SMT-Based and Fixed-Point Approaches for
State Estimation in Max-Plus Linear Systems

Guilherme Espindola-Winck!™f, Laurent Hardouin?' and
Mehdi Lhommeau?T

" Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, Lille,
F-59000, France.
2Univ. Angers, LARIS, SFR MATHSTIC, Angers, F-49000, France.

*Corresponding author(s). E-mail(s):
guilherme.espindola@centralelille.fr;
Contributing authors: laurent.hardouin@univ-angers.fr;
mehdi.lhommeau@univ-angers.fr;

TThese authors contributed equally to this work.

Abstract

This work builds on the seminal paper [1] and evaluates an existing method
against a new approach for state estimation in Max-Plus Linear systems with
bounded uncertainties. Traditional stochastic filtering is inapplicable to this sys-
tem class, even though the posterior probability density function (PDF) can
be computed. Previous research has shown a limited scalability of the disjunc-
tive approach using difference-bound matrices. To address this, we investigate
an alternative method recently explored in [2, 3], employing Satisfiability Mod-
ulo Theory (SMT) techniques, despite their NP-hard nature. The main novelty
of this work is the proposal of a concise method based on fixed-point iteration
in max-plus algebra, which is known to be a pseudo-polynomial time algorithm.
To compare both approaches, a representative autonomous system is used in the
paper to illustrate the basic computations. The efficiency of both approaches is
compared through numerical experiments.

Keywords: Max-Plus Linear Systems, State-Estimation, Satisfiability Modulo
Theories, Fixed point algorithm



1 Introduction

Max-plus algebra theory is suitable in analyzing Discrete Event Systems (DES) with
delay and synchronization. These phenomena are found in production systems, com-
puting networks, and transportation systems (see [4, 5] for an overview). This theory
employs an algebraic structure known as idempotent semiring, enabling the descrip-
tion of these systems as linear models. Thus, Max-Plus Linear (MPL) systems can
be defined through recursive state-space equations, where states represent event-
times (time instants) within the system, forming a timetable trajectory. Residuation
theory [6] further aids in addressing crucial issues in control theory: controllability,
observability, stabilization, and feedback synthesis (see [7]).

In problems involving model parameter uncertainties, deterministic considerations
are common, disregarding probabilistic aspects. However, in filtering problems affected
by random processes influencing model parameters, addressing probabilistic aspects
becomes crucial. Stochastic Max-Plus Linear (sMPL) systems handle this by defining
MPL systems with matrices containing random variable entries. State-estimation in
the Bayesian approach involves computing the posterior probability density function
(PDF) using available measurements. While the Kalman filter and its extensions are
practical for filtering with additive Gaussian noise, they are unsuitable for MPL sys-
tems due to their nonlinear discontinuities (see [8, 9] for details). For such systems, we
can apply other stochastic filtering strategies as the Sequential Monte-Carlo (SMC)
method, also known as Particle Filter but with numerical difficulties related to the
generation of the particles (see [10, 11]). This work focuses on systems where uncertain
parameters can vary within known intervals, namely uncertain MPL (uMPL) systems,
i.e., SMPL systems with bounded random variables.

In this work, we study an indirect computation of the support of the posterior
PDF for uMPL systems. This computation is referred to as set-estimation. In [12], the
authors use the works of [13] on difference-bound matrices, in [14] they use max-plus
polyhedra [15] and in [16] they use residuation theory [6].

Contribution: we propose the concise approach using a fixed-point algorithm,
known to be with pseudo-polynomial complexity, and we compare it with the disjunc-
tive Satisfiability Modulo Theory (SMT) approach of [2, 3], known to be NP-hard,
using Z3 solver of [17] to estimate (if it is feasible) the state of uMPL systems. Through-
out the paper, a small-sized autonomous system is explored to demonstrate the basic
computations of each approach.

The paper is organized as follows: Section 2 recalls the basic notions of MPL
systems. Section 3 presents the indirect computation of the set of all states that can
be reached from a previous state through the transition model and that can lead to
the measurement output through the measurement function by using the disjunctive
and concise approaches. Section 4 presents the application: proving the feasibility
guarantee of set-estimation. Numerical simulations are performed to compare the two
approaches. Finally, Section 5 concludes the work and presents some ideas for future
works.



