), ¢(7) and the period duration s.

Expanding equation (5) by using (6), one obtains

y(7) = p(M)uly) © ¢y 2(7), ®)

where z(v) = (s7")*u(y). This equation is a solution of the
affine equation z(7) = (s7")z(7) @ u(y). Hence, the system
can be represented by the following equations in the Z,.x
dioid

IS
—
-
~
|

s®z(k—r)®u(k)
pou(k) ® ... ®py_1u(k —v+1)® )
qzlk—v)®...®¢_12(k—v—r+1)

<
—~
&y
~—
|

with initial conditions z(k) = u(k) = y(k) = ¢ for k& < 0.

Taking inspiration from the classical identification theory
for the continuous variable dynamic systems [15], y(k) can
be rewritten as

y(k) = ol ®86, (10)

where ¢} = [u(k)...u(k—v+1)z(k—v)...2(k—v—r+1)]
is the regression vector and 6 = [pg...p,_1qo--.qr—1]7 is
the parameter vector which will be estimated.

Therefore, for an observation of N input and output transi-
tion firings, one gets

V=0®0,

]T

Y

where ® = [pg...pn]" is the regression matrix and ¥ =
[y(0)...y(N)]T is the observed output vector.

In order to obtain an estimate of the parameter #, an error
criterion is defined as

7(0) = Py(k) - 5(k)).

k

(12)

Where the output of estimated model (y(k) = & ® 0) is
such that y(k) < y(k). This criterion means that the best
model must be as close as possible but less than the observed
output, i.e., the greatest 6 such that P ® § <Y.

As a first step, variable z will be assumed known. Hence
an optimum estimator for the criterion J(#) can be obtained
by using Residuation Theory,

= P 0=ary (13)
PRO=Y
Explicitly, the solution to this equation is given by
Bo= Noulb—ikyk), e v=1
G = N—oz(k—v—J)ky(k), jel0r—1].

Remark 5: p; > p; and q; > g; since 0 is the greatest
solution of ® ® 6 <X Y. ConAsequently, 0 is a solution to
equation (11), i.e., Y = ® ® 0. This results implies that p;
and ¢; satisfies equation (9) for £ = 1,...,N. By setting
u(k) = +oo for k > N (This means that no events occur
after £ > N), the equation (9) is satisfied for all £ € Z. So
one can also apply the v transform, which leads to

y(y) = p(v)u(y) @ g(v)v 2 (7). (15)

Proposition 1: If the parameter s is known and the input
signal u(+y) is sufficiently “rich” (ie., e < u(y) < %) then
the above estimators will converge to the actual parameters,
precisely p(y) = p(y) and g(7) = q(7).

Proof:
h h
Ife = u(r) = 40 then h(z) = y(7) = h(y) 22

h(y)(see table I, equation (2) ). If s is assumed to be known,
z is also known. Moreover the proposed estimator always gives
pi > p; and q; > q;, however p; = /\iv:o u(k — 1) }h(k) <
u(0){h(i) < h(i) = p; (i < v) because u(0) > 0. The same
reasoning can be applied to g;.



| |

However, since variable z is unknown, one must estimate

it. If an estimate of s (denoted ) is available, an estimate of

z (denoted 2) is obtained iteratively, following equation (9),
by

2(k) = 5@ 2k — ) @ u(k). (16)

To estimate the period duration, s, one must remember that
the estimates given in equation (14) must satisfy the equation
(15) as explained in remark (5). Introducing a new variable
w(7y), this equation can be rewritten as

a7 (s7") u()

{ wy) = q
y(v) = pMuly) @ w(y).
A lower bound for w(7) is given by the dual residuation:

amn

w(Y)ing = y(v) & P(Y)u(y). (18)

Therefore one has the following inequalities:

w(Y)ing S w(y) = (s7") W )ins = (s77) w(7) 2 y(y).
(19
Hence, (s7")* = w(7)ins Ry(7). Then in order to estimate
s one must study the set

S={seN|(sy")" =<ec(y)} (20)
where ¢(7) = w(v)ins {y(7)-
Remark 6: As w(¥)iny = y(y) then c¢(y) > e which
implies that S is nonempty (s = 0 € S).
Expanding the inequality (sy")* < ¢(), one has
0 =< ¢(0)
(s9)" = el
D (21)
(") = clir)(y")’

As result, s < @ , Vi > 1, an upper bound for s in N

is sup = . OOL@J, where |z] is the integer part of .

,,,,,

(sup'yr)*

\
i B

(22)
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Finally, the conclusion is that s,,, is the greatest element of
S. Our proposition is to take 5§ = s, as an estimator for s.
Some properties of this estimator are given below.

Lemma 1: If wins(7y) # € then val(wins (7)) > v.

Proof:

val(wing (7)) = val{y(y) e p()u(v)} = val{(w(y) ®
p(u(y)) e pu()} = wvalfw(y) e pMu(v)} =
val(w(y)) = v (by formula (5), table I, and property 2).

Proposition 2: If e < u(y) = L) and Wins(y) # € then

~ h(v)
S=s.
Proof: s =

By lemma 1, v,, = bal(wmf(v)) > v. As e % u(y) =2
=y =

e h(7) then win¢(vy) = h(vy) (by us-

ing property 1 and observing remark 4). Therefore ¢(r) =
00 h(r+j h(r+v.,

[0 (V)ing YRON](r) = NjZp s < lbed — p(r +

= Wing(Vw)

V) — h(vy) = s, because h(r + k) — h(k) = s when k > v.
Finally, 5 = _7r1nin L@j < c¢(r) =s. As 5> s (since 5 is

i:rlr}ir{mL@J and ¢(v) = w(y)ins jy(7)-

an upper bound for s) the conclusion is that s = s.
|
Remark 7: If w;nr(7y) = € then y(y) = p(V)u(y), s=T
and ¢ = ¢. This means that p(~y) is a good model for the TEG.
The following algorithm summarizes the identification
method.
Algorithm
begin
Collect N pairs of input and output dates (u(k),y(k));
Pi = Nn_oulk —i)xy(k) i=0,...,v—1;
for k=0,..,N
(B u) (k) = By (s @ ulk —i));
wing (k) = Do y(i) = Blr)u()()}:
end
(k) = NooF wing (i) Ry (k + i) for k=0, ..., N;

= I?inLLﬂJ where L = ¥ ;

VI. ILLUSTRATIVE EXAMPLE
Consider the TEG model depicted in the figure 1, where
the structural parameters are v = 2 and r = 1. For an input
firing sequence given by v = [0 5 9 15 19 21] the output firing
sequence is y = [17 22 26 32 37 43]. The figure 2 shows those
sequences and the behavior in dashed lines when the input is

un () = h(7) }h(7).

45

40t

y(k)

351

301

251

Time units

20+

| —

I I I
0 1 2 3 4 5 6

u(k)

Number of firings

Fig. 2. Example of Timed Event Graph (TEG)

The application to the proposed method to the observed
date gives P(0) = 17, P(1) = 21, Q(0) = 25 and s = 6, that



is, the method converges to actual parameters of the system.
One must note that the input condition does not satisfy the
requirements of proposition 2 (i.e. w 2 wuy). This example
shows that the proposition is sufficient for the convergence
but not necessary.

VII. CONCLUSION

The paper presents a parametric method for the identifica-
tion of SISO TEG. The method is not restricted to the case
of impulse input and it can be used in other input conditions.
Some theoretical results are obtained as the convergence to
the actual parameters in case of “rich” input signal.
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