

Dear Author

Here are the proofs of your article.

- You can submit your corrections **online** or by **fax**.
- For **online** submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- Please return your proof together with the permission to publish confirmation.
- For **fax** submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the journal title, article number, and your name when sending your response via e-mail, fax or regular mail.
- **Check** the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- **Check** the questions that may have arisen during copy editing and insert your answers/corrections.
- **Check** that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the *Edited manuscript*.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please **do not** make changes that involve only matters of style. We have generally introduced forms that follow the journal's style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections within 48 hours, we will send you a reminder.

Please note

Your article will be published **Online First** approximately one week after receipt of your corrected proofs. This is the **official first publication** citable with the DOI. **Further changes are, therefore, not possible.**

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL:

http://dx.doi.org/10.1007/s10626-020-00316-y

If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information, go to: <u>http://www.springerlink.com</u>.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us, if you would like to have these documents returned.

The **printed version** will follow in a forthcoming issue.

Metadata of the article that will be visualized in OnlineFirst

1	Article Title	Model decompo synchronization	sition of timed event graphs under periodic partial and a second control in the second c
2	Article Sub- Title		
3	Article Copyright - Year	The Author(s) 2020 (This will be the copyright line in the final PDF)	
4	Journal Name	Discrete Event D	ynamic Systems
5		Family Name	Trunk
6		Particle	
7		Given Name	Johannes
8	Article Title Article Sub- Title Article Copyright - Year Journal Name Corresponding Author Author Author Author	Suffix	
9	Author	Organization	Technische Universität Berlin, Fachgebiet Regelungssysteme
10		Division	
11		Address	Einsteinufer 17, Berlin D-10587, Germany
12		e-mail	Trunk@control.tu-berlin.de
13		Family Name	Cottenceau
14	Article Title Article Sub- Title Article Copyright - Year Journal Name Corresponding Author Author Author Author	Particle	
15		Given Name	Bertrand
16	Authon	Suffix	
17	Author	Organization	Université d'Angers
18		Division	
19		Address	62 Avenue Notre Dame du Lac, Angers 49000, France
20		e-mail	bertrand.cottenceau@univ-angers.fr
21		Family Name	Hardouin
22		Particle	
23	Corresponding Author Author Author	Given Name	Laurent
24	Author	Suffix	
25	Author	Organization	Université d'Angers
26		Division	
27		Address	62 Avenue Notre Dame du Lac, Angers 49000, France
28		e-mail	laurent.hardouin@univ-angers.fr
29	Author	Family Name	Raisch
30		Particle	

31		Given Name	Joerg
32		Suffix	
33		Organization	Technische Universität Berlin, Fachgebiet Regelungssysteme
34		Division	
35		Address	Einsteinufer 17, Berlin D-10587, Germany
36		e-mail	raisch@control.tu-berlin.de
37		Received	12 December 2018
38	Schedule	Revised	
39		Accepted	1 April 2020
40	Abstract	Accepted 1 April 2020 Timed Event Graphs (TEGs) are a graphical model for decision free and time-invariant Discrete Event Systems (DESs). To express systems with time-variant behaviors, a new form of synchronization, called partial synchronization (PS), has been introduced for TEGs. Unlike exact synchronization, where two transitions t_1, t_2 can only fire if both transitions are simultaneously enabled, PS of transition t_1 by transition t_2 means that t_1 can fire only when transition t_2 fires, but t_1 does not influence the firing of t_2 . This, for example can describe the synchronization between a local train and a long distance train. Of course it is reasonable to synchronize the departure of a local train by the arrival of long distance train in order to guarantee a smooth connection for passengers. In contrast, the long distance train should not be delayed due to the late arrival of a local train Under the assumption that PS is periodic, we can show that the dynamic behavior of a TEG under PS can be decomposed into a time-variant and a time-invariant part. It is shown that the time-variant part is invertible and that the time-invariant part can be modeled by a matrix with entries in the dioid Minaxy, δ , i.e. the time-invariant part can be interpreted as a standard TEG. Therefore, the tools introduced for standard TEGs can be used to analyze and to control the overall system. In particular, in this paper output reference control for TEGs under PS is addressed. This control strategy determines the optimal input for a predefined reference output. In this case optimality is in the sense of the "just-in-time" criterion, i.e., the input events are chosen as late as possible under the constraint that the output events do not occur laten than required by the reference output.	
41	Keywords separated by ' - '	Dioids - Optimal o Time-variant beha	control - TEG - Discrete-event systems - Residuation - viour
42	Foot note information	This article belong Guest Editors: Fra Springer Nature re	gs to the Topical Collection: <i>on Theory-2020</i> ncesco Basile, Jan Komenda, and Christoforos Hadjicostis mains neutral with regard to jurisdictional claims in
		published maps an	id institutional affiliations.

1

2

3

4

5

5

Discrete Event Dynamic Systems https://doi.org/10.1007/s10626-020-00316-y

Model decomposition of timed event graphs under periodic partial synchronization: application to output reference control

Johannes Trunk¹ · Bertrand Cottenceau² · Laurent Hardouin² · Joerg Raisch¹

Received: 12 December 2018 / Accepted: 1 April 2020 $\ensuremath{\textcircled{O}}$ The Author(s) 2020

Abstract

Timed Event Graphs (TEGs) are a graphical model for decision free and time-invariant 6 Discrete Event Systems (DESs). To express systems with time-variant behaviors, a new 7 form of synchronization, called partial synchronization (PS), has been introduced for TEGs. 8 Unlike exact synchronization, where two transitions t_1 , t_2 can only fire if both transitions are 9 simultaneously enabled, PS of transition t_1 by transition t_2 means that t_1 can fire only when 10 transition t_2 fires, but t_1 does not influence the firing of t_2 . This, for example can describe 11 the synchronization between a local train and a long distance train. Of course it is reasonable 12 to synchronize the departure of a local train by the arrival of long distance train in order to 13 guarantee a smooth connection for passengers. In contrast, the long distance train should not 14 be delayed due to the late arrival of a local train Under the assumption that PS is periodic, 15 we can show that the dynamic behavior of a TEG under PS can be decomposed into a time-16 variant and a time-invariant part. It is shown that the time-variant part is invertible and that 17 the time-invariant part can be modeled by a matrix with entries in the dioid \mathcal{M}_{in}^{ax} [[γ , δ]], i.e. 18 the time-invariant part can be interpreted as a standard TEG. Therefore, the tools introduced 19 for standard TEGs can be used to analyze and to control the overall system. In particular, 20 in this paper output reference control for TEGs under PS is addressed. This control strategy 21 determines the optimal input for a predefined reference output. In this case optimality is in 22 the sense of the "just-in-time" criterion, i.e., the input events are chosen as late as possible 23 under the constraint that the output events do not occur later than required by the reference 24 output. 25

Keywords Dioids \cdot Optimal control \cdot TEG \cdot Discrete-event systems \cdot Residuation \cdot	26
Time-variant behaviour	27

☑ Johannes Trunk Trunk@control.tu-berlin.de

Q1

Q2

Extended author information available on the last page of the article.

This article belongs to the Topical Collection: *on Theory-2020* Guest Editors: Francesco Basile, Jan Komenda, and Christoforos Hadjicostis

28 **1 Introduction and motivation**

TEGs are a subclass of timed Petri nets where each place has exactly one input and one 29 output transition and all arcs have weight 1. Timed Event Graphs under Partial Synchro-30 nization (TEGsPS) are an extension of TEGs introduced in David-Henriet et al. (2014). A 31 similar extension was introduced in De Schutter and van den Boom (2003), where TEGs 32 with hard and soft synchronization are studied. TEGsPS can express some time-variant phe-33 nomena which cannot be expressed by standard TEGs. For instance, partial synchronization 34 (PS) is useful to model systems where particular events can only occur in a specific time 35 window. E.g., at an intersection, a vehicle can only cross when the traffic light is green. 36 Clearly this describes a time-variant behavior, since the vehicle is delayed by a time that 37 depends on its time of arrival at the intersection. If an earliest functioning rule is adopted, 38 the behavior of a TEG can be modeled by linear equations in a specific algebraic structure 39 40 called dioid. Based on such dioids, a general theory has been developed for performance evaluation and control of TEGs, e.g. Baccelli et al. (1992) and Heidergott et al. (2005). In 41 particular, the problem of output reference control for TEGs was studied in Baccelli et al. 42 (1992); Cohen et al. (1989); Menguy et al. (1998, 2000). Recently, in David-Henriet et al. 43 (2014, 2015, 2016), dioid theory has been applied to TEGsPS and first results have been 44 obtained for performance evaluation and controller synthesis for TEGsPS. In David-Henriet 45 46 et al. (2014) output reference control was introduced for TEGsPS. There, the earliest evolution of a Timed Event Graph under Partial Synchronization (TEGPS) is modeled as a 47 (max,+)-system with additional constraints. The control problem is then solved for a finite 48 reference output by solving the backward equation for this (max,+)-system. In Hamaci et al. 49 (2006) and Trunk et al. (2017b) output reference control was studied for TEGs with positive 50 integer weights on the arcs. These TEGs exhibit event-variant behavior and can therefore be 51 seen as the counter-part to TEGsPS. 52

In this epaper we investigate TEGsPS where partial synchronization is periodic. To con-53 sider only periodic partial synchronization is not overly restrictive as periodic schedules are 54 common in many applications. E.g. in transportation networks: many public transportation 55 system as well as freight railway services work with a periodic schedule. Similarly in manu-56 facturing systems: there are many production processes, where a resource is shared between 57 several machines on the basis of a periodic schedule. We show that for TEGsPS with peri-58 odic PS the dynamic behavior can be modeled in a specific dioid called $\mathcal{T}_{per}[[\gamma]]$. A specific 59 time-variant operator is introduced to take PS into account. Similar to transfer functions 60 for standard TEGs in the dioid \mathcal{M}_{in}^{ax} [[γ , δ]], the transfer behavior of TEGsPS is described 61 by ultimately cyclic series in the dioid $\mathcal{T}_{per}[[\gamma]]$. These transfer functions are useful, for 62 instance, for computing the output for a given input of a system, for system composition 63 and for control synthesis. 64

This paper is organized as follows: Section 2 summarizes the necessary facts on TEGsPS and dioid theory. In Section 3, modeling of TEGsPS in the dioid $\mathcal{T}_{per}[\![\gamma]\!]$ is introduced. Section 4 discusses a decomposition method for elements in $\mathcal{T}_{per}[\![\gamma]\!]$ and provides tools to handle operations on ultimately cyclic series in $\mathcal{T}_{per}[\![\gamma]\!]$. In particular, we show that basic operations on ultimately cyclic series in $\mathcal{T}_{per}[\![\gamma]\!]$ can be reduced to operations between matrices in $\mathcal{M}_{in}^{ax}[\![\gamma, \delta]\!]$. In Section 5, transfer functions for TEGsPS in $\mathcal{T}_{per}[\![\gamma]\!]$ are used to solve the optimal output reference control problem for this system class.

A preliminary version of this work has been reported in Trunk et al. (2018), where the modeling process of a TEGPS in the dioid $\mathcal{T}_{per}[[\gamma]]$ was established and a decomposition into an invertible time-variant and a time-invariant part was discussed. The purpose of this paper is to introduce optimal output reference control for TEGsPS based on the model in

78

79

97

Discrete Event Dynamic Systems

AUTHOR'S PROOF

the dioid $\mathcal{T}_{per}[[\gamma]]$. As a prerequisite, results on the residuation of the product in the dioid $\mathcal{T}_{per}[[\gamma]]$ are obtained. 76

2 Timed event graphs and dioids

2.1 Timed event graphs

In the following, we briefly recall the necessary facts on TEGs. For details, see Baccelli et al. 80 (1992) and Heidergott et al. (2005). A TEG consists of a set of places $P = \{p_1, \dots, p_n\}$, 81 a set of transitions $T = \{t_1, \dots, t_m\}$ and a set of arcs $A \subseteq (P \times T) \cup (T \times P)$, all with 82 weight 1. Place p_i is an upstream place of transition t_j (and transition t_j is a downstream 83 transition of place p_i , if $(p_i, t_i) \in A$. Conversely, p_i is a downstream place of transition 84 t_i (and t_i is an upstream transition of place p_i), if $(t_i, p_i) \in A$. For TEGs, each place 85 p_i has exactly one upstream transition and exactly one downstream transition. Moreover, 86 each place p_i exhibits an initial marking $(\mathcal{M}_0)_i \in \mathbb{N}_0$ and a holding time $(\phi)_i \in \mathbb{N}_0$. A 87 transition t_i is said to be enabled, if the marking in every upstream place is at least 1. When 88 t_i fires, the marking $(\mathcal{M})_i$ in every upstream place p_i is reduced by 1 and the marking 89 $(\mathcal{M})_o$ in every downstream place p_o is increased by 1. The holding time $(\boldsymbol{\phi})_i$ is the time a 90 token must remain in place p_i before it contributes to the firing of the downstream transition 91 of p_i . The set T of transitions is partitioned into input transitions, i.e., transitions without 92 upstream places, output transitions, i.e., transitions without downstream places and internal 93 transitions, i.e., transitions with both upstream and downstream places. We say that a TEG 94 is operating under the earliest functioning rule, if all internal and output transitions are fired 95 as soon as they are enabled. 96

2.2 Timed event graphs under partial synchronization

TEGsPS provide a suitable model for some time-variant discrete event systems. In the fol-98 lowing, we give a brief introduction. For further information the reader is invited to consult 99 (David-Henriet et al. 2014). Considering the TEG in Fig. 1a, assuming the earliest function-100 ing rule, incoming tokens in place p_1 are immediately transferred to place p_2 by the firing 101 of transition t_2 , as the holding time of place p_1 is zero. Note that zero holding times are, 102 by convention, not indicated in visual illustrations of TEGs. In contrast, Fig. 1b illustrates a 103 TEG with PS of transition t_2 by transition t_a . This means that t_2 can only fire if t_a fires, but 104 the firing of t_a does not depend on t_2 . 105

Fig. 1 a standard TEG. b PS of t_2 by t_a , triggered every ω time units. c equivalent PS expressed by a signal S_{ω}

 S_{ω}

In this example, place p_3 (equipped with a holding time of ω) and transition t_a , together with the corresponding arcs, constitute an autonomous TEG. Under the earliest functioning rule, the firings of transition t_a generate a periodic signal S_{ω} with a period $\omega \in \mathbb{N}$. Therefore, the PS of t_2 by t_a can also be described by a predefined signal $S_{\omega}: \mathbb{Z} \to \{0, 1\}$, enabling the firing of t_2 at times t where $S_{\omega}(t) = 1$. In particular, $S_{\omega}(t) = 1$ if $t \in \{j\omega \text{ with } j \in \mathbb{Z}\}$ and 0 otherwise.

Definition 1 A periodic signal $S : \mathbb{Z} \to \{0, 1\}$ is defined by a string $\langle n_0, n_1, \cdots, n_I \rangle$, with $n_i \in \mathbb{N}_0, 0 \le i \le I$ and a period $\omega \in \mathbb{N}$, such that $\forall j \in \mathbb{Z}$

$$\mathcal{S}(t) = \begin{cases} 1 & \text{if } t \in \{n_0 + \omega j, \ n_1 + \omega j, \ \cdots, \ n_I + \omega j\}, \\ 0 & \text{otherwise,} \end{cases}$$

where the string $\langle n_0, n_1, \cdots, n_I \rangle$ is strictly increasing, i.e., $\forall i \in \{1, \cdots, I\}, n_{i-1} < n_i,$ and $n_I < \omega$.