2 Preliminaries

2.1 Max-plus algebra

A set D forms a dioid or idempotent semiring if it satisfies certain algebraic properties.
These properties include the associativity, commutativity and idempotency of the sum
@, as well as the associativity and left and right distributivity of the product ® w.r.t
@®. Dioid D contains a null element, €, such that Ya € D,a & e = a and an identity
element e, such that Va € D,a ® e = ¢ ® a = a. A partial order relation

ar-b <<= a=adb

is defined for elements a,b € D. This order relation makes D to be a partially ordered
set such that each pair of elements a, b admits the lowest upper bound sup{a, b} which
coincides with a @ b. Hence, a dioid is a sup-semilattice. Furthermore, the sum and
the left and right products preserve this relation, i.e., if a = b then a ® ¢ = b &P ¢,
a®Rcr=b®cand c®a > c®b. A dioid D is complete if it is closed for infinite sums
and the left and right distributivity of the product extend to infinite sums. In practice,
for D to be complete, the top element, denoted T, exists and is equal to the sum of
all elements of D, ie., T = @, ,cpa, such that Ya € D,a® T = T. This element
respects the absorbing rule, i.e., e ® T = ¢. For a complete dioid, an inner operation
representing the lower bound of the operands, denoted, & automatically exists. The
partial order relation can be expressed as

arb << a=a®b < b=aSb

where a © b = inf{a, b} is the greatest lower bound of a, b.

The max-plus algebra, denoted as Rp,ax, is a set that includes R along with the
elements ¢ = —oo, T = 400 and e = 0, i.e., RU {—00,+00}, with the two binary
operations a @ b := max{a,b} and a ® b := a + b. This algebra is an example of a
complete dioid. This dioid is linearly ordered w.r.t. @& and the order > in this set
coincides with the usual linear order >. Furthermore, in this dioid, the operation a ©b
coincides with min{a, b}.

The two binary operations in Rp,.x are naturally extended to matrices. Given
A, BeRlxP C e RPXL and a € Ryax, we have (A® B);j = (ai; © bsj), (AR C)i; =
(@i:l a;p Q ckj) and (o ® A)ij = «a ® a;5. The partial order relation is also applied
to matrices as follows

A>B < A=A®B

for A, B € R2XP where = refers to the linear order > on R"*P,

max?

Given k € Nand A € RVX? A9 = A® ... ® A (k-fold). The matrix A% is the
n-dimensional identity matrix I,,, which is a special kind of the max-plus version of
diagonal matrices' diagg, () with e on the main diagonal. The absorbing matrix &, xm,
is defined as the (n x m)-dimensional matrix whose entries are €. The all-e matrix

FE, wm follows the same idea, but with its entries equal to e. The Kleene star of a

LA max-plus diagonal matrix has its entries outside the main diagonal equal to &



matrix A is defined as A* = (®keN A®k). If A such that a;; = € for all ¢ < j with

i,j €{1,...,n}, then A%k =&, ,, for k > n, hence A* = Z;é A%k,
A system of linear inequalities AQz < y, where A € R’X™", x € R}, andy € R,

admits the greatest solution & = Af(y) given by the following residuation formula
(A¥(y))i = f]fg{l (—aji +y;),

which is equivalent to —(AT ® (—y)). Obviously, if A ® r = y admits a solution, then
% is the greatest solution and A ® & = y holds®. This result is also applied to find the
greatest solution of the two-sided equation A ® x = B ® x where A, B € RI’X" (see
[19] for more details). The method to find this solution, initially shown to terminate
for integer-valued matrices in [20] and later extended to real-valued matrices in [21],
is presented in the sequel.

The following equivalences hold

ARz =Bz — ARQz<BQzand BRzr<AQz
— < A*(B®z)and x < B*(A® )
— < A*(Bez)oB*(A® )
— r=120A*B®z)oB*(A®x).

Hence, the greatest fixed-point of
l(z) = 20 A*(B® z)oB (A ® z)

is the greatest solution of A®x = B ® x. Moreover, since A, A*, B and B! are clearly
isotone maps® then II(x) is also isotone. Thus, to solve this two-sided equation, it
suffices to iterate the sequence

T :z[k+ 1) = I(x[k])

on an initial z[k], namely 2[0], until convergence x[k+1] = x[k] is reached for a specific
k € N (fixed-point iteration). As a consequence, if a finite (non-¢ entries only) greatest
solution z[k] of A ® = B ® x exists, then 7 is able to find it in a finite number of
steps such that z[k] < x[0]. This computation is known to have a pseudo-polynomial
complexity, i.e., the convergence rate is polynomial according to the distance between
z[k] and z[0]. Conditions are also presented in [19] to ensure that this procedure
converges in finite time because Z is likely to run infinitely since it is possible that one
or more of the entries of z[k] decrease indefinitely to e. Nevertheless, the algorithm
is efficient (convergence with finite time and with a low number of steps) to handle
problems in this work.

