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Abstract

In this paper, we consider discrete event systems divided in a main system and a secondary system such that the inner
dynamics of each system is ruled by standard synchronizations and the interactions between both systems are expressed by
partial synchronizations (i.e., event e2 can only occur when, not after, event e1 occurs) of events in the secondary system by
events in the main system. The main contribution consists in adapting model predictive control, developed in the literature for
(max,+)-linear systems, to the considered class of systems. This problem is solved under the condition that the performance of
the main system is never degraded to improve the performance of the secondary system. Then, the optimal input is selected to
respect the output reference and the remaining degrees of freedom are used to ensure just-in-time behavior. The unconstrained
problem is solved in linear time with respect to the length of the prediction horizon.

Key words: Discrete event systems, synchronization, model-based control, predictive control, transportation control, timed
Petri nets

1 Introduction

A discrete event system is a dynamical system driven by
the instantaneous occurrence of events. In the following,
we focus on a particular class of time-driven (i.e., the
occurrence of events is only possible at clock ticks) dis-
crete event systems, the dynamics of which is defined
by synchronization rules. The standard synchronization
corresponds to the following condition: occurrence k of
event e1 is at least τ units of time after occurrence k−l of
event e2. Discrete event systems ruled only by standard
synchronizations, called (max,+)-linear systems, have
been widely studied and admit linear state-space rep-
resentations in suitable algebraic structures such as the
(max,+)-algebra and the (min,+)-algebra [8]. During
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the last two decades, a rich control theory has been devel-
oped for this class of systems (e.g., optimal feedforward
control [2], model predictive control (MPC) [6,9], and
model reference control [3]). Other synchronization rules
have recently been investigated such as soft synchroniza-
tion [7] and partial synchronization [4] (i.e., event e2
can only occur when event e1 occurs). Partial synchro-
nization is useful when a system A is offering a service
for a time window to another system B. For example,
in a public transportation network, a passenger can ac-
cess a train only when the train is at the train station
or a car can cross an intersection only when, not after,
the traffic light is green. In this paper, we assume that
the inner dynamics of systems A and B are driven by
standard synchronizations and that system A is not af-
fected by system B. Then, the complete system is di-
vided in a main system and a secondary system (with
disjoint event sets) such that the interactions between
both systems are expressed by partial synchronizations
of events in the secondary system by events in the main
system. We focus on the control of this kind of systems
under the assumption that the performance of the main

Preprint submitted to Automatica 4 June 2015



system is never degraded to improve the performance of
the secondary system. This makes sense in many appli-
cations, where the main system is not only used by the
secondary system, but shared by many users. For ex-
ample, a train (main system) does not wait for delayed
passengers (secondary system). We consider MPC, ini-
tially introduced for (max,+)-linear systems in [6]. The
unconstrained case is investigated in (min,+)-algebra,
which is more suitable to deal with partial synchroniza-
tions than (max,+)-algebra [5]. We prove that the un-
constrainedMPC optimization problem is solved at each
step with a complexity linear with the length of the pre-
diction horizon.

Necessary mathematical tools are recalled in § 2. In § 3,
the modeling is addressed and the behavior under the
earliest functioning rule is investigated. In § 4, the main
contribution of this paper, namely MPC, is introduced.
Finally, the proposed control approach is applied to a
supply chain in § 5.

2 Mathematical Preliminaries

The (min,+)-algebra, denoted Nmin, is defined as the
set N0 ∪ {+∞} endowed with min, denoted ⊕, and +,
denoted ⊗. Formally, Nmin is a dioid [1]. As in standard
algebra, the product⊗ is often denoted by juxtaposition
(i.e., ab corresponds to a⊗ b). The operation ⊕ induces
an order relation � on Nmin defined as