116 *Example 1* The signal

$$\mathcal{S}_1(t) = \begin{cases} 1 & \text{if } t \in \{\cdots, -4, -3, 0, 1, 4, 5, 8, 9, \cdots\} \\ 0 & \text{otherwise,} \end{cases}$$

is a periodic signal with a period $\omega = 4$ and a string (0, 1). Therefore $\forall j \in \mathbb{Z}$,

$$S_1(t) = \begin{cases} 1 & \text{if } t \in \{0+4j, 1+4j\}, \\ 0 & \text{otherwise.} \end{cases}$$
(1)

Definition 2 A Timed Event Graph under periodic partial synchronization is a TEG where the firings of some internal and output transitions are synchronized with periodic signals.

Note that the assumption that only internal and output transitions are subject to PS is 120 not restrictive since we can always add new input transitions and extend the set of internal 121 transitions by the former input transitions. In David-Henriet et al. (2015), ultimately periodic 122 signals are considered for PS of transitions. It was shown that the behavior of a TEGPS 123 with such synchronization signals can be described by recursive equations in state space 124 form. In this work, we focus on (immediately) periodic signals for PS of transitions. To 125 126 consider only periodic PS allows us to define a dioid of operators to describe the behavior of TEGsPS. In particular, we can show that the transfer behavior of a TEGPS is described 127 by a rational power series of an ultimately cyclic form. Let us note that focusing on periodic 128 signals for a PS of a transition is not overly restrictive as periodic schedules are common in 129 many applications. 130

Example 2 Let us consider a simple supply chain between two factories. Factory 1 is a supplier for factory 2. The products of factory 1 are transported via a train connection to factory 2. This simple supply chain is modelled by the TEG under periodic PS shown in Fig. 2, with periodic PS of transition t_2 by the signal, $\forall j \in \mathbb{Z}$

$$\mathcal{S}_2(t) = \begin{cases} 1 & \text{if } t \in \{1+20j\}, \\ 0 & \text{otherwise.} \end{cases}$$

Transition t_1 models the issue of the goods at factory 1 and transition t_4 the receipt of goods at factory 2. Transition t_2 , t_3 and places p_2 , p_3 model the train line between the factories. The holding time of 10 time units of place p_3 models the travel time of trains between the factories. The 2 initial tokens in place p_2 describe the maximal capacity of the Discrete Event Dynamic Systems

Fig. 2 Example of a TEGPS

trains. The schedule of the trains is modelled by the signal S_2 , hence every 20 time units there is a train leaving from factory 1. We will recall this example again in Section 5 and demonstrate how "just-in-time" control for this supply chain can be computed using the methods developed in this paper. 142

2.3 Dioids

A dioid \mathcal{D} is an algebraic structure with two binary operations, \oplus (addition) and \otimes (multiplication). Addition is commutative, associative and idempotent (i.e. $\forall a \in \mathcal{D}, a \oplus a = a$). 145 The neutral element for addition, denoted by ε , is absorbing for multiplication (i.e., $\forall a \in \mathcal{D}, a \oplus a = a$). 146 $\mathcal{D}, a \otimes \varepsilon = \varepsilon \otimes a = \varepsilon$). Multiplication is associative, distributive over addition and has a 147 neutral element denoted by e. The element e (resp, ε) is called unit (resp. zero) element of 148 the dioid. 149

Note that, as in conventional algebra, the multiplication symbol \otimes is often omitted. A 150 dioid \mathcal{D} is said to be complete if it is closed for infinite sums and if multiplication distributes 151 over infinite sums. A complete dioid is a partially ordered set, with a canonical order \succeq 152 defined by $a \oplus b = a \Leftrightarrow a \succeq b$. The infimum operator can then be defined by $a, b \in \mathcal{D}$, 153 $a \land b = \bigoplus \{x \in \mathcal{D} \mid x \oplus a \preceq a, x \oplus b \preceq b\}$. Moreover, in a complete dioid, the Kleene star of 154 an element $a \in \mathcal{D}$, denoted a^* , is defined by $a^* = \bigoplus_{i=0}^{\infty} a^i$ with $a^0 = e$ and $a^{i+1} = a \otimes a^i$. 155 Let $\mathcal{C} \subseteq \mathcal{D}$ then \mathcal{C} is a subdioid of \mathcal{D} if e and ε are in \mathcal{C} and \mathcal{C} is closed for \oplus and \otimes . 156

Theorem 1 (Baccelli et al. 1992) In a complete dioid \mathcal{D} , $x = a^*b$ is the least solution of 157 the implicit equation $x = ax \oplus b$. 158

Here, the adjective "least" refers to the canonical order in the dioid described above.

Both multiplication and addition on a (complete) dioid \mathcal{D} can be readily extended to the matrix case: for matrices $A, B \in \mathcal{D}^{m \times n}, C \in \mathcal{D}^{n \times q}$ and a scalar $\lambda \in \mathcal{D}$, matrix addition and multiplication are defined by 162

$$(\boldsymbol{A} \oplus \boldsymbol{B})_{i,j} := (\boldsymbol{A})_{i,j} \oplus (\boldsymbol{B})_{i,j}, \quad (\lambda \otimes \boldsymbol{A})_{i,j} := \lambda \otimes (\boldsymbol{A})_{i,j},$$
$$(\boldsymbol{A} \otimes \boldsymbol{C})_{i,j} := \bigoplus_{k=1}^{n} ((\boldsymbol{A})_{i,k} \otimes (\boldsymbol{C})_{k,j}).$$

Moreover, the order relation on matrices of the same dimension is understood elementwise, i.e. $A \succeq B$ iff $(A)_{i,j} \succeq (B)_{i,j}, \forall i, j$. The identity matrix, denoted by I, is a square matrix with elements e on the diagonal and ε otherwise. 165

166 2.4 Complete dioids and residuation theory

167 Residuation theory is a formalism to address the problem of approximate mapping inversion

over ordered sets (Baccelli et al. 1992). It applies to complete dioids, since a complete dioid \mathcal{D} is a partially ordered set.

Definition 3 (Baccelli et al. 1992) A mapping $f : \mathcal{D} \to \mathcal{L}$, with \mathcal{D} and \mathcal{L} complete dioids, is residuated if $\forall b \in \mathcal{L}$ the inequality $f(x) \leq b$ has a greatest solution in \mathcal{D} , denoted $f^{\sharp}(b)$.

172 The mapping $f^{\sharp} : \mathcal{L} \to \mathcal{D}$, is called the residual of f.

Theorem 2 (Baccelli et al. 1992) A mapping $f : \mathcal{D} \to \mathcal{L}$, with \mathcal{D} and \mathcal{L} complete dioids, is residuated iff $f(\varepsilon) = \varepsilon$ and f is lower-semicontinuous, that is

$$f\left(\bigoplus_{x\in X} x\right) = \bigoplus_{x\in X} f(x),$$

175 for every (finite or infinite) subset X of \mathcal{D} .

176 On a complete dioid the mapping $R_a : x \mapsto xa$, (right multiplication by *a*) resp. 177 $L_a : x \mapsto ax$ (left multiplication by *a*), is lower-semicontinuous and therefore residuated. 178 The residual mappings are denoted $R_a^{\sharp}(b) = b \not a = \bigoplus \{x | xa \leq b\}$ (right division by *a*) 179 and $L_a^{\sharp}(b) = a \ b = \bigoplus \{x | ax \leq b\}$ (left division by *a*). Left and right division can be 180 extended to the matrix case. For matrices $A \in \mathcal{D}^{m \times n}$, $B \in \mathcal{D}^{m \times q}$, $C \in \mathcal{D}^{n \times q}$

$$(\boldsymbol{A} \boldsymbol{\diamond} \boldsymbol{B})_{i,j} = \bigwedge_{k=1}^{m} ((\boldsymbol{A})_{k,i} \boldsymbol{\diamond} (\boldsymbol{B})_{k,j}), \quad (\boldsymbol{B} \boldsymbol{\diamond} \boldsymbol{C})_{i,j} = \bigwedge_{k=1}^{q} ((\boldsymbol{B})_{i,k} \boldsymbol{\diamond} (\boldsymbol{C})_{j,k}). \tag{2}$$

In the following some useful properties of left and right division are summarized, for a proof see Baccelli et al. (1992) or the recent summary paper (Hardouin et al. 2018). For $a, b, x \in \mathcal{D}$ and \mathcal{D} a complete dioid,

$$(ab) \diamond x = b \diamond (a \diamond x) \qquad x \phi(ba) = (x \phi a) \phi(b) \tag{3}$$

$$(a \oplus b) \diamond x = (a \diamond x) \land (b \diamond x) \qquad x \not = (a \oplus b) = (x \not = a) \land (x \not = b), \tag{4}$$

$$(a \diamond x) \phi b = a \diamond (x \phi b).$$
⁽⁵⁾

184 **3** Modeling of TEGs under PS in the Dioid $\mathcal{T}[[\gamma]]$

To model TEGsPS, a dater function $x_i : \mathbb{Z} \to \mathbb{Z}_{max} := \{\mathbb{Z}\} \cup \{\infty\} \cup \{-\infty\}$ is associated to each transition t_i . The value $x_i(k)$ gives the date (time) when transition t_i fires the $(k + 1)^{st}$ time. Naturally, dater functions are nondecreasing functions, i.e., $x_i(k + 1) \ge x_i(k)$. The set of dater functions is denoted by Σ . On Σ , addition and multiplication by a constant are defined as follows:

$$x, y \in \Sigma, \ (x \oplus y)(k) := \max(x(k), y(k)),$$

 $\lambda \in \mathbb{Z}_{max}, \ (\lambda \otimes x)(k) := \lambda + x(k).$

190 The zero element $\tilde{\varepsilon}$ on Σ is defined by $\tilde{\varepsilon}(k) = -\infty$, $\forall k \in \mathbb{Z}$. The $\tilde{\oplus}$ operation induces an 191 order relation on Σ , i.e., for $x, y \in \Sigma$, $x \leq y \Leftrightarrow x \tilde{\oplus} y = y$. In this order, the top element 192 $\tilde{\top}$ is defined by $\tilde{\top}(k) = +\infty$, $\forall k \in \mathbb{Z}$. An operator, i.e., a map, $o: \Sigma \to \Sigma$ is linear if (a) 193 $\forall x, y \in \Sigma : o(x \tilde{\oplus} y) = o(x) \tilde{\oplus} o(y)$ and (b) $\lambda \tilde{\otimes} o(x) = o(\lambda \tilde{\otimes} x)$. An operator is additive if

Discrete Event Dynamic Systems

(a) is satisfied. Let \mathcal{O} denote the set of all operators $o: \Sigma \to \Sigma$. Moreover, let \mathcal{O}_a denote 194 the subset of all additive operators in \mathcal{O} . 195

Proposition 1 (Cottenceau et al. 2014) *The set* \mathcal{O}_a *equipped with addition and multiplica-* 196 *tion:* $x \in \Sigma, \forall o_1, o_2 \in \mathcal{O}_a$, 197

$$(o_1 \oplus o_2)(x) := o_1(x) \tilde{\oplus} o_2(x), \ (o_1 \otimes o_2)(x) := o_1(o_2(x)), \tag{6}$$

is a noncommutative complete dioid. The identity operator (unit element) is denoted by e: 198 $\forall x \in \Sigma, \ e(x) = x$, the zero operator (zero element) is denoted by $\varepsilon: \forall x \in \Sigma, \ \varepsilon(x) = \tilde{\varepsilon}$ 199 and the top operator (top element) is denoted by $\top: \forall x \in \Sigma \setminus \{\tilde{\varepsilon}\}, \ \top(x) = \tilde{\top}.$ 200

To simplify notation, we write ox instead of o(x) wherever clear from the context. 201

Definition 4 (Basic operators in \mathcal{O}) Dynamic phenomena arising in TEGsPS can be 202 described by the following basic operators in \mathcal{O} : 203

$$\tau \in \mathbb{Z}, \ \delta^{\tau} : \forall x \in \Sigma, \ (\delta^{\tau} x)(k) = x(k) + \tau,$$
(7)

$$\eta \in \mathbb{Z}, \ \gamma^{\eta} : \forall x \in \Sigma, \ (\gamma^{\eta} x)(k) = x(k - \eta),$$
(8)

$$\omega, \varpi \in \mathbb{N}, \ \Delta_{\omega|\varpi} : \forall x \in \Sigma, \ (\Delta_{\omega|\varpi} x)(k) = \lceil x(k)/\varpi \rceil \omega, \tag{9}$$

where [a] is the smallest integer greater than or equal to a.

It can be easily checked that all these operators are additive, i.e., δ^{τ} , γ^{η} , $\Delta_{\omega|\varpi} \in \mathcal{O}_a$. The time- and event-shift operator δ and γ are used to model the dynamic behavior of standard TEGs, e.g., Baccelli et al. (1992). In addition we introduce the $\Delta_{\omega|\varpi}$ operator to consider phenomena caused by PS.

Proposition 2 (Trunk et al. 2018) *The basic operators satisfy the following relations*

$$\gamma^{\eta} \oplus \gamma^{\eta'} = \gamma^{\min(\eta, \eta')}, \qquad \delta^{\tau} \oplus \delta^{\tau'} = \delta^{\max(\tau, \tau')}, \tag{10}$$

$$\gamma^{\eta} \otimes \gamma^{\eta'} = \gamma^{\eta+\eta'}, \qquad \delta^{\tau} \otimes \delta^{\tau'} = \delta^{\tau+\tau'}, \tag{11}$$

$$\Lambda_{\alpha|\sigma} \otimes \delta^{\overline{\sigma}} = \delta^{\omega} \otimes \Lambda_{\alpha|\sigma} \tag{12}$$

Remark 1 Equation 12 implies that for $-b < \tau \le 0$, $\Delta_{\omega|b}\delta^{\tau}\Delta_{b|\varpi} = \Delta_{\omega|\varpi}$, since,

$$(\Delta_{\omega|b}\delta^{\tau}\Delta_{b|\varpi}x)(k) = \left\lceil \frac{\lceil x(k)/\varpi \rceil b + \tau}{b} \right\rceil \omega = \left\lceil \left\lceil \frac{x(k)}{\varpi} \right\rceil + \frac{\tau}{b} \right\rceil \omega$$
$$= \left\lceil \frac{x(k)}{\varpi} \right\rceil \omega \quad \text{since} \ -1 < \tau/b \le 0,$$
$$= (\Delta_{\omega|\varpi}x)(k).$$

3.1 Dioid of time operators ${\cal T}$

In the following, we introduce a dioid of specific time operators in order to model the time-variant behavior of periodic PS. 213

211

204

209

Definition 5 (Dioid of T-operators \mathcal{T}) We denote by \mathcal{T} the dioid of operators obtained by addition and composition of operators in $(\varepsilon, e, \delta^{\varsigma}, \Delta_{\omega|\varpi}, \top)$ with $\varsigma \in \mathbb{Z}$, and $\omega, \overline{\omega} \in \mathbb{N}$. The elements of \mathcal{T} are called T-operators (T is for time).