2In [18], to check equality A ® = = y, the following test is considered, with a complexity O(nm), AQz =
y = Ui, argming ey m}(—aji+yj)={1,4.4,7n}.

3A* and B* are isotone maps but not necessarily linear. Hence, in general Au(x) ® Aﬁ(y) # A”(gc D y) for
z,y € R

max*



2.2 Intervals over max-plus algebra

Interval analysis in the max-plus algebra was originally presented in [22]. Since then,
many authors have been interested in the use of intervals within this algebraic frame-
work [23]. A (closed) interval [z] in max-plus algebra is a subset of Ry of the
form
[z] = [2,7] = {2 € Rnax |z <2 <7}

with < Z. We denote by IR,ax the set of intervals of Ry,ax. An interval [z] C [y] if
and only if y < z < T < 7. Similarly, [z] = [y] if and only if x = y and T =7. A value
& € Rumax can be represented by the degenerated interval [z, x]. The @ and ® operations
exist for intervals: [2,Z] ® [y, 7] = [z Dy, Z @ Y| and [z, 7] ® [y,7] = [z Ry, T R T

An interval matrix in max-plus algebra is a matrix whose elements are intervals.
The operations @ and ® can be extended to interval matrices. Given the interval
matrices [A] = [A, 4], [B] = [B, B] and [C] = [C, C] of dimensions (n x p), (n x p)
and (p x g), then ([A] @ [B]);; = [ai;] ® [bi;] and ([A] ® [C]);; = D ([aik] @ [cx;])-
Moreover, respectively the product of o € Ryax by [A] is given by a ® [4] = [a ®
A,a ® A] and the k-th power of [A4] is given by [A]®F = [A®k,Z®k]. The Kleene
star operation is also defined for intervals matrices, mathematically for [A] we have

[A]* = (@keN[A]®k)~

2.3 Synchonization and Delay in Discrete Event Systems:
Max-plus linear systems

Discrete Event Systems (DES) involve synchronization and concurrence. Synchroniza-
tion in manufacturing occurs when multiple resources are needed simultaneously, while
concurrence involves making choices among available options within the same time-
frame. The max operator is crucial in synchronization modeling for defining temporal
alignment.

Synchronization phenomena in Discrete Event Systems (DES) are represented
using timed models, focusing on sequences of time instants and event occurrences,
whereas logical models deal with possible event sequences and associated conditions.

One of the existing formalisms for modeling timed systems is to consider lin-
ear recursive state-space equations within the algebraic framework of Ry,.x. This
algebraic structure is well-suited to represent the behavior of synchronization (@)
and timing information* (®). By employing appropriate algebraic manipulation and
transformation, one obtains the following autonomous® Max-Plus Linear (MPL)
systems:

) x(k) = Ag@x(k) © Ai@x(k — 1),
z(k) = Cox(k)
where Ag, A1 € RX? and C € REX". Each event is labeled with an index i €
{1,...,n}, and x;(k) € Ruyax represents the time instant of the k-th occurrence of
event i. As it can be noticed, z(k) = (z1(k),...,x,(k))T appears in both sides of the

4In manufacturing, the timing information may represent the processing time of a task (in practice, it is
a delay).

5 Any nonautonomous max-plus DES can be transformed into an augmented autonomous one [4, Sec.
2.5] and in this work we consider, without loss of generality, autonomous systems only.



above recursive equation. The transition model and the measurement function are
represented by the pair (Ag, A1) and C, respectively. The transition model admits an
alternative form, given by x(k) = A®z(k — 1) with A = A§®A; such that the orbit
of trajectory of (k) in this form is equal to the one in S (see [4] for details).

In this paper, we assume the system S is uncertain, i.e., the matrices have some
entries which are random variables belonging to intervals. Thus, an uncertain MPL
(uMPL) system is defined as
S - z(k) = Ao(k)@z(k) ® A1 (k)®@z(k — 1), (1)
“ O (k)@ (k)

N
—~

o~
~

Il

where Ag(k) € [Ao] = [Ay, Ao] € IRLLY, Ai(k) € [A1] = [4;, 4] € IR, and

max ? max

C(k) € [C] = [C,C] € IREX" are nondeterministic matrices. Similarly, the transition

max

model of uMPL systems also admits an alternative form representation by considering
z(k) = A(k)®z(k — 1) with A(k) = A§(k)®@A1(k) where Ag(k) € [Ao] and A (k) €
[A1].