∀a, b ∈ Nmin, a⊕ b = b ⇔ a � b

Obviously, � corresponds to the dual of the standard
order ≤ in N0 (i.e., a � b ⇔ a ≤ b). In the following,
only the order relation � is used for expressions related
to Nmin. Two particular elements in Nmin are the zero
element (i.e., the neutral element of ⊕), equal to +∞
and denoted ε, and the unit element (i.e., the neutral
element of⊗), equal to 0 and denoted e. By analogy with
standard linear algebra,⊕ and⊗ are defined for matrices

with entries in Nmin. For A,B ∈ N
n×m

min and C ∈ N
m×p

min ,

(A⊕B)ij = Aij ⊕Bij and (A⊗ C)ij =

m
⊕

k=1

AikCkj

The sum⊕ and the product⊗ are order-preserving. Two
additional operations on Nmin are ∧, corresponding to
the max in standard algebra, and ◦\, where a ◦\b denotes
the greatest solution of a⊗ x � b. An extension of these
operations to the matrix case is straightforward.

3 Input-Output Behavior

To capture the behavior of discrete event systems, a
counter f is associated with the eponymous event f to

count its occurrences. Formally, the counter f is a map-
ping fromZ toNmin, where f (t) is defined as the number
of occurrences of event f before or at time t. Interesting
properties of counter f are

f (t) = e for t < 0 and t1 ≤ t2 ⇒ f (t1) � f (t2)

An advantage of the counter representation is its ability
to easily express standard synchronizations in Nmin. For
example, the standard synchronizations “occurrence k of
event e2 is at least τ1 units of time after occurrence k− l1
of event e1,1 and at least τ2 units of time after occurrence
k−l2 of event e1,2” correspond to the following inequality

in Nmin:

∀t ∈ Z, e2 (t) � l1e1,1 (t− τ1)⊕ l2e1,2 (t− τ2)

Partial synchronization can also be expressed by a con-
dition on counters. For example, “event e2 can only oc-
cur when, not after, event e1 occurs” is equivalent to “if
event e1 does not occur at time t, then event e2 does not
occur at time t”. This corresponds to

∀t ∈ Z, e1 (t) = e1 (t− 1) ⇒ e2 (t) = e2 (t− 1)

Next, the conditions induced by synchronizations on the
dynamics of the main system and of the secondary sys-
tem are formally described. For each system, the event
set is partitioned into state, input, and output events as
it is done for (max,+)-linear systems. The behavior of
the main system must be a solution of

{

x1 (t) � A10x1 (t)⊕A11x1 (t− 1)⊕B1u1 (t)

y1 (t) � C1x1 (t)

where x1, u1, and y1 respectively denote the vectors of
counters associated with state, input, and output events
in the main system. The entries of matrices A10, A11,
B1, and C1 are given by the standard synchronizations
in the main system. Due to partial synchronizations,
the dynamics of the secondary system is slightly more
complicated. The behavior of the secondary systemmust
be a solution of



























x2 (t) � A20x2 (t)⊕A21x2 (t− 1)⊕B2u2 (t)

y2 (t) � C2x2 (t)

∀i, (∃x1,j ∈ Si|x1,j (t) = x1,j (t− 1))

⇒ x2,i (t) = x2,i (t− 1)

where x2, u2, and y2 respectively denote the vectors of
counters associated with state, input, and output events
in the secondary system. The entries of matrices A20,
A21, B2, and C2 are given by the standard synchro-
nizations in the secondary system. The third condition
expresses partial synchronizations: Si denotes the set
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of state events in the main system synchronizing state
event x2,i in the secondary system.

Remark 1 By analogy with (max,+)-linear systems, we
assume that matrices A10 and A20 are strictly lower tri-
angular [1].

