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Abstract—Max Plus Linear (MPL) systems are often described
by a transition function, which models the state evolution of the
system, and a measurement function, which binds the measures
with the system states. Methods for computing the inverse image
of a point w.r.t. the measurement function are particularly inter-
esting in applications where it is desirable to obtain informations
about the system states based on the output observations. The
inverse image of a set w.r.t. a nondeterministic MPL system,
called uncertain MPL (uMPL) system, can be computed by using
the Difference-Bound Matrices (DBM) approach. In this work we
aim to use an interval analysis to propose a method to compute
the inverse image of a point w.r.t. an uMPL system. The algorithm
proposed has a lower worst-case complexity compared with the
DBM approach as previously proposed in the literature.

Index Terms—Max Plus Linear Systems, Nondeterministic
Systems, Inverse Image, Interval Analysis.

I. INTRODUCTION

D ISCRETE Event Dynamic Systems (DEDS) are discrete-
state systems whose dynamics are entirely driven by the

occurrence of asynchronous events over discrete time instants
[1, Sec. 1.3.2]. DEDS subjected only to synchronization and
time delay phenomena can be described in terms of linear
equations using the Max Plus Algebra. The Max Plus Algebra
is an idempotent semiring, an algebraic structure also called
dioid [2], in which the operations of sum (⊕) and product
(⊗) are defined as the maximization and addition, respectively.
Synchronization phenomena are modeled thanks to maximiza-
tion: the start of a task waits for the completion of the pre-
ceding tasks, while the delay phenomena are modeled thanks
to the classical sum: the completion time of a task is equal to
the starting time plus the task duration. The Max Plus Linear
(MPL) equations are used to model manufacturing systems,
telecommunication networks, railway networks, and parallel
computing [2], [3]. The linearity property has advantaged the
emergence of a specific theory for the performance analysis
[4] and the control of these systems, e.g., optimal open loop
control [5], [6] and optimal state-feedback control. Among
closed-loop strategies we can cite the model matching problem
[7] and the control strategies allowing the state to stay in a
specific state subspace or semimodule [8], [9], [10], [11], [12].
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In order to control and analyze a dynamic system, the
knowledge of the system states is required. For this reason,
the development of methods for observing and estimating the
system states are of great interest. In [13] a dynamic observer
for MPL systems is proposed and in [14] a Luenberger inspired
observer [15] is developed. In both cases, uncertainties w.r.t.
the model parameters are considered, however, the probabilis-
tic aspects are not taken into account. Though, these proba-
bilistic aspects are of great interest in the filtering problems
where the model parameters are influenced by random pro-
cesses. The filtering problem consists in estimating the state of
a stochastic system. The Stochastic Max Plus Linear (SMPL)
systems are defined as MPL systems where the matrices
entries are characterized by random variables [16], [17], [18],
[19], [20]. In this work, although the probabilistic aspects
of the uncertainties are not considered, we are interested in
systems where the uncertain parameters can vary over a known
interval. Formally, we define the uncertain Max Plus Linear
(uMPL) systems as nondeterministic MPL systems where,
at each event step, the entries of the system matrices can
take an arbitrary value within a real interval. In [21], [22],
[23] the filtering problem for uMPL systems is addressed by
considering the Sequential Monte-Carlo (SMC) method, also
known as Particle Filters.

The design of filters can take advantage of the conditional
reachability analysis. The reachability analysis aims to com-
pute the set of all states that can be reached from a set of initial
conditions. In [24] reachability analysis of timed automata is
tackled by considering max-plus polyhedra1. An important
drawback in this approach is that the analysis of timed
automata often requires to express strict constraints while
max-plus polyhedra are by definition topologically closed. A
generalization of max-plus polyhedra is introduced in [26],
where the authors define a semiring of germs which allows to
handle a class of non-necessarily closed max-plus polyhedra.
In [27], the reachability analysis of MPL systems is tackled
by considering the Difference-Bound Matrices (DBM). In [28]
the approach is extended to uMPL systems and the results are
used to solve the conditional reachability problem, which is
defined as the computation of the set of all states that may be
reached from a set of initial states, in a given number of event
steps, conditioned to a sequence of measures. The solution of
this problem involves the computation of the image of sets and
the inverse image of points. The both can be done by using the