Remark 1. [t is important to note that the equation z(k) = A(k)®z(k — 1), where
A(k) € [Ag]*®[A1], over-approximates the reachable space of S, concerning a given
state x(k — 1). In other words, this form is conservative since we can compute the
bounds of A(k) which are equal to those of A(k). However, it is likely that some values
of A(k) # A(k) = A§(k)®A; (k).

Example 1. Consider an example of an autonomous uMPL system as given by (1),

with
Ap(k) € Ag = <[1f2] i) ,Ar(k) € A = (E)‘L: (73} EZED .

It is possible to obtain x(1) = (5,9)T using the over-approzimation of (1), i.e., x(k) =
A(k)@z(k —1). In details,

A1) = (;l ?) € [A3)8[4y] = ([5’8] {

yield z(1) = A(1)®x(0) = (5,9)T However, this state is unfeasible if one considers the
exact form of (1) xz(k) = Ap(k)@z(k) ® A1 (k)®z(k — 1), i.e.,

) i
O and z(0) = (1,¢€)

#(0)=(1,¢)

1'1(1) S [4,6}@261(0) ) [3,5]@1‘2(0) 5 € [5, 7],

zl(l):5g):(l,e) 9

x2(2) € [1,2]®z:1(1) ® ([3, 7|®z1(0) @ [4, 5]®@x2(0)) ¢ [5,8].

2.4 Max-plus systems using disjunctive approach

In [13], the authors represent max-plus systems y = M ® z, with y € RZ,  and
z € R« using disjunctions with operations in R. If the above systems are bounded,
e, M@x <y < M@z with M, M € RIX" then we obtain the following inequalities

forallie {1,...,q}:

max(m;; + T1,. .., My, +2pn) <y < 21 —y; < —my; and ... and z, —y; < —m;,



and
yi < max (M1 + T1,...,Mip +Tp) <= Yi — &1 <M1 OF ... OF Y — Ty < M,

ie,3dg; € {1,...,n}forallic {1,...,q}such that max ey, . ) (Mi+2x;) is equivalent
to myg, + xy,.
In details, M @ x <y <= z < M”(y), and

y< Moz < /\ (\/(yi—fcjﬁmij)>,

i=1 \j=1

with A and V playing the role of the logic operators AND and OR, respectively. Hence,
M ® x < y is represented concisely, which is not the case for y < M ® x since it is
represented by the combination of n? elements.

These inequalities can be represented by Difference-Bound Matrices (DBMs) [24],
where the entries are the upper bounds of the difference-bound constraints above, i.e,
—m,,; representing x; —y; < —m,; and m;; representing y; — x; < ;.

DBMs have some interesting operations such as intersection and union (element-
wise min and max, respectively), canonical form (cubic complexity using Floyd-
Warshall algorithm) and orthogonal projection. The interested reader is invited to see
[13] for more details.

Example 2. Consider the following bounded maz-plus system y = M ® x where

M e [M,M] = ([ } EED

4,
3

6
7
Then, M ® x <y is rewritten as
r1—y1 < —4Az2 —y1 S 3Ax1 — Y2 A2 —y2 < —4,
and y < M ® x is rewritten for the combination (g1, g2) = (1,1) € {1,2}2, as
Yy —x1 <6AYy —x1 < T.

The following DBM represents the above system for one of 2% possible combinations:

0 y1 Y2 T1 X9

0/ 0 +oo +oo 400 +00

yi1| oo 0 4oo 6 +o0

DOY =y | 400 400 0 7 +o0
z1| +oo =4 -3 0 +oo

ro \t+oo =3 —4 400 0

SEach row of y < M ®x in the range {1, ..., q} is represented by y; —Mig, < xg,, where g; € {1,...,n},
hence (g1,92,---,9¢) € {1,...,n}%.



The artificial variable 0 is equal to 0 and is used to express an upper bound for a
variable, using difference-bound constraints. For instance, x < ¢ can be expressed as
x—0 < ¢. Moreover, +00 means that the difference between two variables is unbounded.

3 Support of the posterior PDF

In stochastic filtering, the relevant information is obtained from the posterior PDF.
In a set-guaranteed estimation, one is interested in computing its support. Following
[12], this support is the set of all possible states z(k) that can be reached from the
previous state z(k — 1) through the transition model and are consistent with the
observed measurement z(k) through the measurement function. Mathematically, the
image of x(k — 1) w.r.t. Ag(k) € [Ao] and Ay (k) € [A1] is given by

Impagpa{z(k = 1} = {Agedi@e(k — 1) € Ry, [ Ao € [Ao], A € [A1]}, - (2)

i.e., the set of all states z(k) that can be reached from z(k — 1) through the transition
model”. We also show how to characterize the inverse image of z(k) w.r.t. C(k) € [C],
formally