Apart from the partial synchronization condition, the
main and the secondary system are described by the
same model structure. This allows us to treat both sys-
tems in a unified way as follows.















x (t) � A0x (t)⊕A1x (t− 1)⊕Bu (t)

y (t) � Cx (t)

∀i, αi (t) = 0 ⇒ xi (t) = xi (t− 1)

(1)

where x, u, and y are vectors (with dimension n, p, and
q) of counters associated with state, input, and output
events. Mapping αi is defined from Z to {0, 1} such that
αi (t) = 1 if, and only if, partial synchronizations allow
event xi to occur at time t. For an event xi of the main
system, αi (t) = 1. For an event xi of the secondary
system,

αi (t) =

{

0 if ∃x1,j ∈ Si|x1,j (t) = x1,j (t− 1)

1 otherwise
(2)

Problem (1) only describes admissible behaviors. In the
following, a standard behavior is introduced, namely the
behavior under the earliest functioning rule (i.e., each
state or output event occurs as soon as possible). Hence,
assuming that the behavior is known for times τ < t,
the behavior at time t is given by the least solution
(y (t) , x (t)) of (1) with the additional causality condi-
tions y (t) � y (t− 1) and x (t) � x (t− 1). Checking ex-
istence and uniqueness of the behavior under the earliest
functioning rule is not difficult and leads to the following
input-output behavior:

{

x (t) = H (x (t− 1) , u (t) , t)

y (t) = Cx (t)
(3)

where

H (x (t− 1) , u (t) , t)i =














xi (t− 1) if αi (t) = 0
⊕i−1

j=1 A0,ijH (x (t− 1) , u (t) , t)j

⊕ (A1x (t− 1)⊕Bu (t))i if αi (t) = 1

(4)

The previous discussion ensures the existence and
uniqueness of the behavior under the earliest function-
ing rule for the considered systems and leads to an

algorithm to compute it. First, the behavior of the main
system is obtained with αi (t) = 1. Then, the mappings
α associated with the secondary system are given by
(2). Finally, the behavior of the secondary system is
computed.

4 Model Predictive Control

Model predictive control (MPC) for (max,+)-linear sys-
tems has been investigated in [6,9]. In the following, this
approach is adapted to the considered class of systems.
Let us briefly recall the principle of MPC. From time t
to t+1, an optimal input is computed over a prediction
horizon by minimizing a cost function using a predic-
tion of the future behavior based on the model. At time
t + 1, this optimal input is applied to the system, the
prediction horizon is shifted by one time step, and the
computation is repeated using event occurrences at time
t+ 1. The considered control approach gives priority to
the main system over the secondary system: the perfor-
mance of the main system is never degraded to improve
the performance of the secondary system. This allows us
to first compute optimal inputs for the main system. If
a single optimal input for the main system exists, it re-
mains to calculate the optimal input for the secondary
system under a predefined behavior of the main system.
The cost criterion used in the following leads to a single
optimal input, which allows us to separate the complete
problem in two subproblems.

In the following, a method to obtain the optimal input
for a system described by (3) is presented. The optimal
input is selected to minimize the expected delay with re-
spect to an output reference. The remaining degrees of
freedom in the choice of the optimal input are used to en-
sure the just-in-time behavior (i.e., input events occur as
late as possible). Notice that this approach suits trans-
portation problems, as minimizing the expected delay
corresponds to respecting the schedule as closely as pos-
sible and just-in-time behavior reduces the travel time.
The cost function used to minimize the expected delay
at time t+ 1 is

J1 (ỹ) =

t+T
∑

τ=t+1

q
∑

j=1

max (rj (τ) − ỹj (τ) , 0)

where ỹ is the predicted output, r is the output refer-
ence, and T is the length of the prediction horizon. This
cost function is the equivalent for counters of the tar-
diness criterion introduced in [6] for daters. If J1 (ỹ) =
0, the predicted output respects the output reference
(i.e., ỹ (τ) � r (τ)). The cost function used to ensure the
just-in-time behavior at time t+ 1 is

J2 (ũ) =
t+T
∑

τ=t+1

p
∑

j=1

(ũj (τ) − uj (t))
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If J2 (ũ) = 0, no input events occur over the predic-
tion horizon. The optimization problem to solve between
time t and time t+ 1 is

minimizeL
ũ(t+1),...,ũ(t+T )

(J1(ỹ), J2 (ũ))

subject to














x̃ (τ) = H (x̃ (τ − 1) , ũ (τ) , τ)

ỹ (τ) = Cx̃ (τ)

ũ (τ) � ũ (τ − 1)

for t+ 1 ≤ τ ≤ t+ T

ũ (t) = u (t) and x̃ (t) = x (t)

(5)

The subscript L means that the considered order rela-
tion for the cost function with values in R

2 is the lexico-
graphic order relation. Before solving (5), an intermedi-
ate lemma is introduced.