For example, $\delta^3 \Delta_{4|4} \delta^1 \Delta_{3|2} \in \mathcal{T}$. Since a T-operator only describes a time relation in a 217 system, e.g., a delay, we can associate a function $\mathcal{R}_v : \mathbb{Z}_{max} \to \mathbb{Z}_{max}$ to a T-operator v. 218 This function, when evaluated on t, is obtained by replacing x(k) by t in the expression of 219 v(x)(k). For example, $((\Delta_{3|4}\delta^1 \oplus \delta^2 \Delta_{3|3})x)(k) = \max(\lceil (x(k) + 1)/4 \rceil 3, 2 + \lceil x(k)/3 \rceil 3))$ 220 and therefore $\mathcal{R}_{\Delta_{3|4}\delta^1 \oplus \delta^2 \Delta_{3|3}}(t) = \max(\lceil (t+1)/4 \rceil 3, 2 + \lceil t/3 \rceil 3)$. The interpretation of \mathcal{R}_v 221 is as follows. Let x_1 , respectively x_2 , be the dater functions associated with transitions t_1 , 222 respectively t_2 . If v maps x_1 to x_2 , then \mathcal{R}_v maps the time of the $(k+1)^{st}$ firing of t_1 into the 223 time of the $(k + 1)^{st}$ firing of t_2 . \mathcal{R}_v is therefore called the release-time function associated 224 to the T-operator v. We denote by \mathscr{R} the set of functions \mathcal{R}_v generated by all operators 225 v in \mathcal{T} . Clearly, there is an isomorphism between the set of T-operators and the set \mathcal{R} . 226 The order relation over the dioid \mathcal{T} corresponds to the order induced by the max operation 227 on \mathcal{R} . 228

For $v_1, v_2 \in \mathcal{T}$,

$$v_{1} \succeq v_{2} \Leftrightarrow v_{1} \oplus v_{2} = v_{1} \Leftrightarrow v_{1} \tilde{\oplus} v_{2} x = v_{1} x, \quad \forall x \in \Sigma,$$

$$\Leftrightarrow \max \left((v_{1}x)(k), (v_{2}x)(k) \right) = (v_{1}x)(k), \quad \forall x \in \Sigma, \quad \forall k \in \mathbb{Z},$$

$$\Leftrightarrow \mathcal{R}_{v_{1}}(t) \ge \mathcal{R}_{v_{2}}(t), \quad \forall t \in \mathbb{Z}_{max}.$$
 (13)

Definition 6 (Periodic T-operators) A T-operator $v \in \mathcal{T}$ is said to be ω -periodic if its corresponding function \mathcal{R}_v is quasi- ω -periodic, i.e., $\exists \omega \in \mathbb{N}$ such that $\forall t \in \mathbb{Z}_{max}$, $\mathcal{R}_v(t + \omega) = \omega + \mathcal{R}_v(t)$. The set of ω -periodic T-operators is denoted by \mathcal{T}_{ω} . Moreover the set of periodic operators is defined by $\mathcal{T}_{per} = \bigcup_{\omega \in \mathbb{N}} \mathcal{T}_{\omega}$.

 \mathcal{T}_{ω} and \mathcal{T}_{per} are subdioids of \mathcal{T} .

- Example 3 The operator $\Delta_{4|4}$ is 4-periodic and the operator $\Delta_{3|3}\delta^2$ is 3-periodic as $\mathcal{R}_{\Delta_{4|4}}(t) = \lceil t/4 \rceil 4$ and $\mathcal{R}_{\Delta_{3|3}\delta^2}(t) = \lceil (t+2)/3 \rceil 3$. Therefore $\Delta_{4|4} \in \mathcal{T}_4, \Delta_{3|3}\delta^2 \in \mathcal{T}_3$. Evidently, both operators are also 12-periodic and therefore $\Delta_{4|4}, \Delta_{3|3}\delta^2 \in \mathcal{T}_{12}$.
- **Proposition 3** (Trunk et al. 2018) An ω -periodic T-operator $v \in \mathcal{T}_{\omega}$ has an ω -periodic canonical form given by a finite sum $\bigoplus_{i=1}^{I} \delta^{\tau_i} \Delta_{\omega|\omega} \delta^{\tau'_i}$, where $\tau_i < \tau_{i+1} \forall i \in \{1, \dots, I-1\}$, $I \leq \omega$ and $-\omega < \tau'_i \leq 0, \forall i \in \{1, \dots, I\}$.
- 240 *Remark 2* Clearly each ω -periodic operator $v \in \mathcal{T}_{per}$ is also $n\omega$ -periodic with $n \ge 1$ and 241 can be represented as $\bigoplus_{i=1}^{I} \delta^{\tau_i} \Delta_{n\omega|n\omega} \delta^{\tau'_i}$ and $I \le n\omega$.
- **Proposition 4** *The 1-periodic identity operator* $e = \Delta_{1|1}$ *can be represented in the specific form,*

$$\mathbf{e} = \bigoplus_{i=0}^{\omega-1} \delta^{-i} \Delta_{\omega|\omega} \delta^{1+i-\omega}.$$
 (14)

Discrete Event Dynamic Systems

Proof Recall the isomorphism between T-operators and the set \mathscr{R} . Hence it is sufficient to 244 show that $\mathcal{R}_{e} = \mathcal{R}_{\bigoplus_{i=0}^{\omega-1} \delta^{-i} \Delta_{\omega|\omega} \delta^{1+i-\omega}}$. Moreover, since $\forall t \in \mathbb{Z}_{max}$, $\mathcal{R}_{e}(t) = t$, it remains to 245 show that $\forall t \in \mathbb{Z}_{max}$, $\mathcal{R}_{\bigoplus_{i=0}^{\omega-1} \delta^{-i} \Delta_{\omega|\omega} \delta^{1+i-\omega}}(t) = t$. 246

$$\mathcal{R}_{\bigoplus_{i=0}^{\omega-1}\delta^{-i}\Delta_{\omega|\omega}\delta^{1+i-\omega}}(t) = \max\left(\left\lceil \frac{t+1-\omega}{\omega} \right\rceil \omega, \left\lceil \frac{t+2-\omega}{\omega} \right\rceil \omega - 1, \cdots \left\lceil \frac{t}{\omega} \right\rceil \omega - (\omega-1)\right).$$
(15)

Because $\mathcal{R}_{\bigoplus_{i=0}^{\omega-1} \delta^{-i} \Delta_{\omega|\omega} \delta^{1+i-\omega}}(t)$ is a quasi ω -periodic function, Definition 6, it is sufficient 247 to evaluate Eq. 15 for $t = \{1 - \omega, \dots, 0\}$. This leads to, 248

$$\mathcal{R}_{\bigoplus_{i=0}^{\omega-1}\delta^{-i}\Delta_{\omega|\omega}\delta^{1+i-\omega}}(0) = \max\left(\left\lceil\frac{1-\omega}{\omega}\right\rceil\omega, \left\lceil\frac{2-\omega}{\omega}\right\rceil\omega-1, \cdots, \left\lceil\frac{0}{\omega}\right\rceil\omega-(\omega-1)\right)\right)$$
$$= 0$$
$$\mathcal{R}_{\bigoplus_{i=0}^{\omega-1}\delta^{-i}\Delta_{\omega|\omega}\delta^{1+i-\omega}}(-1) = \max\left(\left\lceil\frac{-\omega}{\omega}\right\rceil\omega, \left\lceil\frac{1-\omega}{\omega}\right\rceil\omega-1, \cdots, \left\lceil\frac{-1}{\omega}\right\rceil\omega-(\omega-1)\right)\right)$$
$$= -1$$
$$\cdots$$

$$\mathcal{R}_{\bigoplus_{i=0}^{\omega-1}\delta^{-i}\Delta_{\omega|\omega}\delta^{1+i-\omega}}(1-\omega) = \max\left(\left\lceil \frac{2-2\omega}{\omega}\right\rceil\omega, \left\lceil \frac{3-2\omega}{\omega}\right\rceil\omega-1, \cdots, \left\lceil \frac{1-\omega}{\omega}\right\rceil\omega-(\omega-1)\right)\right)$$
$$= 1-\omega.$$

249

Example 4 The identity operator $e = \Delta_{1|1}$ can be represented as e = 250 $\Delta_{3|3}\delta^{-2} \oplus \delta^{-1}\Delta_{3|3}\delta^{-1} \oplus \delta^{-2}\Delta_{3|3}$. Figure 3 illustrates that indeed $\mathcal{R}_{e}(t) = 251$ $\mathcal{R}_{\Delta_{3|3}\delta^{-2}\oplus\delta^{-1}\Delta_{3|3}\delta^{-1}\oplus\delta^{-2}\Delta_{3|3}}(t) = \max(\mathcal{R}_{\Delta_{3|3}\delta^{-2}}(t), \mathcal{R}_{\delta^{-1}\Delta_{3|3}\delta^{-1}}(t), \mathcal{R}_{\delta^{-2}\Delta_{3|3}}(t)).$ 252

The time-variant behavior caused by a periodic PS of a transition can be conveniently modeled in the dioid \mathcal{T} .

Fig. 3 $\mathcal{R}_{e}(t) = \max(\mathcal{R}_{\Delta_{3|3}\delta^{-2}}(t), \mathcal{R}_{\delta^{-1}\Delta_{3|3}\delta^{-1}}(t), \mathcal{R}_{\delta^{-2}\Delta_{3|3}}(t))$

For this, recall the definition of a periodic signal S (Definition 1). We associate with a periodic signal $S : \mathbb{Z} \to \{0, 1\}$ characterized by $\langle n_0, \dots n_I \rangle$ and period ω a function $\mathcal{R}_S : \mathbb{Z}_{max} \to \mathbb{Z}_{max}$. This function $\mathcal{R}_S(t)$ is defined by, $\forall j \in \mathbb{Z}$,

$$\mathcal{R}_{S}(t) = \begin{cases} -\infty & \text{if } t = -\infty \\ n_{0} + \omega j & \text{if } (n_{I} - \omega) + \omega j < t \le n_{0} + \omega j, \\ n_{1} + \omega j & \text{if } n_{0} + \omega j < t \le n_{1} + \omega j, \\ \vdots \\ n_{I} + \omega j & \text{if } n_{I-1} + \omega j < t \le n_{I} + \omega j, \\ \infty & \text{if } t = \infty. \end{cases}$$
(16)

Example 5 The function $\mathcal{R}_{S_1}(t)$ (Fig. 4b) associated to the signal S_1 (Fig. 4) given in Example 1 is

$$\mathcal{R}_{S_1}(t) = \begin{cases} -\infty & \text{if } t = -\infty \\ 0 + 4j & \text{if } -3 + 4j < t \le 0 + 4j, \\ 1 + 4j & \text{if } 0 + 4j < t \le 1 + 4j, \\ \infty & \text{if } t = \infty. \end{cases}$$

The value of $\mathcal{R}_{S}(t)$ can be interpreted as the next time when the signal S enables the firing of the corresponding transition. Clearly, an ω -periodic signal S leads to a corresponding function $\mathcal{R}_{S}(t)$ which satisfies $\forall t \in \mathbb{Z}_{max}, \mathcal{R}_{S}(t + \omega) = \omega + \mathcal{R}_{S}(t)$.

To prove that a periodic PS of a transition (i.e., the PS is specified by a periodic signal S) admits an operator representation in the dioid T, we must show the existence of an operator $v \in T$ such that $\mathcal{R}_v = \mathcal{R}_S$.

Proposition 5 (Trunk et al. 2018) A periodic partial synchronization of a transition by the
 signal S in Definition 1 has an operator representation given by

$$v = \delta^{n_0} \Delta_{\omega|\omega} \delta^{-n_I} \oplus \delta^{n_1 - \omega} \Delta_{\omega|\omega} \delta^{-n_0} \oplus \dots \oplus \delta^{n_I - \omega} \Delta_{\omega|\omega} \delta^{-n_{(I-1)}}.$$
 (17)

268 Example 6 Consider the TEGPS shown in Fig. 5, where the signal S_1 is given in Eq. 1

(Example 1) and dater function $x_1(k)$ (resp. $x_2(k)$) is associated with transition t_1 (resp. t_2).

Fig. 4 Signal S_1 and the associated function \mathcal{R}_{S_1}

Discrete Event Dynamic Systems

Fig. 5 Simple TEGPS with a periodic PS of t_2

According to Proposition 5, the behavior of the periodic PS of transition t_2 is modeled by the following operator: 270

$$v_{\mathcal{S}_1} = \delta^0 \Delta_{4|4} \delta^{-1} \oplus \delta^{-3} \Delta_{4|4} \delta^{-0} = \delta^{-3} \Delta_{4|4} \oplus \Delta_{4|4} \delta^{-1},$$

where the latter equality holds as $\delta^0 = e$.

Since the holding time of place p_1 is 0 and there are no initial tokens in the place p_1 this 273 operator describes the firing relation between t_1 and t_2 , i.e., $x_2 = (\delta^{-3}\Delta_{4|4} \oplus \Delta_{4|4}\delta^{-1})x_1$. 274 Therefore, $x_2(k) = \max(-3 + \lceil x_1(k)/4 \rceil 4, \lceil (x_1(k) - 1)/4 \rceil 4)$. 275

Remark 3 Due to the influence of the PS, this firing relation between t_1 and t_2 is timevariant. For instance, if the $(k+1)^{st}$ firing of t_1 is at time instant $x_1(k) = 1$, then the $(k+1)^{st}$ 277 firing of t_2 is at $x_2(k) = 1$, i.e., we have no delay. In contrast, if the $(k+1)^{st}$ firing of t_1 is 278 at time instant $x_1(k) = 2$, then the $(k+1)^{st}$ firing of t_2 is at $x_2(k) = 4$, and the delay is 2. 279

3.2 Dioid $\mathcal{T}[[\gamma]]$

Since the γ operator commutes with all T-operators, i.e., $\forall v \in \mathcal{T}, v\gamma = \gamma v$, we can define 281 the dioid $\mathcal{T}[\![\gamma]\!]$ as follows. 282

Definition 7 (Dioid $\mathcal{T}[\![\gamma]\!]$) We denote by $\mathcal{T}[\![\gamma]\!]$ the quotient dioid in the set of formal power series in one variable γ with exponents in \mathbb{Z} and coefficients in the noncommutative complete dioid \mathcal{T} induced by the equivalence relation, $\forall s \in \mathcal{T}$, 285

$$s = s(\gamma^*). \tag{18}$$

Hence we identify two series s_1 , s_2 with the same equivalence class, if $s_1\gamma^* = s_2\gamma^*$. It is helpful to think of $s\gamma^*$ as the representative of the equivalence class of s. Note that we can interpret elements in $\mathcal{T}[\![\gamma]\!]$ as nondecreasing functions $s : \mathbb{Z} \to \mathcal{T}$, where $s(\eta)$ refers to the coefficient of γ^{η} . Hence, $\forall \eta \in \mathbb{Z}$, $s(\eta) \leq s(\eta + 1)$. For a fundamental mathematical background on quotient dioids, the reader is invited to consult (Baccelli et al. 1992). Moreover, in Hardouin et al. (2018) quotient dioids are studied from a didactic point of view. 291

Definition 8 Let $s_1, s_2 \in \mathcal{T}[[\gamma]]$, then addition and multiplication are defined by

$$s_1 \oplus s_2 := \bigoplus_{\eta \in \mathbb{Z}} (s_1(\eta) \oplus s_2(\eta)) \gamma^{\eta},$$

$$s_1 \otimes s_2 := \bigoplus_{\eta \in \mathbb{Z}} \left(\bigoplus_{n+n'=\eta} (s_1(n) \otimes s_2(n')) \right) \gamma^{\eta}$$

🖄 Springer

280

292

We denote by $\mathcal{T}_{per}[\![\gamma]\!]$ the subdioid of $\mathcal{T}[\![\gamma]\!]$, obtained by restricting the coefficients vto periodic operators, i.e., $v \in \mathcal{T}_{per}$. As before, \oplus defines an order on $\mathcal{T}[\![\gamma]\!]$, i.e., $a, b \in \mathcal{T}[\![\gamma]\!]$: $a \oplus b = b \Leftrightarrow a \leq b$. Hence $\forall s_1, s_2 \in \mathcal{T}[\![\gamma]\!]$, $s_1 \leq s_2 \Leftrightarrow s_1(\eta) \leq s_2(\eta)$, $\eta \in \mathbb{Z}$. A monomial in $\mathcal{T}[\![\gamma]\!]$ is defined by $v\gamma^{\eta}$, where $v \in \mathcal{T}$ and $\eta \in \mathbb{Z}$. The ordering of two monomials $v_1\gamma^{\eta_1}, v_2\gamma^{\eta_2} \in \mathcal{T}[\![\gamma]\!]$ can be checked as follows,

$$v_1 \gamma^{\eta_1} \preceq v_2 \gamma^{\eta_2} \Leftrightarrow \begin{cases} v_1 \preceq v_2, \\ \eta_1 \ge \eta_2. \end{cases}$$
(19)

A polynomial is a finite sum of monomials, i.e., $\bigoplus_{i=1}^{I} v_i \gamma^{\eta_i}$.