Im[_cl]{z(k)} ={zeR} . |3C € [C],Coz = z(k)}, (3)
i.e., the set of all z(k) that can lead to z(k) through the measurement function.
Straightforwardly, the support of the posterior PDF is defined as

Xy, = Tmag) 14, {2(k = 1)} NImgg {z(k)} (4)

when z(k —1) is considered to be the prior knowledge of x. In [11, 12] the authors use
difference-bounds matrices (see [25] for an overview), which represent zones, to com-
pute exactly Xj. These disjunctive approaches lack in scalability, since it is necessary
to consider an exponential number of combinations for encoding the upper bounds
of the transition model and measurement functions (see Subsection 2.4). For further
details, please refer to these works.

3.1 A symbolic disjunctive approach

Formal methods have significantly benefited from advancements in solving Boolean
satisfiability (SAT) problems. One notable work that exemplifies this progress is the
supervisory control of DES [26]. In various applications, multiple problems involve
determining the satisfiability of formulas in more expressive logics like first-order logic
w.r.t. background theories. This concept is known as Satisfiability Modulo Theories
(SMT) (see [27, 28] for an overview). In SMT, one can verify, for example, if there
exist (or for all) certain symbolic variables x and y in R that satisfy a given symbolic
formula F'. For instance,

F:x>0ANFy<2)V(Ex—-y<-1),

7An over-approximation for Impagy,1a,1{z(k — 1)} is simply computed as [Ima,) (a,){z(k — 1)}] =
{A®z(k —1) € R:;ax | A€ [A]*®[A1]}, ie., Im[AO],[Al]{x(k -1} C [Im[Ao],[Al]{x(k — 1)}]. Please refer
to Remark 1.



is tested for satisfiability w.r.t. a set®. If a solution exists, it returns values for x and
y that make each asserted constraint true.
Remark 2. Difference-bound constraints can be represented as Boolean combinations
of atoms x; — x; < ¢, which form difference-logic formulas. Thus, the SMT approach
can incorporate these constraints [12, 13], as briefly presented in Subsection 2.J.

In [2, 3], max-plus systems have been expressed as SMT formulas. Briefly, we have
y = M ® z with m;; € Rpax for (4,7) € {1,...,¢} x {1,...,n}. It follows from
Subsection 2.4 that for each ¢ € {1,...,q} there exists (at least) a g; € {1,...,n} such
that

Vie{l,....n}\{gi} vi = mug, + x4, = mi; + ;.

Hence, the aforementioned result is equivalent to evaluate the following SMT formula

F; - /\Yi_mijZXj A \/Yi_mij:Xj ;
JE€T: JE€ET;
where y;, x;,m;; are symbolic variables and J; C {1,...,n} represents the set of indices

j such that m;; # €. If each m;; is bounded, then it suffices to add the following
symbolic formula

By : | N (miy > my) A (miyy <)
JE€ET:
to Fj, ie., F; A B;. Hence, AL, Fi A B; symbolically represents y = M ® x with
M<M<M.

For systems S, of (1) let us define for each row of the transition model the follow-
ing formula:

Rowf’k_1 : Conjf’k_1 A Disjf’k_l A Bndf’k_1

with

Congtk=1 . (/\ ng) _ Xl(lc) > aoz(-zk)> A /\ ng) _ ngfl) > alz(-f)
leg; JEFi

Disjf’kfl : <\/ ng) — xgk) = aOZ(.lk)> V \/ ng) — xgk_l) = alz(-j)
leg; JEFi

and

kk—1
Bnd;” :

< /\ (aoz(lk) 2 QOu) A (aO'Elk) < aoil)) A /\ (alz(;C) 2 Qlij) A (algf) < El'ij)

1eg; JEF;

8The formula F has a solution if x,y € R but no solution if x,y € Z.



where ng)7 . ,x%k) and algj),aol(.lk) are symbolic variables for each k and F;,G; C
{1,...,n} are, respectively, sets of indices of the i-th rows of A;(k), Ao(k) that are
different € (i.e., are finite). Hence, Rowf’k_1 is used to represent symbolically the
transition model of (1) as the following formula:

n
pkk-1 . /\ Rowf’kfl.
i=1

The following formula represents symbolically the measurement function of (1):

P
gk . /\ Of’k
i=1

with

U?’k : /\ ng) — x§-k) > CE;-C) A \/ ng) — xg-k) = cl(-;-c)

JEH; JEH;
k k) _ _
AOA C z e <@g
JEH

where ng)’ . ,z,(gk) and cl(-f) are symbolic variables and H; C {1,...,n} with the

same meaning as for F; but for C(k).
Remark 3. For our purposes, it is considered that xgkfl), e ,xg,,kfl) and ng), ey zgg)
are known and thus replaced with x1(k —1),...,x,(k — 1) and z1(k), ..., zp(k).