Lemma 2 The inequality x (t) = H (x (t− 1) , u (t) , t) �
z (t) admits a greatest solution (x (t− 1) , u (t)), denoted
(F (z (t) , t) , G (z (t) , t)).

PROOF. Let us denote K = {j|αj (t) = 1} and
Ki = {j|j > i and αj (t) = 1}. Then, according to (4),
the least upper bound ζ (t) of x (t) is given by

ζi (t) = zi (t) ∧
∧

j∈Ki

A0,ji ◦\ζj (t)

Based on ζ (t), the greatest solution (F (z (t) , t) , G (z (t) , t))
is computed using (4). This leads to

F (z (t) , t)i =

{

ζi (t) ∧
∧

j∈K A1,ji ◦\ζj (t) if αi (t) = 0
∧

j∈K A1,ji ◦\ζj (t) if αi (t) = 1

G (z (t) , t)i =
∧

j∈K

Bji ◦\ζj (t) �

Based on Lem. 2, a solution of (5) is obtained in the fol-
lowing theorem when the output reference r takes val-
ues in N0 over the prediction horizon (i.e., rj (τ) 6= ε for
t+ 1 ≤ τ ≤ t+ T ). In practice, this is not restrictive, as
the number of event occurrences remains bounded.

Theorem 3 Denote ỹε the output induced by the input
ũε, defined by ũε (τ) = ε for t+1 ≤ τ ≤ t+T and assume
that rj (τ) ∈ N0 for t+ 1 ≤ τ ≤ t+ T . Then, the unique
solution of (5), denoted ũopt, is given by

ũopt (τ) =
∧

τ≥j≥t

ṽ (j) for t+ 1 ≤ τ ≤ t+ T

where ṽ (t) = u (t) and the sequence (ṽ (τ))t+1≤τ≤t+T is
defined by

ζ (t+ T ) = z̃ (t+ T )
{

ṽ (τ) = G (ζ (τ) , τ)

ζ (τ − 1) = F (ζ (τ) , τ) ∧ z̃ (τ − 1)

(6)

where z̃ (τ) = C ◦\ (r (τ) ⊕ ỹε (τ)) for t+ 1 ≤ τ ≤ t+ τ .

PROOF. The following optimization problem is first
considered.

minimize
ũ(t+1),...,ũ(t+T )

J1(ỹ)

subject to














x̃ (τ) = H (x̃ (τ − 1) , ũ (τ) , τ)

ỹ (τ) = Cx̃ (τ)

ũ (τ) � ũ (τ − 1)

for t+ 1 ≤ τ ≤ t+ T

ũ (t) = u (t) and x̃ (t) = x (t)

(7)

The cost function J1 is order-preserving: ỹ1 � ỹ2 implies
J1 (ỹ1) ≥ J1 (ỹ2). Therefore, to solve (7), it is sufficient
to find the least predicted output ỹ, if it exists. As the
product ⊗ is order-preserving, it is sufficient to obtain
the least predicted state x̃, if it exists. As the mapping
H is order-preserving with respect to the first two ar-
guments, it is sufficient to find the least future input ũ,
which exists and is equal to ũε. Hence, the optimal cost
for (7) is J1 (ỹε), where ỹε is the output induced by ũε.
As a lexicographic order relation is considered in (5),
solving (5) is equivalent to solving the following opti-
mization problem.

minimize
ũ(t+1),...,ũ(t+T )

J2(ũ)

subject to














x̃ (τ) = H (x̃ (τ − 1) , ũ (τ) , τ)

ỹ (τ) = Cx̃ (τ)

ũ (τ) � ũ (τ − 1)

for t+ 1 ≤ τ ≤ t+ T

J1 (ỹ) = J1 (ỹε)

ũ (t) = u (t) and x̃ (t) = x (t)