1For a more exhaustive presentation on max-plus polyhedra, see [25]
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DBM approach. However, as it will be shown in this paper,
the inverse image of a point can be computed by considering
a more efficient approach from a computational point of view.
Indeed, we propose an alternative procedure, based on interval
analysis, to compute the inverse image of a point w.r.t. an
uMPL system. It will be shown that the inverse image of a
point can be represented by a collection of hyperrectangles. A
hyperrectangle can be completely characterized by an interval
matrix. Although the DBM can represent a more general class
of sets, including hyperrectangle, the interval matrix yields a
simpler and less expensive representation for the inverse image
of a point. For this reason, the proposed procedure has worst-
case complexity lower than the DBM approach. Therefore,
the procedure presented in this work can be used to solve
the conditional reachability problem, and more precisely, to
reduce the computational effort to get the inverse image of
the measures, which is a key point of this problem. It must be
noted that, the DBM approach will still be required to compute
the direct image of the sets.

Both DBM and Hyperrectangles approaches have exponen-
tial complexity, which limits the dimension of the addressable
problem. On the other hand, the complexity of the algorithms
involving max-plus polyhedra are in general polynomial. In
this sense, approaches based on max-plus polyhedra seems to
be a promising way to reduce the complexity of reachability
computations for MPL systems. However, to the best of the
authors’ knowledge, there are no approaches based on max-
plus polyhedra for solving the forward and the backward
reachability problem for general MPL systems and such meth-
ods remain to be designed.

Computing the inverse image of a point w.r.t an uMPL
equation consists in computing the solutions of MPL equa-
tions where the coefficients belong to intervals, see e.g. [29].
In [30], necessary and sufficient conditions for weakly and
strongly solvability of interval systems of max-separable linear
equations are provided. In [31] the tolerance solvable, the
weakly tolerance solvable and the strongly tolerance solvable
systems are introduced. The present work provides a method
to compute the complete set of solutions of uMPL equations,
a special class of interval systems of max-separable linear
equations.

The technique discussed in this work is implemented in
MATLAB and the codes are freely available for download at
[32].

The paper is organized as follows: Section II recalls the
algebraic tools used in the next sections. Section III presents
the main contribution: an approach to compute the inverse
image of a point w.r.t. an uMPL system based on the interval
analysis. Section IV yields an application of the results in
a filtering problem of an uMPL system. Finally, Section V
concludes the work.

II. PRELIMINARIES

A. Interval Analysis

Interval arithmetic is presented in [33] and extended to Max
Plus Algebra in [34], [35], [6], [36]. An interval can be defined

by a pair of entries of the type (a,on) as follows:

[x] = [(x,on), (x,on)] = {x ∈ R : x on x on x}. (1)

where x ∈ R∪{−∞} and x ∈ R∪{+∞} are, respectively, the
lower and upper bounds of the interval. The signs on ∈ {≥, >}
and on ∈ {<,≤} define whether the interval is closed (if
on =≥ and on =≤), open (if on => and on =<) or half-
closed/half-open (otherwise).

In order to define the intersection of two intervals, a
partial order must be defined. Consider two typical interval
entries (a,on) and (a′,on′). The pairs (a,on) and (a′,on′)
are ordered if on,on′∈ {≥, >} or if on,on′∈ {<,≤}. In this
case, (a,on) � (a′,on′) if (a < a′) or2 (a = a′ and on≤on′).
On the other hand, the pairs (a,on) and (a′,on′) are not
comparable if on∈ {≥, >} and on′∈ {<,≤} or if on∈ {<,≤}
and on′∈ {≥, >}.