Symbolically, Xj, of (4) is represented by the following formula:

Xk . pRF-L A QRF,

Example 3. Consider S, of (1) with Ag(k) € [Ag] = ([ c 6), Ai(k) € [A1] =

1,2] € h
G;l:% Ez: ED and C(k) € ([e,1] e)with x(0) = (1,€)T, z(1) = (6,7)7, C(1) = (e ¢)

implying z(1) = 6. In the Figure 1, we depict the computations of Impa,)1a,1{2(0)} of
(2) and Im[_cl} {z(1) = C(1)®x(1)} of (3), such that Xy of (4) is the intersection of both

and represents the set of all possible x(1) that respect both dynamics and measurement.
The SMT formula D** below represents symbolically all x(1) € Imia,),1a,1{(0)},

pho .
(Y 1> atf) A & =0 > at P A [V — 1= a1f)) v (x{Y - 0= a1(y)]

M@t =) A (a1l <6) A (el = 3) A (alh) <5)]}
A

10



1 1 1 1 1 1 1
{1 ==tV > a0f)) A () — 1> atf)) A (x5 — 0> a1y)]
1 1 1 1 1 1 1
A =3 =0 v (Y —1 = a1 v (" - 0 = a1gy)
A (@05 > 1) A (a0f) < 2) A (atly > 3) A (alf) <7) A (a1ly > 4) A (atly) <5)])

Following the same procedure, the SMT formula 0% below represents symbolically all
z(1) € Im[_cl]{z(l)},

ot ¢ (6 x> cIA6 — %Y = cf)A(C) = 0) A (el < 1),
such that it is clear that (6 — xgl) > Cgll))/\(f; - x(ll) = cgll)) is equivalent to (6 — x(ll) =
cgll)) in this example.
We can easily verify that Xt : DLC AOLY that symbolically represents Xy is SAT, thus
Xy # 0, by using Z3 solver [17] with the following realizations Xgl) = 5.5,Xé1) =1,
aOéll) = 1,a1§11) = 4.57a1§12) = 3,a1§11) = 6, a1g12) = 4, cgll) = 0.5 which are
straightforwardly verified by

a1 o4 @
x<1>=( ‘0 ) ®m<1>e>< o 112>®x<o>

a0y, € algll) alélz)

= (7)-(9=(7)= (VD)= ()
1) = () ) @x() = 6= (05 2) © (5%5

that hold true.

3.2 A concise approach

The previous approach uses the encoding of max-plus systems in standard algebra to
take advantage of a powerful method for affine systems. For this reason, we derive in
the sequel an equivalent and concise method based exclusively on max-plus algebra.
First, let us write the transition model of (1), ie., z(k) = Ag(k)®z(k) ©
Al(k)®.’£(l€ — ].) with Ao(k‘) € [AO’ A()] and Al(k) S [AlaAl] as
Aywz(k) ® Ayez(k — 1) < z(k) < Agez(k) ® Ayez(k — 1),
then define z = z(k), ( = A, ®x(k — 1) and { = A;@z(k — 1) thus

Ay@z ® ¢ <z and Ag@z @ ( > w.

11



Im } {=(1) = C(1) ® z(1)}

Im,)14,{2(0)}

Hp)

x(0)

N |

708 9 10

1

Fig. 1: Exact direct image of z(0) w.r.t. Ap(1) and A;(1) and inverse image of z(1)
w.r.t. C(1) of Example 3.

Now, taking advantage of the partial order relation on this algebraic structure, the
two-sided equation below is obtained

pc.0e (1) =v@e (1) 6

with LD((,Q) = (Ejﬁﬁi g) and UD(C) = (jo 5”51) cuch that all = €

Impy,),1a,{z(k — 1)} of (2) satisfy the above equation. For the measurement func-
tion of (1) a similar procedure exists and was originally derived in [14]. Briefly,
Cox(k) < z(k) < Cz(k) is written as

LO® (“Z) =U0® (’é) (6)

12



. . Q z R g[}x”l, z _ _
with LO = (C 2)’ Uo = < o prl)7 x = x(k) and z = z(k), such that all

x € Ima{z(k)} of (3) satisfy this two-sided equation.

Tt is evident that all x(k) € Xk, as defined in (4), satisfy both (5) and (6) simulta-
neously. By vertically concatenating the associated matrices, we obtain a single matrix
equation that represents all z(k) € Xj.