(8)

Next, we show that J1 (ỹ) = J1 (ỹε) is equivalent to
ỹ (τ) � r (τ) ⊕ ỹε (τ) for t+ 1 ≤ τ ≤ t+ T . As J1 (ỹ) ≥
J1 (ỹε) and J1 (ỹε) is finite, J1 (ỹ) = J1 (ỹε) is equivalent
to

max (rj (τ) − ỹj (τ) , 0) = max (rj (τ)− ỹε,j (τ) , 0)
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for all 1 ≤ j ≤ q and t+1 ≤ τ ≤ t+T . If ỹε,j (τ) ≥ rj (τ),
max (rj (τ)− ỹj (τ) , 0) = 0. This leads to

ỹj (τ) ≥ rj (τ) = min (rj (τ) , ỹε,j (τ))

Otherwise, if rj (τ) > ỹε,j (τ), max (rj (τ)− ỹj (τ) , 0) =
rj (τ) − ỹε,j (τ). This leads to ỹj (τ) = ỹε,j (τ) or, as
ỹ ≤ ỹε, to

ỹj (τ) ≥ ỹε,j (τ) = min (rj (τ) , ỹε,j (τ))

Replacing the constraint J1 (ỹ) = J1 (ỹε) by an equiva-
lent inequality over x̃ allows us to transform (8) in

minimize
ũ(t+1),...,ũ(t+T )

J2(ũ)

subject to














x̃ (τ) = H (x̃ (τ − 1) , ũ (τ) , τ)

x̃ (τ) � z̃ (τ)

ũ (τ) � ũ (τ − 1)

for t+ 1 ≤ τ ≤ t+ T

ũ (t) = u (t) and x̃ (t) = x (t)

(9)

where z̃ (τ) = C ◦\ (r (τ)⊕ ỹε (τ)). As ũ1 � ũ2 implies
J2 (ũ1) ≥ J2 (ũ2), solving (9) is equivalent to find the
greatest (if it exists) input ũ satisfying the conditions
in (9). For t + 1 ≤ τ ≤ t + T , ũ (τ) � ṽ (τ) where
(ṽ (τ))t+1≤τ≤t+T is the greatest solution of

{

x̃ (τ) = H (x̃ (τ − 1) , ṽ (τ) , τ)

x̃ (τ) � z̃ (τ)

for t+ 1 ≤ τ ≤ t+ T and x̃ (t) = x (t)

By analogy with optimal feedforward control for
(max,+)-linear systems [2], (ṽ (τ))t+1≤τ≤t+T is given by

(6). Therefore, the optimal input (ũopt (τ))t+1≤τ≤t+T
is

the greatest decreasing sequence less than or equal to
(ṽ (τ))t+1≤τ≤t+T . Hence,

ũopt (τ) =
∧

τ≥j≥t

ṽ (j) with ṽ (t) = u (t)

Further, as r takes value in N0, r (t+ T ) is finite. Hence,
due to event-causality associatedwith standard synchro-
nization, ũopt (t+ T ) is finite. Then, ũopt is the unique
optimal input, as, for finite inputs, ũ1 ≺ ũ2 implies
J2 (ũ2) < J2 (ũ1). ✷

Th. 3 provides an algorithm to implement MPC for a
dynamic system described by (3). Further, the complex-
ity of optimal input calculation at a given time t is lin-
ear with the length of the prediction horizon T , as the

calculations of ỹε, ṽ, and ũopt come down to applying a
forward or backward recursive relations over the predic-
tion horizon. Finding the optimal input for the complete
system (i.e., main and secondary system) boils down to,
first, compute the optimal input for the main system,
second, predict the mappings α associated with the sec-
ondary system, and, finally, compute the optimal input
for the secondary system. Therefore, the complexity of
optimal input calculation at a given time t for the com-
plete system remains linear with the length of the pre-
diction horizon.