Proposition 6 Let $p \in \mathcal{T}_{per}[\![\gamma]\!]$ be a polynomial, then p has a canonical form $p = \bigoplus_{j=1}^{J} v'_{j} \gamma^{\eta'_{j}}$ such that $\forall j \in \{1, \dots, J\}$, the ω -periodic T-operator v'_{j} is in the canonical form of Proposition 3, and coefficients and exponents are strictly ordered, i.e., for $j \in \{1, \dots, J-1\}, \ \eta'_{j} < \eta'_{j+1} \text{ and } v'_{j} < v'_{j+1}.$

Proof Without loss of generality we can assume that $p = \bigoplus_{i=1}^{I} v_i \gamma^{\eta_i}$, with $\eta_i < \eta_{i+1}$, $i = 1, \dots I - 1$. In $\mathcal{T}_{per}[[\gamma]]$, we identify all elements *s* with $s\gamma^*$, hence can also identify *p* and

$$p' = \bigoplus_{i=1}^{I} \left(\underbrace{\bigoplus_{j=1}^{i} v_j}_{v'_i} \right) \gamma^{\eta_i}$$

as $p\gamma^* = p'\gamma^*$. Hence, $v'_i \leq v'_{i+1}$. If $v'_i = v'_{i+1}$ we can write $v'_i\gamma^{\eta_i} \oplus v'_{i+1}\gamma^{\eta_{i+1}} = v'_i(\gamma^{\eta_i} \oplus \gamma^{\eta_{i+1}}) = v'_i\gamma^{\eta_i}$. Therefore, we can write p' as $\bigoplus_{j=1}^J v'_j\gamma^{\eta'_j}$ with $v_j \prec v_{j+1}$ and $J \leq I$.

Definition 9 (Ultimately Cyclic Series in $\mathcal{T}_{per}[\![\gamma]\!]$): A series $s \in \mathcal{T}_{per}[\![\gamma]\!]$ is said to be ultimately cyclic if it can be written as $s = p \oplus q(\gamma^{\eta}\delta^{\tau})^*$, where $\eta, \tau \in \mathbb{N}$ and p, q are polynomials in $\mathcal{T}_{per}[\![\gamma]\!]$.

An element $s \in \mathcal{T}[[\gamma]]$ has a three dimensional graphical representation in $\mathbb{Z}_{max} \times \mathbb{Z}_{max} \times \mathbb{Z}_{max} \times \mathbb{Z}_{max}$ \mathbb{Z} . Given a series $s = \bigoplus_i v_i \gamma^i \in \mathcal{T}[[\gamma]]$, this graphical representation is obtained by depicting for every *i* the release-time function $\mathcal{R}_{v_i} : \mathbb{Z}_{max} \to \mathbb{Z}_{max}$ of the coefficient v_i in the (input-time \times output-time)-plane of *i*.

315 *Example* 7 For the graphical representation of the polynomial $p = (\delta^1 \Delta_{4|4} \delta^{-1} \oplus \delta^{-2} \Delta_{4|4}) \gamma^0 \oplus (\delta^5 \Delta_{4|4} \delta^{-1} \oplus \delta^2 \Delta_{4|4}) \gamma^2 \oplus (\delta^5 \Delta_{4|4} \oplus \delta^6 \Delta_{4|4} \delta^{-1}) \gamma^4 \in \mathcal{T}_{per}[[\gamma]]$, respectively 317 its representative

$$p\gamma^* = (\delta^1 \Delta_{4|4} \delta^{-1} \oplus \delta^{-2} \Delta_{4|4}) \gamma^0 \oplus (\delta^1 \Delta_{4|4} \delta^{-1} \oplus \delta^{-2} \Delta_{4|4}) \gamma^1,$$

$$(\delta^5 \Delta_{4|4} \delta^{-1} \oplus \delta^2 \Delta_{4|4}) \gamma^2 \oplus (\delta^5 \Delta_{4|4} \delta^{-1} \oplus \delta^2 \Delta_{4|4}) \gamma^3$$

$$\oplus (\delta^5 \Delta_{4|4} \oplus \delta^6 \Delta_{4|4} \delta^{-1}) \gamma^4 \oplus (\delta^5 \Delta_{4|4} \oplus \delta^6 \Delta_{4|4} \delta^{-1}) \gamma^5 \oplus \cdots$$

see Fig. 6. The slices in the (I/O-time)-plane for the event-shift values k = 0, 1 are illustrated in Fig. 7a. These slices correspond to the release-time function $\mathcal{R}_{\delta^1 \Delta_{4|4}\delta^{-1} \oplus \delta^{-2} \Delta_{4|4}}$ of the coefficient $\delta^1 \Delta_{4|4}\delta^{-1} \oplus \delta^{-2} \Delta_{4|4}$ for γ^0 (resp. γ^1) in *p*. The slices for k = 2, 3 and $k \ge 4$

Discrete Event Dynamic Systems

Fig. 6 3D representation of polynomial $p = (\delta^1 \Delta_{4|4} \delta^{-1} \oplus \delta^{-2} \Delta_{4|4}) \gamma^0 \oplus (\delta^5 \Delta_{4|4} \delta^{-1} \oplus \delta^2 \Delta_{4|4}) \gamma^2 \oplus (\delta^5 \Delta_{4|4} \oplus \delta^6 \Delta_{4|4} \delta^{-1}) \gamma^4.$

are shown in Fig. 7b and c. To improve readability, the graphical representation for elements $s \in \mathcal{T}[[\gamma]]$ has been truncated to non-negative values in Figs. 6 and 7. 322

An important subdioid of $\mathcal{T}[\![\gamma]\!]$ is the dioid $\mathcal{M}_{in}^{ax}[\![\gamma, \delta]\!]$. This dioid is obtained by restricting the coefficients v to the set $\{\varepsilon, \delta^{\tau}\}$ of T-operators, i.e., an element in $\mathcal{M}_{in}^{ax}[\![\gamma, \delta]\!]$ 324 is written as $\bigoplus_i \delta^{\tau_i} \gamma^{n_i}$ with $\tau_i, n_i \in \mathbb{Z}$. This dioid has been extensively studied, e.g. 325 Gaubert and Klimann (1991) and Baccelli et al. (1992). The product of two monomials 326

Fig. 7 Slices of the coefficients of p in the (I/O-time)-plane. **a** $\mathcal{R}_{\delta^1 \Delta 4|4\delta^{-1} \oplus \delta^{-2} \Delta 4|4}$, **b** $\mathcal{R}_{\delta^5 \Delta 4|4\delta^{-1} \oplus \delta^2 \Delta 4|4}$ and **c** $\mathcal{R}_{\delta^5 \Delta 4|4 \oplus \delta^6 \Delta 4|4\delta^{-1}}$

327 $\gamma^{n_1}\delta^{t_1}, \gamma^{n_2}\delta^{t_2} \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ is obtained by, $\gamma^{n_1}\delta^{t_1} \otimes \gamma^{n_2}\delta^{t_2} = \gamma^{n_1+n_2}\delta^{t_1+t_2}$. Moreover, 328 Eq. 19 is simplified to $\gamma^{n_1}\delta^{t_1} \preceq \gamma^{n_2}\delta^{t_2} \Leftrightarrow (n_1 \ge n_2 \text{ and } t_1 \le t_2)$, and as a consequence of 329 Eq. 10,

$$\gamma^n \delta^{t_1} \oplus \gamma^n \delta^{t_2} = \gamma^n \delta^{\max(t_1, t_2)}, \quad \gamma^{n_1} \delta^t \oplus \gamma^{n_2} \delta^t = \gamma^{\min(n_1, n_2)} \delta^t.$$
(20)

A comprehensive description of calculations with series in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ can be found 330 in Baccelli et al. (1992). It is well known that the input-output behavior of a standard 331 TEG can be described by a transfer function matrix composed of ultimately cyclic series in 332 $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. Moreover, based on $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$, methods for performance evaluation and 333 controller synthesis have been introduced for TEGs, e.g. Gaubert and Klimann (1991), Maia 334 et al. (2003), and Hardouin et al. (2017). In (Hardouin et al. 2009), software tools have been 335 made available for computations in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. The dioid $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ plays a key role 336 in this paper. In particular, in Section 4, we show that all relevant operations on ultimately 337 cyclic series $s \in \mathcal{T}_{per}[[\gamma]]$ can be reduced to operations on matrices in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. We can 338 therefore use the existing tools for \mathcal{M}_{in}^{ax} [[γ , δ]] to study TEGs under periodic PS. 339

340 **3.3 Modeling of TEGsPS in** $\mathcal{T}_{per}[[\gamma]]$

A TEG under periodic PS operating under the earliest functioning rule admits a representation in $\mathcal{T}_{per}[[\gamma]]$ of the form

$$\boldsymbol{x} = \boldsymbol{A}\boldsymbol{x} \oplus \boldsymbol{B}\boldsymbol{u}, \qquad \boldsymbol{y} = \boldsymbol{C}\boldsymbol{x}. \tag{21}$$

This is reminiscent of the state space form in "classical" systems theory. In the sequel, we 343 will therefore refer to this representation as a state space model. x (resp. u, y) refers to 344 the vector of dater functions of internal (resp. input, output) transitions. The matrices $A \in$ 345 $\mathcal{T}_{per}[\![\gamma]\!]^{n \times n}$, $B \in \mathcal{T}_{per}[\![\gamma]\!]^{n \times g}$ and $C \in \mathcal{T}_{per}[\![\gamma]\!]^{p \times n}$ describe the influence of transitions 346 on each other, encoded by operators in $\mathcal{T}_{per}[[\gamma]]$. Hence, *n* refers to the number of internal 347 transitions of the TEGPS, while p and q are the number of output and input transitions. 348 Let us consider a path constituted by the arcs (t_i, p_i) and (p_i, t_o) with a synchronization of 349 transition t_o by a periodic signal S_o . The influence of transition t_i on transition t_o is coded 350 351 as an operator

$$v_{t_0}\delta^{(\phi)_i}\gamma^{(\mathcal{M}_0)_i}$$

where v_{t_o} is the operator representation of the signal S_o corresponding to the PS of t_o (see Example 6), $(\phi)_i$ is the holding time of place p_i and $(\mathcal{M}_0)_i$ is the initial marking of p_i .

Example 8 Recall the TEGPS in Fig. 2 with PS of transition t_2 by the signal, $\forall j \in \mathbb{Z}$

$$\mathcal{S}_2(t) = \begin{cases} 1 & \text{if } t \in \{1+20j\}, \\ 0 & \text{otherwise.} \end{cases}$$

As $\omega = 20$, I = 0, $n_0 = 1$, according to Proposition 5, $v_{S_2} = \delta^1 \Delta_{20|20} \delta^{-1}$. The influence of t₃ on transition t₂ via the path (t₃, p₂)(p₂, t₂), is coded by the operator $v_{S_2} \delta^0 \gamma^2 = v_{S_2} \gamma^2 =$ $\delta^1 \Delta_{20|20} \delta^{-1} \gamma^2$. Moreover, by assigning a dater function *u* (resp. x_1, x_2, y) to transition t₁ (resp. t_2, t_3, t_4), the earliest functioning of the TEGPS is described in state space form $x = Ax \oplus Bu; y = Cx$, where

$$\boldsymbol{A} = \begin{bmatrix} \varepsilon & \delta^1 \Delta_{20|20} \delta^{-1} \gamma^2 \\ \delta^{10} & \varepsilon \end{bmatrix}, \ \boldsymbol{B} = \begin{bmatrix} \delta^1 \Delta_{20|20} \delta^{-1} \\ \varepsilon \end{bmatrix}, \ \boldsymbol{C} = \begin{bmatrix} \varepsilon & \varepsilon \end{bmatrix}.$$

According to Theorem 1, the least solution of equation $x = Ax \oplus Bu$ is $x = A^*Bu$. Therefore, the transfer function matrix H of a TEGPS can be obtained by y = Hu = **Discrete Event Dynamic Systems**

AUTHOR'S PROOF

 CA^*Bu . In Trunk et al. (2018) it was shown that the entries of the transfer function matrix 362 are ultimately cyclic series in $\mathcal{T}_{per}[[\gamma]]$. In order to compute this transfer function matrix, to 363 compute system compositions, and to obtain control, we have to perform addition, multiplication and the Kleene star operation of series in $\mathcal{T}_{per}[[\gamma]]$. In the next section, we show how 365 these operations between series in $\mathcal{T}_{per}[[\gamma]]$ can be reduced to operations between matrices 366 in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. 367

4 Core representation of a series in $\mathcal{T}_{per}[[\gamma]]$

In this section, we propose a specific decomposition of ultimately cyclic series in $\mathcal{T}_{per}[\![\gamma]\!]$. 369 We show that such series $s \in \mathcal{T}_{per}[\![\gamma]\!]$ with period ω can always be represented as s = 370 $\mathbf{m}_{\omega}\mathbf{Q}\mathbf{b}_{\omega}$ where \mathbf{Q} is a square matrix in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ of size $\omega \times \omega$, \mathbf{m}_{ω} is a row vector 371 defined as 372

$$\mathbf{m}_{\omega} := \begin{bmatrix} \Delta_{\omega|1} & \delta^{-1} \Delta_{\omega|1} & \cdots & \delta^{1-\omega} \Delta_{\omega|1} \end{bmatrix}$$
(22)

and \mathbf{b}_{ω} is a column vector defined as

$$\mathbf{b}_{\omega} := \begin{bmatrix} \Delta_{1|\omega} \delta^{1-\omega} \cdots & \Delta_{1|\omega} \delta^{-1} & \Delta_{1|\omega} \end{bmatrix}^T.$$
(23)

This representation is called core representation with core matrix **Q**. We first demonstrate 374 how to obtain this form on a small example and then provide a formal proof. 375

Example 9 Consider the following series in $\mathcal{T}_{per}[[\gamma]]$,

$$s = \Delta_{2|2} \oplus \delta^1 \Delta_{2|2} \delta^{-1} \oplus \delta^2 \Delta_{2|2} \gamma^2 (\delta^2 \gamma^2)^*.$$

Because of $\Delta_{\omega|\varpi} = \Delta_{\omega|b}\Delta_{b|\varpi}$ (Remark 1) and $\delta^{\omega}\Delta_{\omega|\varpi} = \Delta_{\omega|\varpi}\delta^{\varpi}$, see Eq. 12, and as γ 377 commutes with all T-operators, this series can be rewritten as 378

$$s = \Delta_{2|1} \underbrace{e}_{M_1} \Delta_{1|2} \oplus \delta^{-1} \Delta_{2|1} \underbrace{\delta^1}_{M_2} \Delta_{1|2} \delta^{-1} \oplus \Delta_{2|1} \underbrace{\delta^1 \gamma^2 (\delta^1 \gamma^2)^*}_{S_1} \Delta_{1|2}$$

Clearly M_1, M_2 and S_1 are elements in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. We now can rewrite *s* in the core 379 representation, 380

$$s = \underbrace{\left[\begin{array}{cc} \Delta_{2|1} & \delta^{-1} \Delta_{2|1} \end{array}\right]}_{\mathbf{m}_{2}} \underbrace{\left[\begin{array}{c} \varepsilon & \mathbf{e} \oplus \delta^{1} \gamma^{2} (\delta^{1} \gamma^{2})^{*} \\ \delta^{1} & \varepsilon \end{array}\right]}_{\mathbf{Q}} \underbrace{\left[\begin{array}{c} \Delta_{1|2} \delta^{-1} \\ \Delta_{1|2} \end{array}\right]}_{\mathbf{b}_{2}},$$

which is in the required form.