Given this partial order, the intersection of [x] =
[(x,onx), (x,onx)] and [y] = [(y,ony), (y,ony)] can be defined
as:

[x] ∩ [y] = [max{(x,onx), (y,ony)}, min{(x,onx), (y,ony)}].
(2)

Remark 1: An interval [x] is empty if x > x; or
if x = x and on =>; or if x = x and on =<. For in-
stance, the following intervals are empty: [(5,≥), (3,≤)],
[(5, >), (5,≤)], [(5,≥), (5, <)].

In general, the union of intervals cannot be represented as a
single interval, but by collection of intervals. However, if the
intervals have nonempty intersection, the union is an interval
defined by:

[x] ∪ [y] = [min{(x,onx), (y,ony)}, max{(x,onx), (y,ony)}]. (3)

Example 1: Consider the intervals:

[x] = [(0, >), (5, <)] = {x ∈ R : 0 < x < 5}
[y] = [(3, >), (6,≤)] = {x ∈ R : 3 < x ≤ 6}
[z] = [(7,≥), (10,≤)] = {x ∈ R : 7 ≤ x ≤ 10}

According to (2) and (3):

[x] ∩ [y] = [(3, >), (5, <)] = {x ∈ R : 3 < x < 5}
[x] ∪ [y] = [(0, >), (6,≤)] = {x ∈ R : 0 < x ≤ 6}

Note that [x] ∩ [z] = ∅ = [y] ∩ [z]. In this case, equation (3)
cannot be used to compute neither [x]∪[z] nor [y]∪[z]. Indeed,
[x] ∪ [z] ≡ {x ∈ R : 0 < x < 5} ∪ {x ∈ R : 7 ≤ x ≤ 10},
which cannot be represented by a single interval. The same
holds for [y] ∪ [z].

An interval matrix is herein defined as a matrix whose
entries are intervals, they will be noted by a bold capital
letter in brackets. The intersection of two interval matrices
can be computed as the element-wise intersection of the
corresponding entries. Thus, given a set of M interval ma-
trices [A1] , ..., [AM] of dimension n × p, the intersection
[A1] ∩ · · · ∩ [AM] is defined by:(

M⋂
r=1

[Ar]

)
ij

=

M⋂
r=1

[
arij

]
(4)

2The symbols <, ≤, ≥ and > are assumed to be partially ordered with <
strictly less than ≤ and ≥ strictly less than >.
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where
[
arij

]
is the entry in the i-th row and j-column of

matrix [Ar]. It should be remarked that, in general, the union
of interval matrices in Rn×p cannot be represented by a single
interval matrix but by a collection of interval matrices.

A hyperrectangle in Rn, defined as the set {x ∈ Rn :
x1 on1 x1 on1 x1, ..., xn onn xn onn xn}, can be represented
by an n× 1 interval matrix:

[x] =

 [(x1,on1), (x1,on1)]
...

[(xn,onn), (xn,onn)]

 . (5)

Remark 2: Any vector x ∈ Rn can be represented by a
matrix of degenerate intervals, in which xi = xi = xi and
oni =≥, oni =≤.

B. Max Plus Linear Systems

A set S, endowed with two internal operations: sum (⊕)
and product (⊗) is a dioid or idempotent semiring if the sum
is associative, commutative and idempotent (i.e. a ⊕ a = a)
and the product is associative and left and right distributive3

w.r.t. the sum. The null (or zero) element, denoted by ε, is
such that ∀a ∈ S, a⊕ε = a, and the identity element, denoted
by e, is such that ∀a ∈ S, a⊗e = e⊗a = a. Besides, the zero
element is absorbing for the ⊗ operation (i.e. ∀a ∈ S, a⊗ε =
ε ⊗ a = ε) [2, Def. 4.1]. In this algebraic structure, a partial
order relation is defined by:

a � b⇔ a = a⊕ b. (6)

Given these conditions, it appears that the set Rmax := R ∪
{−∞}∪{∞} and the operations: α⊕β ≡ max{α, β} and α⊗
β ≡ α+β, with ε = −∞, e = 0, and with the convention that
∞⊗ ε = ε, is a dioid [2, Def. 3.4]. Moreover, it can be stated
that this is a complete dioid since it is closed for infinite sums
and the left and right distributivity of the product extend to
infinite sums. This structure is called the completed Max Plus
semiring.