Example 4. Let us recall Example 3. We aim at verifying if there exists a (1)
respecting (4), i.e., if X1 # 0. This is done by using (5) and (6). Thus,

eebd ece

led T cec x ecb x ceb T
ee7 ®<e) ce’ ®(e> and<1€6)®(e><155>®(e>'
2e8 2¢8

Hence, by vertically concatenating both two-sided equations, we can therefore apply the
fized point iteration technique presented in Subsection 2.1, in order to verify if X1 # ()
and compute the greatest x(1) satisfying (5) and (6). Starting with (100,100, €)T, the
greatest solution (6,8,€)T is reached in two steps. The sequence of iterations until
convergence is {(100,100,e)T7,(6,100,¢e)T, (6,8,e)T}. Thus, the greatest x(1) € Xy
coincides with (6,8)T, which is the upper corner of the intersection region between
Imyag),14,0{2(0)} of (2) and Im[_cl]{z(l) =C()®xz(1)} of (3), as depicted in Figure 1.

4 Feasibility guarantees for set-estimation

In a set-estimation scheme, we aim at computing a value for z(k) within X} of (4).
Clearly (4) cannot be used, since z(k — 1) is unknown. Then, an estimate Z(k) is
computed such that

#(k) € & = Tmpag)a {2 (k - 1)} NI {z(k)}

where &(k—1) is the estimate of z(k) at k— 1. Of course, the success of this approach is
related to the distance between x(k) and (k). An estimate &(k) € Impq.),4,{Z(k—1)}
may be not in Im[}l] {z(k) = C(k)®x(k)} since we cannot guarantee that x(k — 1) is
equal to #(k — 1) and thus /'?k may be empty, as illustrated in Figure 2. In this case,
Z(k) is said to be an unfeasible estimation. Based on Section 3, we derive a disjunctive
and a concise tests to verify feasibility of Z(k) at each k and, in the affirmative case,
return an estimate.

4.1 Symbolic disjunctive method

In [3], the authors presented a numerical benchmark showing the efficiency of the
SMT-based approach for reachability problems.
In a procedural way, consider the symbolic formula that represents X% of (4). Let

us replace ng71)7 e 7x(k*l) with 2,(k —1),...,2,(k — 1), hence defining X¥I* as the

13



T2 T2

Im;; {2(1) = C(1) ® z(1)}

Im[Ao],[Al] {i(o)}

T T

(a) Hlustration of the nonempty case. (b) Hlustration of the empty case.

Fig. 2: Illustrative examples: (a) a nonempty case where Impy) 4,1{#(0)} and
Im[_cl} {2(1)} intersect, and (b) an empty case where they are disjoint.

prediction form}ﬂa. In the same way, we replace zgk), e ,zék) with z1(k),..., zp(k),
hence defining Xy, as the likelihood formula. Thus

xklk . xklk—1 /\Xklk

represents the correction formula, i.e., Xy Using Z3 solver of [17], we are able to verify
if X¥I* is SAT and return a solution that makes each asserted constraint true, defining
then a value for x(k), i.e., an arbitrary estimate &(k). As part of a filtering algorithm,
a recursion is defined, i.e., #(k — 1) + Z(k) and the solver is called once again. If
the solver returns UNSAT for some k, then #(k) is unfeasible and we stop the filtering
procedure.

4.2 Concise fixed-point method

In a procedural way, let us consider (5) with

(=A,®&(k—1) and ( = A;02(k — 1),

xr X
X kk—1® (e> = Xy k[k—1® <e>

as the prediction equation, with X y,—1 = LD((, (), Xukk—1 = UD(C) (see (5)).
In the same way, let us consider (6) with z = z(k), hence defining

d xr nd X
Xr.kk® (€> = Xy p|k® <e>

14
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as the likelihood equation with XLJM =LO, )N(U)k“f =UO (see (6)). Thus,

(i) (- ()= ()

Xr.k|k e Xuk|k e

represents the correction equation, i.e., Xy Furthermore, by using the fixed-point
iteration algorithm presented in Subsection 2.1, we are able to verify if the previous
two-sided equation has solution and compute’ the greatest estimate #(k) € Xp. As
part of a filtering algorithm, a recursion is defined, i.e., &(k— 1) < Z(k) and we repeat

the procedure. If no solution exists for some k, then & (k) is unfeasible and we stop the
filtering procedure.