Proposition 7 Let $s = \bigoplus_i v_i \gamma^i \in \mathcal{T}_{per}[\![\gamma]\!]$ be an ω -periodic series, then s can be written as $s = \mathbf{m}_{\omega} \mathbf{Q} \mathbf{b}_{\omega}$, where $\mathbf{Q} \in \mathcal{M}_{in}^{ax} [\![\gamma, \delta]\!]^{\omega \times \omega}$ and \mathbf{m}_{ω} , \mathbf{b}_{ω} have the form Eqs. 22 and 23. 383

Proof s being an ω -periodic series implies that all coefficients v_i of s are ω -periodic Toperators. Then, due to Proposition 3, all coefficients can be expressed in canonical form $v_i = \bigoplus_{j=1}^{J_i} \delta^{\tau_{i_j}} \Delta_{\omega|\omega} \delta^{\tau'_{i_j}}$ with $J_i \leq \omega$ and $-\omega < \tau'_{i_j} \leq 0$. Then s can be rewritten as 386

$$s = \bigoplus_{i} \left(\bigoplus_{j=1}^{J_i} \delta^{\tau_{i_j}} \Delta_{\omega|\omega} \delta^{\tau'_{i_j}} \right) \gamma^i.$$

🖉 Springer

373

376

368

3/8

By using $\Delta_{\omega|\omega} = \Delta_{\omega|1}\Delta_{1|\omega}$ (Remark 1), $\delta^{\omega}\Delta_{\omega|1} = \Delta_{\omega|1}\delta^{1}$ Eq. 12 and $v\gamma = \gamma v$, $\forall v \in \mathcal{T}$, the series *s* is written as

$$s = \bigoplus_{i} \left(\bigoplus_{j=1}^{J_{i}} \delta^{\tilde{\tau}_{i_{j}}} \Delta_{\omega|1} \delta^{\hat{\tau}_{i_{j}}} \gamma^{i} \Delta_{1|\omega} \delta^{\tau'_{i_{j}}} \right)$$

where $-\omega < \tilde{\tau}_{i_j} = \tau_{i_j} - \lceil \tau_{i_j} / \omega \rceil \omega \le 0$ and $\hat{\tau}_{i_j} = \lceil \tau_{i_j} / \omega \rceil$. Observe that $-\omega < \tilde{\tau}_{i_j}, \tau'_{i_j} \le 0$ hence we can express *s* by

$$s = \left[\Delta_{\omega|1} \ \delta^{-1} \Delta_{\omega|1} \ \cdots \ \delta^{1-\omega} \Delta_{\omega|1} \right] \left(\bigoplus_{i} \left(\bigoplus_{j=1}^{J_{i}} \mathbf{Q}_{i_{j}} \right) \right) \begin{bmatrix} \Delta_{1|\omega} \delta^{1-\omega} \\ \cdots \\ \Delta_{1|\omega} \delta^{-1} \\ \Delta_{1|\omega} \end{bmatrix}$$

391 where the entry $(\mathbf{Q}_{i_j})_{1-\tilde{\tau}_{i_j},\omega+\tau'_{i_j}} = \delta^{\hat{\tau}_{i_j}} \gamma^i$ and all other entries of \mathbf{Q}_{i_j} are equal to ε . Hence,

392 *s* is in the required form
$$s = \mathbf{m}_{\omega} \mathbf{Q} \mathbf{b}_{\omega}$$
, where $\mathbf{Q} = \bigoplus_{i} \left(\bigoplus_{j=1}^{J_{i}} \mathbf{Q}_{i_{j}} \right)$.

Let us note that the core **Q** of a series $s \in \mathcal{T}_{per}[[\gamma]]$ is not unique. In other words, we can express the same series with different cores, i.e., we may have $s = \mathbf{m}_{\omega} \mathbf{Q} \mathbf{b}_{\omega} = \mathbf{m}_{\omega} \mathbf{\tilde{Q}} \mathbf{b}_{\omega}$ with $\mathbf{Q}, \mathbf{\tilde{Q}} \in \mathcal{M}_{in}^{ax} [[\gamma, \delta]]^{\omega \times \omega}$ but $\mathbf{Q} \neq \mathbf{\tilde{Q}}$. We illustrate this in the following example.

396 *Example 10* Recall the series $s = \Delta_{2|2} \oplus \delta^1 \Delta_{2|2} \delta^{-1} \oplus \delta^2 \gamma^2 (\delta^2 \gamma^2)^* \Delta_{2|2}$ given in Example 397 9. The series *s* can be expressed by $\mathbf{m}_2 \tilde{\mathbf{Q}} \mathbf{b}_2$ where,

$$\tilde{\mathbf{Q}} = \begin{bmatrix} e & e \oplus \delta^1 \gamma^2 (\delta^1 \gamma^2)^* \\ \delta^1 & \varepsilon \end{bmatrix}$$

398 Clearly $\tilde{\mathbf{Q}} \neq \mathbf{Q}$ see Example 9. However, $\tilde{\mathbf{Q}}$ is a valid core of s since

$$\mathbf{m}_{2}\tilde{\mathbf{Q}}\mathbf{b}_{2} = \mathbf{m}_{2} \begin{bmatrix} \Delta_{1|2}\delta^{-1} \oplus \Delta_{1|2} \oplus \delta^{1}\gamma^{2}(\delta^{1}\gamma^{2})^{*}\Delta_{1|2} \\ \delta^{1}\Delta_{1|2}\delta^{-1} \end{bmatrix}.$$

Because of Eq. 10 $\Delta_{1|2}\delta^{-1} \oplus \Delta_{1|2} = \Delta_{1|2}(\delta^{-1} \oplus \delta^0) = \Delta_{1|2}$, and therefore

$$\mathbf{m}_{2}\tilde{\mathbf{Q}}\mathbf{b}_{2} = \left[\Delta_{2|1} \ \delta^{-1}\Delta_{2|1}\right] \left[\Delta_{1|2} \oplus \delta^{1}\gamma^{2}(\delta^{1}\gamma^{2})^{*}\Delta_{1|2}\right]$$

= $\Delta_{2|1}\Delta_{1|2} \oplus \Delta_{2|1}\delta^{1}\gamma^{2}(\delta^{1}\gamma^{2})^{*}\Delta_{1|2} \oplus \delta^{-1}\Delta_{2|1}\delta^{1}\Delta_{1|2}\delta^{-1}$
= $\Delta_{2|2} \oplus \delta^{1}\Delta_{2|2}\delta^{-1} \oplus \delta^{2}\gamma^{2}(\delta^{2}\gamma^{2})^{*}\Delta_{2|2} = s.$

To show how the core form can be used to perform basic operations between ultimately cyclic series in $\mathcal{T}_{per}[[\gamma]]$ we first elaborate some properties of the \mathbf{m}_{ω} -vector and \mathbf{b}_{ω} -vector. The scalar product $\mathbf{m}_{\omega}\mathbf{b}_{\omega}$ of these two vectors is the identity e:

$$\mathbf{m}_{\omega} \otimes \mathbf{b}_{\omega} = \delta^{0} \varDelta_{\omega|1} \varDelta_{1|\omega} \delta^{1-\omega} \oplus \dots \oplus \delta^{1-\omega} \varDelta_{\omega|1} \varDelta_{1|\omega} \delta^{0}$$
$$= \delta^{0} \varDelta_{\omega|\omega} \delta^{1-\omega} \oplus \dots \oplus \delta^{1-\omega} \varDelta_{\omega|\omega} \delta^{0} = \mathbf{e}, \tag{24}$$

where the latter equality holds because of Proposition 4. The dyadic product $\mathbf{b}_{\omega} \otimes \mathbf{m}_{\omega}$ is a square matrix in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ denoted by **N**. For $i, j \in \{1, \dots, \omega\}$, the entry $(\mathbf{b}_{\omega} \otimes \mathbf{m}_{\omega})_{i,j}$ is given by,

$$(\mathbf{N})_{i,j} = (\mathbf{b}_{\omega} \otimes \mathbf{m}_{\omega})_{i,j} = \Delta_{1|\omega} \delta^{(i-j)+(1-\omega)} \Delta_{\omega|1}.$$

Deringer

Discrete Event Dynamic Systems

Then, because of $\Delta_{1|\omega}\delta^{-\omega} = \delta^{-1}\Delta_{1|\omega}$ and $\Delta_{1|\omega}\delta^n\Delta_{\omega|1} = \Delta_{1|1} = e$ for $-\omega < n \le 0$, see 406 Remark 1, 407

i.e.,

$$(\mathbf{N})_{i,j} = \begin{cases} \mathbf{e}, & j \leq i, \\ \delta^{-1}, & j > i, \end{cases}$$

$$\mathbf{N} = \mathbf{b}_{\omega} \otimes \mathbf{m}_{\omega} = \begin{bmatrix} \mathbf{e} \ \delta^{-1} \cdots \delta^{-1} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \delta^{-1} \\ \mathbf{e} \cdots & \cdots & \mathbf{e} \end{bmatrix}.$$
 (25)

Proposition 8 (Trunk et al. 2018) The following relations hold:

$$\begin{split} \mathbf{N} \oplus \boldsymbol{I} &= \mathbf{N}, \\ \mathbf{N} \otimes \mathbf{N} &= \mathbf{N}, \\ \mathbf{N} \otimes \mathbf{b}_{\omega} &= \mathbf{b}_{\omega}, \\ \mathbf{m}_{\omega} \otimes \mathbf{N} &= \mathbf{m}_{\omega}. \end{split}$$

4.1 Greatest core matrix

From Example 10 it is clear that a series $s \in \mathcal{T}_{per}[\![\gamma]\!]$ may have several core representations. 411 In the following, we show that a series $s \in \mathcal{T}_{per}[\![\gamma]\!]$ admits a unique greatest core, denoted 412 $\hat{\mathbf{Q}}$, i.e, $s = \mathbf{m}_{\omega} \hat{\mathbf{Q}} \mathbf{b}_{\omega}$ and $\hat{\mathbf{Q}} \succeq \mathbf{Q}$ for all core matrices \mathbf{Q} such that $s = \mathbf{m}_{\omega} \mathbf{Q} \mathbf{b}_{\omega}$. Note that, 413 the inequality is in the sense of the dioid $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. This decomposition $s = \mathbf{m}_{\omega} \hat{\mathbf{Q}} \mathbf{b}_{\omega}$ is 414 particularly useful to compute residuation of series in $\mathcal{T}_{per}[[\gamma]]$. 415

Proposition 9 For
$$D \in \mathcal{T}[[\gamma]]^{1 \times \omega}$$
 and $P \in \mathcal{T}[[\gamma]]^{\omega \times 1}$ one has: 416

$$\mathbf{m}_{\omega} \, \mathbf{b} D = \mathbf{b}_{\omega} \otimes D, \tag{26}$$

'OC

$$\boldsymbol{P} \not = \boldsymbol{P} \otimes \boldsymbol{\mathsf{m}}_{\omega}. \tag{27}$$

For $\boldsymbol{O} \in \mathcal{T}[\![\boldsymbol{\gamma}]\!]^{n \times \omega}$ and $\boldsymbol{G} \in \mathcal{T}[\![\boldsymbol{\gamma}]\!]^{\omega \times n}$ one has:

$$(O\mathbf{N}) \not \in \mathbf{m}_{\omega} = O\mathbf{N} \otimes \mathbf{b}_{\omega}, \tag{28}$$

$$\mathbf{b}_{\omega} \diamond (\mathbf{N} \mathbf{G}) = \mathbf{m}_{\omega} \otimes (\mathbf{N} \mathbf{G}). \tag{29}$$

Proof By definition, $\mathbf{m}_{\omega} \setminus D$ is the greatest solution of inequality

$$\mathbf{m}_{\omega} \otimes \mathbf{X} \preceq \mathbf{D}. \tag{30}$$

Clearly since $\mathbf{m}_{\omega}\mathbf{b}_{\omega} = e$, $\mathbf{b}_{\omega}D$ satisfies Eq. 30 with equality. It remains to be shown that $\mathbf{b}_{\omega}D$ is the greatest solution of Eq. 30. For this, assume that there exists $X' \succeq \mathbf{b}_{\omega}D$ solving Eq. 30, i.e., $\mathbf{m}_{\omega}X' \preceq D$. Multiplication is order preserving, hence left multiplication by \mathbf{b}_{ω} results in 420

$$\mathsf{N}\otimes X' \preceq \mathsf{b}_\omega D.$$

Furthermore, $X' \leq \mathbf{N} \otimes X'$ as $\mathbf{N} = I \oplus \mathbf{N}$. Hence, $X' \leq \mathbf{b}_{\omega} D$ and therefore $X' = \mathbf{b}_{\omega} D$. 423 This proves that $\mathbf{b}_{\omega} D$ is indeed the greatest solution of Eq. 30. Similarly, $X = P\mathbf{m}_{\omega}$ solves 424 $X\mathbf{b}_{\omega} \leq P$ with equality. Suppose $X' \geq P\mathbf{m}_{\omega}$ is a solution, i.e., $X' \otimes \mathbf{b}_{\omega} \leq P$. Right 425 multiplication by \mathbf{m}_{ω} gives 426

$$X' \preceq X' \otimes \mathsf{N} \preceq P \otimes \mathsf{m}_{\omega}.$$

Springer

409

410

408

417

427 Therefore $X' = P \otimes \mathbf{m}_{\omega}$ and $P \otimes \mathbf{m}_{\omega}$ is indeed the greatest solution, and hence $P \otimes \mathbf{m}_{\omega} = P \not \circ \mathbf{b}_{\omega}$. To prove Eq. 28, note that by Proposition 8 $O\mathbf{N} \otimes \mathbf{b}_{\omega} \otimes \mathbf{m}_{\omega} =$ $O\mathbf{N}$. Therefore $O\mathbf{N} \otimes \mathbf{b}_{\omega}$ is a solution of $X \otimes \mathbf{m}_{\omega} \preceq O\mathbf{N}$. Assume that $X' \succeq$ $O\mathbf{N} \otimes \mathbf{b}_{\omega}$ is another solution, i.e., $X'\mathbf{m}_{\omega} \preceq O\mathbf{N}$. Right multiplication by \mathbf{b}_{ω} results in $X' \preceq O\mathbf{N} \otimes \mathbf{b}_{\omega}$. Hence, $O\mathbf{N} \otimes \mathbf{b}_{\omega}$ is the greatest solution of $X \otimes \mathbf{m}_{\omega} \preceq O\mathbf{N}$ and $X \otimes \mathbf{m}_{\omega} \preceq O\mathbf{N}$ and $O\mathbf{N} \otimes \mathbf{b}_{\omega} = O\mathbf{N} \not < \mathbf{m}_{\omega}$. Equation 29 is shown analogously. \Box

433 **Proposition 10** Let $\mathbf{m}_{\omega}\mathbf{Qb}_{\omega} \in \mathcal{T}_{per}[[\gamma]]$ be a decomposition of $s \in \mathcal{T}_{per}[[\gamma]]$. The greatest 434 core matrix is given by $\hat{\mathbf{Q}} = \mathbf{NQN}$.