5 Example

The problem considered in this example focuses on a sup-
ply chain where intermodal containers shuttle back and
forth between warehouses A1 and B1. The supply chain
is divided in three sections: a road transport section be-
tween warehouseA1 and train stationA, a rail transport
section between train stationsA andB, and a road trans-
port section between train station B and warehouse B1.
The supply chain is drawn in Fig. 1 (where the solid loop
represents the train line, the dashed loops represent the
road transport, and the dotted loop represents the sup-
ply chain). In road transport, the truck/container inter-

Train station A

Warehouse A1 Warehouse B1

Train station B

Fig. 1. The supply chain

action is neglected: sufficiently many trucks are available
to deliver containers. The train/container interaction is
expressed by partial synchronizations: a container leaves
(resp. arrives at) a train station by train only when a
train leaves (resp. arrives at) this train station. In this
example, the main system corresponds to the train line
and the secondary system models the transportation of
the container. In Fig. 2, the overall system is represented
by a timed Petri net where the dashed arrows correspond
to the partial synchronizations. The proposedMPC con-
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x1,1
y1,1
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Warehouse A1 Warehouse B1

u2,2

x1,3

x1,2

x1,4

10

Train station A Train station B

y2,1

Fig. 2. Petri net representation
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trol approach is applied. As trains are shared by many
users (including, but not limited to, the supply chain be-
tween warehouses A1 and B1), it makes sense to never
degrade the performance of the train line to improve the
performance of the supply chain between warehousesA1

and B1. In this example, the considered cost functions
(i.e., tardiness and just-in-time criterion) are suitable to
enforce delivery dates and minimize travel times. Fur-
thermore, due to output reference update and optimal
input recalculation at each time step, changes in the
schedule and perturbations are taken into account.

In the following, MPC is applied to this system with a
prediction horizon of length T = 100 and the following
schedules:

• a train arrives in train stationsA and B every 15 units
of time with a first arrival at t = 15

• a container arrives in warehouse B1 (resp. A1) every
80 units of time with a first arrival at t = 40 (resp.
t = 80)

This corresponds to the following output references:

r1,1 (t) = r1,2 (t) =

⌊

t

15

⌋

r2,1 (t) =

⌊

t+ 40

80

⌋

and r2,2 (t) =

⌊

t

80

⌋

For the train line, the optimal input obtained with MPC
is a departure from train stationsA andB every 15 units
of time with a first departure at t = 5. Formally,

u1,1 (t) = u1,2 (t) =

⌊

t+ 10

15

⌋

For the supply chain, the optimal input obtained with
MPC has a more complex pattern due to interactions
with the train line:

u2,1 (t) =

⌊

t+ 225

240

⌋

+

⌊

t+ 150

240

⌋

+

⌊

t+ 60

240

⌋

u2,2 (t) =

⌊

t+ 180

240

⌋

+

⌊

t+ 105

240

⌋

+

⌊

t+ 30

240

⌋

Further, if a perturbation prevents the departure of train
from train station A for 50 ≤ t ≤ 60, the optimal input
is modified as follows:

• the train line functions at a maximal troughput
(i.e., one train every 12 units of time) for 70 ≤ t ≤ 100
to catch up the delay induced by the perturbation

• the first (resp. second) departure of the container from
warehouse B1 (resp. A1) is delayed of 13 (resp. 15)
units of time to adjust to changes in the behavior of
the train line

As expected, the computation time of the optimal input
at each step, experimentally observed with a Scilab im-
plementation, is linear with the length of the prediction
horizon, denoted T .

T 128 256 512

Computation time (in s) 0.36 0.72 1.42

6 Conclusion

In this paper, we consider a particular class of discrete
event systems ruled by standard and partial synchro-
nizations. Based on a (min,+)-model, MPC is adapted
to this class of systems by giving priority to the perfor-
mance of the main system. In each system, the optimal-
ity criterion focuses on minimizing the expected delay,
but the remaining degrees of freedom are used to ensure
just-in-time behavior. At each step, the computation of
the optimal input is linear with the length of the pre-
diction horizon. As future work, we want to include a
standard update for the reference output at each step to
take into account additional constraints on the behavior
of the system.
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