4.3 Numerical simulations

For the numerical simulation’s comparison'?, let us consider (1) with Ag(k) in strictly
lower form, i.e., ao,;(k) # ¢ for all i < j, i,5 € {1,...,n} and A;(k),C(k) be
full max-plus matrices, i.e., ai,;(k) # ¢ for all 4,5 € {1,...,n} and c;(k) # €
for all ¢ € {1,...,p} and j € {1,...,n}. Every element of these matrices are ran-
domly chosen between the arbitrary bounds 0 and 10 at each k, i.e., the realizations
Ao(k), A1(k),C(k). We suppose that z(0) = (e,...,e)T and then we obtain the
following sequences

{z(k) = Ao(k)@x(k) © Ar(k)@z(k = 1)}ren., and {2(k) = C(k)@z(k)}ren.,-

We compare in the sequel the previous approaches to compute feasible estimate & (k)
for z(k) at each k. If no feasible estimate can be guaranteed, then we stop the
simulation.

Table 1 shows the minimum, average and maximum execution times for each call
of the estimators for 20 experiments of the disjunctive method T*¥™*(s) and the
concise method 7% (s) for k € {1,..., N}, where N is the event-horizon. We analyze
simulations that are not stopped, i.e., experiments that do not violate the feasibility
guarantee of the set-estimation using either approach. Furthermore, we analyze the
error-estimation of both approaches. We compute the mean-absolute-percentage-error
(MAPE) between z;(k) and &;(k) for i € {1,...,n}, precisely

N

error;(x;(k), z;(k)) = 1(;(\)7% Z
k=1

),

,1e{l,...,n}

k

9 As mentioned in Subsection 2.1, it is possible that no finite solution exists for the two-sided equations
(the trivial infinite solution with an all-e vector is useless). In this case, the fixed-point algorithm does not
converge in finite time, and we define the solution as unfeasible.

9Running Python with C++ wrappers for Z3 SMT solver ([17]) and Armadillo ([29]) for fast (sparse)
matrix operations in max-plus algebra on a Dell Precision 5530 - 2.6 GHz Intel(R) Core(TM) i7 processor.

15



for all i € {1,...,n} and then we take the average of the resulting vector, i.e.,
1 n
erToTaug = — Zl error;(z;(k), Z;(k)).
i

We show the minimum, average and maximum values of errori¥* (%), erroryys (%)
for each experiment out of 20. As it can be noted, the execution times of both
approaches are related to n. However, the disjunctive approach is more affected by p
because there are more symbolic constraints to be evaluated by the SMT solver, thus
increasing the execution time'!. In terms of error-estimation, these experiments sug-
gest that the concise method leads to lower error-estimation values. For the last row
of Table 1, we evaluate an example with a large n and we only present the results
for the concise method because the running time of the disjunctive method exceeds a
predefined threshold (timeout).

5 Conclusion

In this work, we have studied two approaches: one developed by the authors and
another drawn from the existing literature to provide feasibility guarantees for set-
estimation of MPL systems with bounded uncertainties. We indirectly characterize
reachable sets from previous estimations that respect the measurement output and
compute values within these sets. Firstly, we examine a disjunctive approach utilizing
SMT techniques. Secondly, we propose a concise method based on solving two-sided
equations in max-plus algebra with pseudo-polynomial complexity. The latter method
outperforms the former in terms of speed and accuracy. Future works involve inte-
grating probabilistic aspects for additional feasibility certificates and exploring the
application of the concise method for directly characterizing the reachable sets.

Table 1: Numerical analysis comparison.

n D N errorif,;nb(%) erroriiat (%) TsV™mb(s) T™mat(s)

5 3 500 {0.40; 0.46; 0.53}  {0.02; 0.03; 0.04}  {0.03; 0.04; 0.116}  {0.005; 0.009; 0.02}
10 5 20  {1.44;162; 1.94} {0.43;0.51;0.57} {0.12; 0.21; 1.43}  {0.02; 0.03; 0.05}
10 8 20  {1.46; 1.58; 1.85} {0.44; 0.51 0.58})  {0.14; 0.24; 1.52}  {0.02; 0.03; 0.05}
20 10 5 {2.27; 3.00; 3.84}  {1.54; 1.80; 2.02}  {0.57; 4.90; 28.20}  {0.07; 0.10; 0.12}
100 50 10 {-} {0.96; 1.01; 1.05}  {-} {1.99; 2.24; 2.65}
Declarations

The authors declare that this manuscript received no funding.

11 For the fixed-point algorithm, the execution time grows at a manageable rate (polynomial) with n and
p. For the SMT-based approach, NP-hard complexity implies that, in the worst case, the execution time
can grow exponentially, making it impractical for large n and p.
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