435 *Proof* Consider the inequality $\mathbf{m}_{\omega} \tilde{X} \mathbf{b}_{\omega} \leq s$. Because of Proposition 9, its greatest solution 436 $\tilde{X} = \mathbf{m}_{\omega} \Im \phi \mathbf{b}_{\omega} = \mathbf{m}_{\omega} \Im \mathbf{m}_{\omega} \mathbf{Q} \mathbf{b}_{\omega} \phi \mathbf{b}_{\omega}$ is given by

 $ilde{X} = \mathbf{b}_{\omega} \mathbf{m}_{\omega} \mathbf{Q} \mathbf{b}_{\omega} \mathbf{m}_{\omega} = \mathbf{N} \mathbf{Q} \mathbf{N} = \hat{\mathbf{Q}}.$

437 Moreover, because of (Proposition 8)

$$\mathbf{m}_{\omega}\hat{\mathbf{Q}}\mathbf{b}_{\omega} = \mathbf{m}_{\omega}\mathbf{N}\mathbf{Q}\mathbf{N}\mathbf{b}_{\omega} = \mathbf{m}_{\omega}\mathbf{Q}\mathbf{b}_{\omega} = \mathbf{M}_{\omega}\mathbf{Q}\mathbf{b}_{\omega}$$

438

439 **4.2 Operations between core matrices**

To perform addition and multiplication of two ultimately cyclic series $s_1 = \mathbf{m}_{\omega_1} \mathbf{Q}_1 \mathbf{b}_{\omega_1}$, $s_2 = \mathbf{m}_{\omega_2} \mathbf{Q}_2 \mathbf{b}_{\omega_2} \in \mathcal{T}_{per}[[\gamma]]$ in core form, it is necessary to express the core matrices $\mathbf{Q}_1 \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]^{\omega_1 \times \omega_1}$ and $\mathbf{Q}_2 \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]^{\omega_2 \times \omega_2}$ with identical dimensions. This is possible by expressing both series with their least common period $\omega = lcm(\omega_1, \omega_2)$.

444 **Proposition 11** (Trunk et al. 2018)

445 A series $s = \mathbf{m}_{\omega} \mathbf{Q} \mathbf{b}_{\omega} \in \mathcal{T}_{per}[[\gamma]]$ can be expressed with a multiple period n ω by extend-446 ing the core matrix \mathbf{Q} , i.e., $s = \mathbf{m}_{\omega} \mathbf{Q} \mathbf{b}_{\omega} = \mathbf{m}_{n\omega} \mathbf{Q}' \mathbf{b}_{n\omega}$, where $\mathbf{Q}' \in \mathcal{M}_{in}^{ax} [[\gamma, \delta]]^{n\omega \times n\omega}$ is 447 given by

$$= \begin{bmatrix} \Delta_{1|n} \delta^{1-n} \mathbf{NQN} \Delta_{n|1} \cdots \Delta_{1|n} \delta^{1-n} \mathbf{NQN} \delta^{1-n} \Delta_{n|1} \\ \vdots \\ \Delta_{1|n} \mathbf{NQN} \Delta_{n|1} \cdots \Delta_{1|n} \mathbf{NQN} \delta^{1-n} \Delta_{n|1} \end{bmatrix}$$

448 **Proposition 12** (Sum of series (Trunk et al. 2018)) Let $s = \mathbf{m}_{\omega}\mathbf{Q}\mathbf{b}_{\omega}, s' = \mathbf{m}_{\omega}\mathbf{Q}'\mathbf{b}_{\omega} \in \mathcal{T}_{per}[[\gamma]]$. Then $s \oplus s' = \mathbf{m}_{\omega}\mathbf{Q}''\mathbf{b}_{\omega}$, where $\mathbf{Q}'' = \mathbf{Q} \oplus \mathbf{Q}'$.

450 **Proposition 13** (Product of series (Trunk et al. 2018)) Let $s = \mathbf{m}_{\omega} \mathbf{Q} \mathbf{b}_{\omega}$, $s' = \mathbf{m}_{\omega} \mathbf{Q}' \mathbf{b}_{\omega} \in \mathcal{T}_{per}[[\gamma]]$. Then $s \otimes s' = \mathbf{m}_{\omega} \mathbf{Q}'' \mathbf{b}_{\omega}$, where $\mathbf{Q}'' = \mathbf{Q} \mathbf{N} \mathbf{Q}'$.

452 **Proposition 14** (Kleene star of series (Trunk et al. 2018)) Let $s = \mathbf{m}_{\omega} \mathbf{Q} \mathbf{b}_{\omega} \in \mathcal{T}_{per}[[\gamma]]$. 453 *Then*,

$$s^* = \mathbf{m}_{\omega} (\mathbf{QN})^* \mathbf{b}_{\omega}. \tag{31}$$

454 **Proposition 15** Let $s = \mathbf{m}_{\omega} \hat{\mathbf{Q}} \mathbf{b}_{\omega}$, $s' = \mathbf{m}_{\omega} \hat{\mathbf{Q}}' \mathbf{b}_{\omega}$ be ultimately cyclic series in $\mathcal{T}_{per}[[\gamma]]$ with 455 $\hat{\mathbf{Q}}$, respectively $\hat{\mathbf{Q}}'$, their greatest core matrices. Then,

$$s' \diamond s = \mathbf{m}_{\omega}(\hat{\mathbf{Q}}' \diamond \hat{\mathbf{Q}}) \mathbf{b}_{\omega}, \qquad s \phi s' = \mathbf{m}_{\omega}(\hat{\mathbf{Q}} \phi \hat{\mathbf{Q}}') \mathbf{b}_{\omega}$$

Discrete Event Dynamic Systems

Proof

$$\begin{pmatrix} \mathbf{m}_{\omega} \hat{\mathbf{Q}}' \mathbf{b}_{\omega} \end{pmatrix} \diamond \begin{pmatrix} \mathbf{m}_{\omega} \hat{\mathbf{Q}} \mathbf{b}_{\omega} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{Q}}' \mathbf{b}_{\omega} \end{pmatrix} \diamond \begin{pmatrix} \mathbf{m}_{\omega} \diamond (\mathbf{m}_{\omega} \hat{\mathbf{Q}} \mathbf{b}_{\omega}) \end{pmatrix}, \quad \text{(because of (3))}$$

$$= \begin{pmatrix} \hat{\mathbf{Q}}' \mathbf{b}_{\omega} \end{pmatrix} \diamond \begin{pmatrix} \mathbf{b}_{\omega} \mathbf{m}_{\omega} \hat{\mathbf{Q}} \mathbf{b}_{\omega} \end{pmatrix}, \quad \text{(because of (26))}$$

$$= \begin{pmatrix} \hat{\mathbf{Q}}' \mathbf{b}_{\omega} \end{pmatrix} \diamond \begin{pmatrix} \hat{\mathbf{Q}} \mathbf{b}_{\omega} \end{pmatrix}, \quad \text{(as } \mathbf{N} \hat{\mathbf{Q}} = \hat{\mathbf{Q}}, \text{ Proposition 10)}$$

$$= \begin{pmatrix} \hat{\mathbf{Q}}' \mathbf{b}_{\omega} \end{pmatrix} \diamond \begin{pmatrix} \hat{\mathbf{Q}} \phi \mathbf{m}_{\omega} \end{pmatrix} \quad (\text{from (28) and Proposition 10)}$$

$$= \mathbf{b}_{\omega} \diamond \begin{pmatrix} \hat{\mathbf{Q}}' \diamond (\hat{\mathbf{Q}} \phi \mathbf{m}_{\omega}) \end{pmatrix}, \quad (\text{because of (3))}$$

$$= \mathbf{b}_{\omega} \diamond \begin{pmatrix} (\hat{\mathbf{Q}}' \diamond \hat{\mathbf{Q}}) \phi \mathbf{m}_{\omega} \end{pmatrix} \quad (\text{because of (5))}$$

$$= \mathbf{m}_{\omega} (\hat{\mathbf{Q}}' \diamond \hat{\mathbf{Q}}) \mathbf{b}_{\omega}, \quad (\text{because of Proposition 9).$$

The proof of the second part of Proposition 15 is analogous.

Due to Propositions 12, 13, 14 and 15, it is clear that computation of the sum and product, 457 Kleene star operation and product residuation of ultimately cyclic series in $\mathcal{T}_{per}[[\gamma]]$ can be 458 done based on the core of the series, i.e. in the dioid $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. Finally, let us note that 459 this core form of series $s \in \mathcal{T}_{per}[[\gamma]]$ is similar to the core form of series $s \in \mathcal{E}[[\delta]]$, see 460 (Trunk et al. 2017a). More generally the dioid $\mathcal{T}_{per}[[\gamma]]$ with periodic time-operators can 461 be seen as the counter part of the dioid $\mathcal{E}[[\delta]]$, introduced in Cottenceau et al. (2014), with 462 periodic event-operators. The dioid $\mathcal{E}[\delta]$ is useful to obtain transfer function matrices for 463 WBTEG. 464

5 Output reference control

In this section, we address the following control problem for TEGs under periodic PS. A 466 reference dater function \overline{z} is given for the output \overline{y} . We want to determine the greatest input 467 dater function \bar{u} that leads to an output $\bar{y} \leq \bar{z}$. The reference dater specifies that the firings 468 of the output transition (which in a manufacturing context, may for example correspond to 469 completion of workpieces) should occur no latter than given instants of time. This has to be 470 achieved by firing the input transition as late as possible. In a manufacturing context, this 471 may correspond to feeding raw material as late as possible. This kind of optimal output refer-472 ence control is often called "just-in-time" control. For standard TEGs the problem of output 473 reference control was studied in Baccelli et al. (1992), Cohen et al. (1989), Menguy et al. 474 (1998), and Menguy et al. (2000). It is well known for standard TEGs, that the output to an 475 arbitrary input dater function can simply be computed by using the transfer function model 476 $h \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ of the TEG and expressing the input dater as a series $u \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. 477 Then $y = h \otimes u$. Hence, the optimal control problem for standard TEGs simply amounts 478 computing $u_{opt} = h \, \delta z$, see Baccelli et al. (1992) and Cohen et al. (1989) for a detailed 479 description. In the following, we show how the earliest response of a TEG under periodic 480 PS can be computed based on its transfer function $h \in \mathcal{T}_{per}[[\gamma]]$ and then how the optimal 481 just-in-time control problem for a TEG under periodic PS can be addressed. For this, we 482 first need to provide some additional algebraic background. 483

456

484 5.1 Subdioids of $\mathcal{T}_{per}[[\gamma]]$

Recall that an operator $v \in \mathcal{T}$ is called ω -periodic if $\exists \omega \in \mathbb{N}$ such that $\forall k \in \mathbb{Z}_{max}$, $\mathcal{R}_v(k + \omega) = \omega + \mathcal{R}_v(k)$ (Definition 6) and that the set of ω -periodic T-operators is denoted by \mathcal{T}_{ω} . Analogously we say $s \bigoplus_i v_i \gamma^i \in \mathcal{T}_{per}[[\gamma]]$ is an ω -periodic series, iff all coefficients are ω -periodic T-operators, i.e., $\forall i, v_i \in \mathcal{T}_{\omega}$. The set of ω -periodic series is denoted by $\mathcal{T}_{\omega}[[\gamma]]$.

Proposition 16 The sest of ω -periodic series $\mathcal{T}_{\omega}[\![\gamma]\!]$ with addition and multiplication given in Definition 8 is a complete subdioid of the dioid $\mathcal{T}_{per}[\![\gamma]\!]$.

Proof According to Propositions 12 and 13, $\mathcal{T}_{\omega}[\![\gamma]\!]$ is closed under (infinite) addition and multiplication.

493 Remark 4 The subdioid $\mathcal{T}_1[\![\gamma]\!]$ of $\mathcal{T}_{per}[\![\gamma]\!]$, i.e. the set of 1-periodic series, is the dioid 494 $\mathcal{M}_{in}^{ax}[\![\gamma, \delta]\!]$. Moreover, as any 1-periodic series is also ω -periodic ($\omega \in \mathbb{N}$), $\mathcal{M}_{in}^{ax}[\![\gamma, \delta]\!]$

494 $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. Moreover, as any 1-periodic series 495 is subdioid of $\mathcal{T}_{\omega}[[\gamma]]$ for any $\omega \in \mathbb{N}$.

496 Due to the subdioid structure of $\mathcal{T}_{per}[[\gamma]]$, one can define the canonical injection Inj :

497 $\mathcal{M}_{in}^{ax}[[\gamma, \delta]] \to \mathcal{T}_{per}[[\gamma]]$, with $\operatorname{Inj}(x) = x$. For a graphical illustration of this canonical 498 injection see the following example.

499 *Example 11* Let us consider the series $s = \gamma^1 \delta^2 \oplus (\gamma^3 \delta^3 \oplus \gamma^5 \delta^4) (\gamma^3 \delta^2)^* \in \mathcal{M}_{in}^{ax} [[\gamma, \delta]],$

with a graphical representation given in Fig. 8a. The graphical representation of the canon-

ical injection $\text{Inj}(s) \in \mathcal{T}_{per}[[\gamma]]$ is shown in Fig. 8b. The series $s \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ (Fig. 8a)

(a) Graphical representation of $s \in \mathcal{M}_{in}^{ax} [\gamma, \delta].$

(b) Graphical representation of $\text{Inj}(s) \in \mathcal{T}_{per}[\![\gamma]\!].$

Fig. 8 Illustration of the canonical injection Inj : $\mathcal{M}_{in}^{ax}[[\gamma, \delta]] \to \mathcal{T}_{per}[[\gamma]]$ of the series $s = \gamma^1 \delta^2 \oplus (\gamma^3 \delta^3 \oplus \gamma^5 \delta^4) (\gamma^3 \delta^2)^* \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$

Discrete Event Dynamic Systems

AUTHOR'S PROOF

corresponds to the event-shift/output-time plane for the input-time value 0 of the 3D representation of the series $\text{Inj}(s) \in \mathcal{T}_{per}[\![\gamma]\!]$ (Fig. 8b). Moreover, the canonical injection $\text{Inj}(s) \in \mathcal{T}_{per}[\![\gamma]\!]$ is 1-periodic, this means the coefficients v_i of γ^i are 1-periodic, i.e., $\mathcal{R}_{v_i}(t)$ are quasi 1-periodic. Therefore, the event-shift/output-time plane for the input-time value 2 to the series $\delta^1 s \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ and for the input-time value 2 to the series $\delta^2 s \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$, etc.

Lemma 1 Let $v\gamma^n \in \mathcal{T}_{\omega}[[\gamma]]$ be an ω -periodic monomial. Then the residual $\operatorname{Inj}^{\sharp}(v\gamma^n)$ is 508 given by 509

$$\operatorname{Inj}^{\sharp}(v\gamma^{n}) = \delta^{\min_{t=0,\cdots,v-1}(\mathcal{R}_{v}(t)-t)}\gamma^{n}.$$
(32)

Proof By definition, $\text{Inj}^{\sharp}(v\gamma^n)$ is the greatest solution $x \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ of the following 510 inequality: 511

$$v\gamma^{n} \succeq \operatorname{Inj}(x) = \operatorname{Inj}\left(\bigoplus_{i} \gamma^{\eta_{i}} \delta^{\zeta_{i}}\right) = \bigoplus_{i} \gamma^{\eta_{i}} \delta^{\zeta_{i}}.$$
 (33)

Clearly, the least η_i such that inequality Eq. 33 holds are *n* and thus,

$$v\gamma^{n} \succeq \bigoplus_{i} (\gamma^{n} \delta^{\zeta_{i}}) = \gamma^{n} \delta^{\tau}.$$
(34)

where the latter equality holds for $\tau = \max_{i}(\zeta_{i})$, because of Eq. 20. Since the inequality 513 $v\gamma^{n} \succeq \gamma^{n}\delta^{\tau}$ in $\mathcal{T}_{\omega}[\![\gamma]\!]$ holds iff the inequality $v \ge \delta^{\tau}$ in \mathcal{T}_{ω} holds, it remains to find the 514 greatest τ such that $v \ge \delta^{\tau}$ holds. By considering the isomorphism between T-operators and 515 release-time functions, see Eq. 13, this is equivalent to $\mathcal{R}_{v}(t) \ge \mathcal{R}_{\delta^{\tau}}(t), \forall t \in \mathbb{Z}_{max}$.

By using $\mathcal{R}_{\delta^{\tau}}(t) = \tau + t$, see Eq. 7, one obtains

$$\mathcal{R}_{v}(t) \geq \tau + t \Leftrightarrow \tau \leq \mathcal{R}_{v}(t) - t, \quad \forall t \in \mathbb{Z}_{max}.$$
(35)

Since \mathcal{R}_v is a quasi ω -periodic function it is sufficient to evaluate the function for $\forall t \in \{0, \dots, \omega-1\}$. Therefore the greatest τ such that Eq. 35 (resp. Eq. 34) holds is 519

$$\tau = \min_{t=0,\dots,\omega-1} \left(\mathcal{R}_{\nu}(t) - t \right).$$

Lemma 1 can be extended to arbitrary series in $\mathcal{T}_{\omega}[[\gamma]]$. To do this, note that the canonical representation in Proposition 6 can be generalized to infinite sums. 522

Proposition 17 Let $s = \bigoplus_i v_i \gamma^{n_i} \in \mathcal{T}_{\omega}[\![\gamma]\!]$ be an ω -periodic series in canonical 523 representation. Then 524

$$\operatorname{Inj}^{\sharp}(s) = \bigoplus_{i} \delta^{\min_{t=0,\cdots,\omega-1} (\mathcal{R}_{v_{i}}(t)-t)} \gamma^{n_{i}}.$$
(36)

Proof Consider $s = \bigoplus_i v_i \gamma^{n_i}$ in the canonical form, i.e., $n_i < n_{i+1}$ and $v_i \prec v_{i+1}$ and let \mathcal{R}_{v_i} be the release-time function associated with v_i . Recall that $\text{Inj}^{\sharp}(s)$ is the greatest solution x in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ of inequality $\text{Inj}(x) \preceq s$. This is given by $\bigoplus_i \delta^{\tau_i} \gamma^{n_i}$ where τ_i is the greatest integer such that $\delta^{\tau_i} \preceq v_i$. Repeating the first step of the proof of Lemma 1, this is given by $\tau_i = \min_{t=0, \dots = 1} (\mathcal{R}_{v_i}(t) - t)$.

512

530 5.1.1 Zero slice mapping $\Psi_{\omega} : \mathcal{T}_{\omega}[\![\gamma]\!] \to \mathcal{M}_{in}^{ax}[\![\gamma, \delta]\!]$

- Recall that $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ is a subdioid of $\mathcal{T}_{\omega}[[\gamma]]$, hence we can define a specific projection from $\mathcal{T}_{\omega}[[\gamma]]$ into $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ as follows.
- 533 **Definition 10** Let $s = \bigoplus_i v_i \gamma^{n_i} \in \mathcal{T}_{\omega}[\gamma]$ be an ω -periodic series, then

$$\Psi_{\omega}(s) = \Psi_{\omega}\left(\bigoplus_{i} v_{is} \gamma^{n_{i}}\right) = \bigoplus_{i} \gamma^{n_{i}} \delta^{\mathcal{R}_{v_{i}}(0)}.$$
(37)

This projection Ψ_{ω} has an intuitive graphical interpretation. For a given $s \in \mathcal{T}_{\omega}[\![\gamma]\!]$ the series $\Psi_{\omega}(s) \in \mathcal{M}_{in}^{ax}[\![\gamma, \delta]\!]$ corresponds to the slice in the event/output-time plane of the 3D representation of $s \in \mathcal{T}_{\omega}[\![\gamma]\!]$ at the input-time value 0. Thus, this projection is also called zero-slice mapping.

538 Example 12 Consider the polynomial $p = (\delta^1 \Delta_{4|4} \delta^{-1} \oplus \delta^{-2} \Delta_{4|4}) \gamma^0 \oplus (\delta^5 \Delta_{4|4} \delta^{-1} \oplus \delta^2 \Delta_{4|4}) \gamma^2 \oplus (\delta^5 \Delta_{4|4} \oplus \delta^6 \Delta_{4|4} \delta^{-1}) \gamma^4 \in \mathcal{T}_{per}[[\gamma]]$ from Example 7 with graphical 540 representation given in Fig. 6. Then,

$$\Psi_4(p) = \delta^1 \gamma^0 \oplus \delta^5 \gamma^2 \oplus \delta^6 \gamma^4.$$

- The series $\Psi_4(p)$ corresponds to the slice in the (event-shift/output-time)-plane for the input-time value t = 0 in the 3D representation of p, see Fig. 9a and b.
- 543 The projection Ψ_{ω} is by definition lower-semicontinuous, therefore Ψ_{ω} is residuated.

(a) 3D representation of p

Discrete Event Dynamic Systems

Proposition 18 Let
$$s = \bigoplus_i \gamma^{n_i} \delta^{\tau_i} \in \mathcal{M}_{in}^{ax} [[\gamma, \delta]]$$
. The residual $\Psi_{\omega}^{\sharp}(s) \in \mathcal{T}_{\omega}[[\gamma]]$ of s is 544

$$\Psi_{\omega}^{\sharp}(s) = \bigoplus_{i} \gamma^{n_{i}} \delta^{\tau_{i}} \Delta_{\omega|\omega} = s \Delta_{\omega|\omega}.$$
(38)

Proof By definition of the residuated mapping, $\Psi_{\omega}^{\sharp}(s) \in \mathcal{T}_{\omega}[\![\gamma]\!]$ is the greatest solution of 545 inequality 546

$$s = \bigoplus_{i} \gamma^{n_i} \delta^{\tau_i} \succeq \Psi_{\omega}(x).$$
⁽³⁹⁾

We first show that Eq. 38 satisfies Eq. 39 with equality.

$$\Psi_{\omega}\left(\bigoplus_{i}\gamma^{n_{i}}\delta^{\tau_{i}}\Delta_{\omega|\omega}\right)=\bigoplus_{i}\gamma^{n_{i}}\delta^{\mathcal{R}_{\delta^{\tau_{i}}}\Delta_{\omega|\omega}(0)}=\bigoplus_{i}\gamma^{n_{i}}\delta^{\tau_{i}},$$

since $\mathcal{R}_{\delta^{\tau_i}\Delta_{\omega|\omega}}(0) = \tau_i + \lceil 0/\omega \rceil \omega = \tau_i$, see Eqs. 7 and 9. Taking into account that Ψ_{ω} is isotone, it remains to show that $\bigoplus_i \gamma^{n_i} \delta^{\tau_i} \Delta_{\omega|\omega}$ is the greatest solution of 549

$$s = \bigoplus_{i} \gamma^{n_i} \delta^{\tau_i} = \Psi_{\omega}(x) \tag{40}$$

For this, let $x = \bigoplus_{j} v_{j} \gamma^{n_{j}}$ be an arbitrary series in $\mathcal{T}_{\omega}[\![\gamma]\!]$. Then $\Psi_{\omega}(x) = \bigoplus_{j} \gamma^{n_{j}} \delta^{\mathcal{R}_{v_{j}}(0)}$. 550 Clearly, to achieve equality we need $\eta_{j} = n_{i}$ and $\mathcal{R}_{v_{j}}(0) = \tau_{i}$. Furthermore, we are looking for the greatest $v_{j} \in \mathcal{T}_{\omega}$, such that $\tau_{i} = \mathcal{R}_{v_{j}}(0)$. Due to the canonical form (Proposition 3) we can write an ω -periodic T-operator v_{j} as $\bigoplus_{i=1}^{\omega} \delta^{\zeta_{i}} \Delta_{\omega|\omega} \gamma^{\zeta'_{i}}$ with $-\omega < \zeta'_{i} \le 0$. This operator corresponds to the release-time function

$$\mathcal{R}_{v_j}(t) = \max_{i=1,\cdots,\omega} \left(\zeta_i + \left\lceil \frac{\zeta_i' + t}{\omega} \right\rceil \omega \right).$$

Now we examine $\mathcal{R}_{v_j}(t)$ for t = 0, thus

$$\mathcal{R}_{v_j}(0) = \max_{i=1,\cdots,\omega} \left(\zeta_i + \left\lceil \frac{\zeta_i'}{\omega} \right\rceil \omega \right).$$

Recall that $-\omega < \zeta'_i \le 0$, hence $\mathcal{R}_{v_j}(t) = \tau_i + \lceil (0+t)/\omega \rceil \omega$ is the greatest quasi ω periodic release-time function such that $\mathcal{R}_{v_j}(0) = \tau_i$. The corresponding greatest T-operator is accordingly $\delta^{\tau_i} \Delta_{\omega|\omega}$.

5.1.2 Dater functions and series in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$

A convenient way to compute the output of a TEG under periodic PS is to express its input and output dater functions as series in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. The following proposition gives a link between dater functions and series in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$.

Proposition 19 (Baccelli et al. 1992) A dater function $\bar{d} : \mathbb{Z} \to \mathbb{Z}_{max}$ can be expressed as 563 a series $d \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$, such that, 564

$$d = \left(\bigoplus_{\{k \in \mathbb{Z} \mid -\infty < \bar{d} < +\infty\}} \gamma^k \delta^{\bar{d}}\right) \oplus \left(\bigoplus_{\{k \in \mathbb{Z} \mid \bar{d} = +\infty\}} \gamma^k \delta^*\right).$$
(41)

For a more detailed description of the link between dater functions and the associated series in \mathcal{M}_{in}^{ax} [[γ , δ]], see e.g. Baccelli et al. (1992) and Cohen et al. (1991). The impulse is a specific dater function, namely $\mathcal{I}(k) = -\infty$ if k < 0 and 0 otherwise. Hence, an impulse 567

🖉 Springer

555

559

570

Moreover, a dater function \bar{d} and its series representation $d \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ are related by 571

$$\bar{d}(k) = (d\mathcal{I})(k)$$

The impulse response of a TEG can be readily expressed via the TEG transfer function 572 $h \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. The dater function $\bar{y}_{\mathcal{I}}$ is the impulse response is characterized by 573

$$\bar{y}_{\mathcal{I}}(k) = (h\mathcal{I})(k)$$

while the corresponding series is obtained by 574

$$y_{\mathcal{I}} = h \otimes e = h.$$

Similarly, the response to an arbitrary input series u (with dater function \bar{u}) is 575

 $y = h \otimes u$,

respectively 576

589

and the corresponding out

$$\bar{y}(k) = (h\bar{u})(k) = (h(u\mathcal{I}))(k).$$

In contrast, the transfer function $h \in \mathcal{T}_{per}[[\gamma]]$ of a TEG under periodic PS is <u>not</u> entirely 577 characterized by the impulse response. As the impulse corresponds to an infinity of firings 578 at time 0, the impulse response of a TEG under periodic PS is characterized by the slice 579 in the (event-shift/output-time)-plane at the input-time value 0 of the 3D representation of 580 its transfer function $h \in \mathcal{T}_{per}[[\gamma]]$, see e.g., Example 12. Hence, for a TEG under periodic 581 PS with transfer function h, the impulse response $\overline{y} = (h\mathcal{I})$ corresponds to the series y =582 $\Psi_{\omega}(h) \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$, see Definition 10 and Example 12. It should be clear that in contrast 583 to standard TEGs, the impulse response of a TEG under periodic PS only provides partial 584 information of its transfer function. For TEGs under periodic PS, the above duality between 585 representing the output as counter function and series in \mathcal{M}_{in}^{ax} [[γ , δ]] reads as follows. Let 586 $h \in \mathcal{T}_{per}[[\gamma]]$ be the transfer function of the TEG under periodic PS and $\overline{u} \in \Sigma$, respectively 587 $u \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$, be the input. Then we obtain the output counter function $\overline{y} \in \Sigma$ by 588

$$\overline{y}(k) = (h\overline{u})(k),$$
tput series $y \in \mathcal{M}_{in}^{ax} [[\gamma, \delta]]$ by
$$y = \Psi_{\omega} (h \otimes \operatorname{Inj}(u)).$$
(42)

Example 13 Recall the simple supply chain in Example 2 with the TEGPS model shown in 590 Fig. 2. The transfer function is $h = \delta^{11} (\gamma^2 \delta^{20})^* \Delta_{20|20} \delta^{-1}$. This transfer function was com-591 puted with the ETVO toolbox (Cottenceau et al. 2019) available online at: http://perso-laris. 592 univ-angers.fr/~cottenceau/etvo.html, this toolbox implements the algorithms given in this 593 section. Moreover, consider the following input dater function: 594

$$\bar{u}(k) = \begin{cases} -\infty & \text{for } k < 0; \\ 0 & \text{for } k = 0; \\ 5 & \text{for } k = 1, 2; \\ 35 & \text{for } k = 3, 4, 5, 6; \\ \infty & \text{for } k \ge 7. \end{cases}$$
(43)

This dater function is interpreted as follows: the first product available for transport from 595 factory 1 to factory 2 is ready at time instant 0. The second and third at time instant 5. The 596 4th, 5th, 6th and 7th at time instant 35. According to Eq. 41, the series $u \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ 597

Discrete Event Dynamic Systems

corresponding to this dater function is $u = \gamma^0 \delta^0 \oplus \gamma^1 \delta^5 \oplus \gamma^3 \delta^{35} \oplus \gamma^7 \delta^*$. The output 598 $y \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ of the system is computed as 599

$$\begin{split} y &= \Psi_{\omega} \left(h \otimes \operatorname{Inj}(u) \right) \\ &= \Psi_{\omega} \left(\delta^{11} (\gamma^{2} \delta^{20})^{*} \Delta_{20|20} \delta^{-1} \otimes (\gamma^{0} \delta^{0} \oplus \gamma^{1} \delta^{5} \oplus \gamma^{3} \delta^{35} \oplus \gamma^{7} \delta^{*}) \right) \\ &= \Psi_{\omega} \left(\delta^{11} \Delta_{20|20} \delta^{-1} (\gamma^{2} \delta^{20})^{*} \otimes (\gamma^{0} \delta^{0} \oplus \gamma^{1} \delta^{5} \oplus \gamma^{3} \delta^{35} \oplus \gamma^{7} \delta^{*}) \right) \\ &= \Psi_{\omega} \left((\delta^{11} \Delta_{20|20} \delta^{-1} \oplus \delta^{31} \Delta_{20|20} \delta^{-16} \gamma^{1} \oplus \delta^{51} \Delta_{20|20} \delta^{-6} \gamma^{3}) (\gamma^{2} \delta^{20})^{*} \right) \\ &= \Psi_{\omega} \left((\delta^{11} \Delta_{20|20} \delta^{-1} \oplus \delta^{31} \Delta_{20|20} \delta^{-16} \gamma^{1} \oplus \delta^{51} \Delta_{20|20} \delta^{-6} \gamma^{3}) (\gamma^{2} \delta^{20})^{*} \right) \\ &= \Psi_{\omega} \left((\delta^{11} \Delta_{20|20} \delta^{-1} \oplus \delta^{31} \Delta_{20|20} \delta^{-16} \gamma^{1} \oplus \delta^{51} \Delta_{20|20} \delta^{-6} \gamma^{3}) (\gamma^{2} \delta^{20})^{*} \right) \\ &= (\delta^{11} \oplus \delta^{31} \gamma^{1} \oplus \delta^{51} \gamma^{3}) (\gamma^{2} \delta^{20})^{*} \oplus \delta^{11} \delta^{*} \gamma^{7} \\ &= (\delta^{11} \oplus \delta^{31} \gamma^{1} \oplus \delta^{51} \gamma^{3} \oplus \delta^{71} \gamma^{5} \oplus \delta^{91} \gamma^{7} \oplus \cdots) \oplus \delta^{11} \delta^{*} \gamma^{7} \\ &= \delta^{11} \oplus \delta^{31} \gamma^{1} \oplus \delta^{51} \gamma^{3} \oplus \delta^{71} \gamma^{5} \oplus \delta^{*} \gamma^{7}, \end{split}$$

with associated dater function \overline{y}

$$\bar{y}(k) = \begin{cases} -\infty & \text{for } k < 0; \\ 11 & \text{for } k = 0; \\ 31 & \text{for } k = 1, 2; \\ 51 & \text{for } k = 3, 4; \\ 71 & \text{for } k = 5, 6; \\ \infty & \text{for } k \ge 7. \end{cases}$$

Hence, this implies that the first product is available at factory 2 at time instant 11, the 601 second and third at time instant 31, the 4th and 5th at time instant 51, and the 6th and 7th at 602 time instant 71. 603

5.2 Optimal Output Reference Control

The optimal output reference control problem for a TEG under periodic PS with a transfer 605 function $h \in \mathcal{T}_{per}[[\gamma]]$ is to find the greatest input dater \overline{u} such that, $\forall k \in \mathbb{Z}$ 606

$$\bar{z}(k) \succeq (h\bar{u})(k), \tag{44}$$

where \bar{z} is a given reference dater.

If, instead, we represent the unknown input and the reference as series in $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$, 608 Eq. 44 is rephrased as 609

$$z \succeq \Psi_{\omega}(h \otimes \operatorname{Inj}(u)), \tag{45}$$

where the series $z, u \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ correspond to the dater functions \overline{z} and \overline{u} .

Theorem 3 Let $h \in \mathcal{T}_{per}[[\gamma]]$ be the transfer function of a single-input single-output (SISO) 611 *TEG* under periodic PS and $z \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$ a given output reference for the system, then 612 the optimal input uopt, i.e., the greatest solution of Eq. 45, is 613

$$u_{opt} = \operatorname{Inj}^{\sharp}(h \, \langle \Psi_{\omega}^{\sharp}(z) \rangle). \tag{46}$$

600

604

607

Proof As Ψ_{ω} is a residuated mapping (see Proposition 18), Eq. 46 is equivalent to $h \otimes$ $\operatorname{Inj}(u) \leq \Psi_{\omega}^{\sharp}(z)$. This, in turn, is equivalent to $\operatorname{Inj}(u) \leq h \, \forall \Psi_{\omega}^{\sharp}(z)$ as left multiplication in $\mathcal{T}_{per}[\![\gamma]\!]$ is residuated. Finally as Inj is residuated (Proposition 17), the greatest solution ot 617 the latter inequality is Eq. 46.

Equation 46 is often referred to as the just-in-time solution. Note that the notation of greatest is in the sense of the order \succeq in the dioid $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$.

Example 14 Recall the supply chain of Example 2, which is modelled by the TEG under periodic PS given in Fig. 2 and has transfer function

$$h = \delta^{11} \Delta_{20|20} \delta^{-1} (\gamma^2 \delta^{20})^* \in \mathcal{T}_{per}[[\gamma]].$$

Let us consider the following dater function (see Fig. 10), which describes at which instants of time goods from factory 1 need to be available at factory 2 at the latest.

$$\bar{z}(k) = \begin{cases} -\infty & \text{for } k < 0, \\ 25 & \text{for } k = 0, 1, \\ 45 + 15j & \text{for } k = 2 + j \text{ with } j \in \mathbb{N}_0. \end{cases}$$

The control problem is now, to compute \bar{u} , i.e. the maximal time when goods from factory 1 are ready to be shipped to factory 2, such that Eq. 44 respectively Eq. 45, holds. To apply Eq. 46, the dater function \bar{z} is expressed by the series $z = \delta^{25} \oplus$ $\gamma^2 \delta^{45} (\gamma^1 \delta^{15})^* \in \mathcal{M}_{in}^{ax} [[\gamma, \delta]]$. Then according to 18, $\Psi_{20}^{\sharp}(z) = z \Delta_{20|20} = \delta^{25} \Delta_{20|20} \oplus$ $(\gamma^1 \delta^{15})^* (\gamma^2 \delta^{45} \Delta_{20|20})$ and

$$u_{opt} = \mathrm{Inj}^{\sharp} \left(h \, \mathrm{e} \Psi_{20}^{\sharp}(z) \right) = (\delta^1 \oplus \gamma^2 \delta^{21} \oplus \gamma^3 \delta^{41}) (\gamma^4 \delta^{60})^*$$

where the latter equality has been computed using ETVO toolbox (Cottenceau et al. 2019). The response y of the TEGPS to the optimal input u_{opt} is

$$y = \Psi_2(h \otimes \operatorname{Inj}(u_{opt})) = (\delta^{11} \oplus \gamma^2 \delta^{31} \oplus \gamma^3 \delta^{51})(\gamma^4 \delta^{60})^*.$$

631 This series corresponds to the dater function,

$$\bar{y}(k) = \begin{cases} -\infty & \text{for } k < 0, \\ 11 + 60j & \text{for } k = 4j \text{ and } k = 1 + 4j \text{ with } j \in \mathbb{N}_0. \\ 31 + 60j & \text{for } k = 2 + 4j \text{ with } j \in \mathbb{N}_0. \\ 51 + 60j & \text{for } k = 3 + 4j \text{ with } j \in \mathbb{N}_0. \end{cases}$$

Figure 10 illustrates the output reference \bar{z} and \bar{y} resulting from the optimal input \bar{u}_{opt} . Clearly, as required, $\bar{z} \geq \bar{y}$. This means, the goods are shipped from factory 1 as late as possible, but arrive in factory 2 in time to meet the production deadlines there.

Remark 5 Output reference control can be readily extended to multiple-input multipleoutput (MIMO) TEGs under periodic PS. In this case the earliest behaviour of a TEG under periodic PS is modeled by a transfer function matrix $\boldsymbol{H} \in \mathcal{T}_{per}[[\gamma]]^{p \times g}$. Then the optimal output reference control problem is, for all $j = 1, \dots p$,

$$z_j \succeq \Psi_{\omega} \left(\bigoplus_{i=1}^{g} (\boldsymbol{H})_{j,i} \operatorname{Inj}(u_i) \right),$$
(47)

639

Deringer

Discrete Event Dynamic Systems

Fig. 10 Output reference \bar{z} and system response \bar{y} to optimal input \bar{u}_{opt}

where $z_j \in \mathcal{M}_{in}^{ax} [[\gamma, \delta]]$ represents the reference for the j^{th} output and $u_i \in \mathcal{M}_{in}^{ax} [[\gamma, \delta]]$ 640 is i^{th} input of the system. As Ψ_{ω} is a lower semi-continuous mapping we can write Eq. 47 641 as, for $j = 1, \dots p$, 642

$$z_j \succeq \bigoplus_{i=1}^{g} \Psi_{\omega} \left((\boldsymbol{H})_{j,i} \operatorname{Inj}(u_i) \right),$$
(48)

The latter set of p inequalities, can be written as a set of p * q simpler inequalities, i.e., $\forall j \in \{1, \dots p\}$ and $\forall i \in \{1, \dots g\}$, 643

$$z_j \succeq \Psi_{\omega}\left((\boldsymbol{H})_{j,i} \operatorname{Inj}(u_i)\right).$$
(49)

Observe that each of these inequalities has the form of Eq. 45. Hence, the optimal i^{th} input $u_{i,opt} \in \mathcal{M}_{in}^{ax}[[\gamma, \delta]]$, i.e., the greatest u_i that satisfies Eq. 49 for $j = 1, \dots p$, is 646

$$u_{i,opt} = \bigwedge_{j=1}^{p} \left(\operatorname{Inj}^{\sharp} \left((\boldsymbol{H})_{j,i} \, \boldsymbol{\triangleleft} \boldsymbol{\Psi}_{\omega}^{\sharp}(z_{j}) \right) \right).$$

Hence, the only difference to the SISO case is an additional infimum operation between 647 series in \mathcal{M}_{in}^{ax} [[γ, δ]]. 648

6 Conclusion

In this paper, we have introduced algebraic tools to obtain transfer function matrices for a subclass of Timed Event Graphs under Partial Synchronization, namely the case where partial synchronization of transitions is characterized by periodic signals. We have introduced the dioid $\mathcal{T}_{per}[[\gamma]]$, which is a quotient dioid of formal power series in γ with coefficients that are periodic time-operators. We have shown that all relevant operations on ultimately cyclic series *s* in this dioid can be reduced to operations on matrices in the subdioid $\mathcal{M}_{in}^{ax}[[\gamma, \delta]]$. An advantage of this approach is that existing software tools for

standard TEGs in the dioid \mathcal{M}_{in}^{ax} [[γ, δ]], e.g. Hardouin et al. (2009) can be applied to the 657 more general class of TEGsPS with periodic PS. The more recent toolbox (Cottenceau et al. 658 2019), based also on Hardouin et al. (2009), implements the "translation process" from 659 $\mathcal{T}_{per}[\![\gamma]\!]$ to $\mathcal{M}_{in}^{ax}[\![\gamma, \delta]\!]$. Moreover, based on transfer functions for this class of TEGsPS 660 we have solved the corresponding optimal output reference control problem. In particular, 661 the proposed control method provides the optimal control input under the "just-in-time" cri-662 terion. One possible extension of this work is to modify the control strategy such that online 663 updates of the reference trajectory can be considered. This would allow the system to react 664 to a change in customer demands, and will be considered in future work. 665

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the

673 copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

674 References

- Baccelli F, Cohen G, Olsder G, Quadrat J (1992) Synchronization and linearity: An algebra for discrete event
 systems. Wiley, New York
- Cohen G, Moller P, Quadrat JP, Viot M (1989) Algebraic tools for the performance evaluation of discrete
 event systems. Proc IEEE 77(1):39–58
- Cohen G, Gaubert S, Nikoukhah R, Quadrat JP (1991) Second order theory of min-linear systems and its
 application to discrete event systems. In: Proceedings of the 30th IEEE conference on decision and
 control, pp 1511–1516 vol 2. https://doi.org/10.1109/CDC.1991.261654
- Cottenceau B, Hardouin L, Boimond JL (2014) Modeling and control of weight-balanced timed event graphs
 in dioids. IEEE Trans Autom Control 59(5):1219–1231. https://doi.org/10.1109/TAC.2013.2294822
- Cottenceau B, Hardouin L, Trunk J (2019) Event and time variant operators. http://perso-laris.univ-angers.
 fr/cottenceau/etvo.html
- David-Henriet X, Raisch J, Hardouin L, Cottenceau B (2014) Modeling and control for max-plus systems
 with partial synchronization. In: Proceedings of the 12th IFAC-IEEE international workshop on discrete
 event systems (WODES). France, Paris, pp 105-110
- David-Henriet X, Raisch J, Hardouin L, Cottenceau B (2015) Modeling and control for (max, +)-linear
 systems with set-based constraints. In: IEEE international conference on automation science and
 engineering (CASE), pp 1369–1374. https://doi.org/10.1109/CoASE.2015.7294289
- David-Henriet X, Hardouin L, Raisch J, Cottenceau B (2016) Model predictive control for discrete event
 systems with partial synchronization. Automatica 70:9–13
- 694De Schutter B, van den Boom TJJ (2003) MPC for discrete-event systems with soft and hard synchronization695constraints. Int J Control 76(1):82–94. https://doi.org/10.1080/0020717021000049188
- Gaubert S, Klimann C (1991) Rational computation in dioid algebra and its application to performance
 evaluation of discrete event systems. In: Algebraic computing in control, Springer, pp 241–252
- Hamaci S, Boimond JL, Lahaye S (2006) On modeling and control of discrete timed event graphs with
 multipliers using (min,+) algebra
- Hardouin L, Le Corronc E, Cottenceau B (2009) Minmaxgd a software tools to handle series in (max, +)
 algebra In: SIAM conference on computational science and engineering, Miami. USA
- Hardouin L, Shang Y, Maia CA, Cottenceau B (2017) Observer-based controllers for max-plus linear
 systems. IEEE Trans Autom Control 62(5):2153–2165. https://doi.org/10.1109/TAC.2016.2604562
- Hardouin L, Cottenceau B, Shang Y, Raisch J (2018) Control and state estimation for max-plus linear
 systems. Foundations Trends®Syst Control 6(1):1–116. https://doi.org/10.1561/2600000013
- Heidergott B, Olsder G, van der Woude J (2005) Max plus at work : Modeling and analysis of synchronized
 systems: A course on max-plus algebra and its applications (Princeton series in applied mathematics).
 Princeton University Press, Princeton
 - 🖄 Springer

Discrete Event Dynamic Systems

- Maia CA, Hardouin L, Santos-Mendes R, Cottenceau B (2003) Optimal closed-loop control of timed event graphs in dioids. IEEE Trans Autom Control 48(12):2284–2287
 709
- Menguy E, Boimond JL, Hardouin L (1998) Optimal control of discrete event systems in case of updated reference input. In: IFAC conference on system structure and control, pp 601–607 712
- Menguy E, Boimond JL, Hardouin L, Ferrier JL (2000) Just-in-time control of timed event graphs: update of reference input, presence of uncontrollable input. IEEE Trans Autom Control 45(11):2155–2159.
 https://doi.org/10.1109/9.887652
- Trunk J, Cottenceau B, Hardouin L, Raisch J (2017a) Model decomposition of weight-balanced timed event graphs in dioids: Application to control synthesis. In: 20th IFAC world congress 2017, Toulouse, pp 13995–14002
 716
- Trunk J, Cottenceau B, Hardouin L, Raisch J (2017b) Output reference control for weight-balanced timed event graphs. IEEE, 4839–4846. https://doi.org/10.1109/CDC.2017.8264374 720
- Trunk J, Cottenceau B, Hardouin L, Raisch J (2018) Model Decomposition of Timed Event Graphs under
 721

 Partial Synchronization. In: 14th Workshop on Discrete Event Systems, vol 2018. Sorrento Coast, Italy,
 722

 pp 209–216
 723

 Publisher's note
 Springer Nature remains neutral with regard to jurisdictional claims in published maps
 724

 and institutional affiliations.
 725

Johannes Trunk was born in 1985. He received the Master degree in Electrical Engineering from the Technische Universität Berlin, Germany, in 2014. He is currently a PhD student at both the Technische Universität Berlin and the Universit ie d'Angers, France. His research interests are modeling and control of discrete event systems with applicationsto transportation networks, computer networks and manufacturing systems. His PhD is supported by the Universit ie franco-allemande/ Deutsch- Französische Hochschule.

Bertrand Cottenceau was born in 1973. He received the Ph.D. degree, in 1999, and the Habilitation'a Diriger des Recherches, in 2015, from the University of Angers, France. He is currently an Full Professor at the University of Angers. His research interests include modeling, simulation and control of timed discrete event systems with applications in manufacturing systems and computer networks.

Discrete Event Dynamic Systems

Laurent Hardouin was born in 1967. He received the Ph.D degree from the University of Poitiers, France, in 1993, and the Habilitation'a Diriger des Recherches from the University of Angers, France, in 2004.He is currently a Full Professor of dynamic systems, computer engineering, computer networks atthe University of Angers. He specializes in discreteevent systems, max-plus algebra, interval analysis, with applications to computer networks, manufacturing systems, transportation systems and robotics.

Joerg Raisch received the Dipl.-Ing. degree in engineering cybernetics, the Ph.D. degree, and the "habilitation" from Stuttgart University, Stuttgart, Germany. Since 2006, he has held the Chair of Control Systems in the Department of Electrical Engineering and Computer Science, Technische Universität (TU), Berlin, Germany. His main research interests are hybrid and hierarchical control, and control of timed discrete-event systems in tropical algebras, with applications in chemical, medical, and power systems engineering.

Affiliations

Johannes Trunk¹ · Bertrand Cottenceau² · Laurent Hardouin² · Joerg Raisch¹

Bertrand Cottenceau bertrand.cottenceau@univ-angers.fr

Laurent Hardouin laurent.hardouin@univ-angers.fr

Joerg Raisch raisch@control.tu-berlin.de

- ¹ Technische Universität Berlin, Fachgebiet Regelungssysteme, Einsteinufer 17, D-10587 Berlin, Germany
- ² Université d'Angers, 62 Avenue Notre Dame du Lac, 49000 Angers France

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES:

- Q1. Johannes Trunk has been set as the corresponding author. Please check and advise if correct.
- Q2. Please check affiliations if captured and presented correctly.