For complete dioids, the order relation (6) can be written
as: a � b ⇔ a = a ⊕ b ⇔ b = a ∧ b, where a ∧ b is the
greatest lower bound of a and b. The Max Plus operations
can be extended to matrices as follows. If A,B ∈ Rn×p

max and
C ∈ Rp×q

max, then:

[A⊕ B]ij = aij ⊕ bij , [A⊗ C]ij =
⊕p

k=1 aik ⊗ ckj ,
[A ∧ B]ij = aij ∧ bij .

(7)
Moreover, the Max Plus operations can be extended to inter-
vals as follows. Consider two ordered interval entries (a,on)
and (a′,on′), then:

(a,on)⊕ (a′,on′) =

{
(a,on) if (a,on) � (a′,on′),
(a′,on′) otherwise.

(8)

(a,on)⊗(a′,on′) =

{
(a⊗ a′,min(on,on′)) if on,on′∈ {<,≤},
(a⊗ a′,max(on,on′)) if on,on′∈ {≥, >}.

(9)

3The product is not necessarily commutative.

Hence:

[x]⊕ [y] = [(x,onx)⊕ (y,ony), (x,onx)⊕ (y,ony)],(10)

[x]⊗ [y] = [(x,onx)⊗ (y,ony), (x,onx)⊗ (y,ony)].(11)

Recalling Remark 2, given a point d ∈ R, we have that:

[x]⊕ d = [(x,onx)⊕ (d,≥), (x,onx)⊕ (d,≤)], (12)
[x]⊗ d = [(x⊗ d,onx), (x⊗ d,onx)]. (13)

The ⊕ and ⊗ are extended to interval matrices as follows: If
[A], [B] and [C] are, respectively, n × p, n × p and p × q
interval matrices, then:

([A]⊕ [B])ij = [aij ]⊕ [bij ] , ([A]⊗ [C])ij =

p⊕
k=1

(
[aik]⊗

[
ckj
])

.

(14)
In the following, the MPL systems are introduced. The au-
tonomous model of an MPL system is given by:

x(k) = A⊗ x(k − 1), (15)

where the entries of matrix A ∈ Rn×n
max are the parameters of

the model. The variable k ∈ N is an event-number and the
state vector x ∈ Rn

max is a dater, i.e, x(k) contains the k-th
date of occurrence of each event of the system.

The nonautonomous model of an MPL system is defined
as:

x(k) = A⊗ x(k − 1)⊕ B⊗ u(k), (16)

where u is an external input vector and B ∈ Rn×m
max .

Any nonautonomous MPL system can be transformed into
an augmented autonomous MPL model by considering M =

(A B) ∈ Rn×(n+m)

max and y(k − 1) =
(
x(k − 1)T u(k)T

)T
[2,

Sec. 2.5.4].
x(k) = M⊗ y(k − 1). (17)

To model uncertain systems, the entries of matrix A are
assumed to be nondeterministic. This is consistent with the
assumption that the entries of A are associated to the system
delays, that are subject to variations due to disturbances.
Formally, it is assumed that at each event step k the system
matrix entries can take an arbitrary value within a real interval.
The autonomous model of an uncertain MPL (uMPL) system
is given by:

x(k) = A(k)⊗ x(k − 1), A(k) ∈ [A] , A(k) ∈ Rn×n
max, (18)

where, at each event step k, the entries of A(k) can take
an arbitrary value in closed real intervals. Hence, aij(k) ∈
[(aij ,≥), (aij ,≤)]. The system is assumed to be such that
x(k) � x(k − 1) and it works according to FIFO (first in,
first out) rule. Hence, matrix A(k) is assumed to be such that
aii(k) � e, i.e, A(k) � In, the identity matrix in Rn×n

max.
Notation 1: Recall that the entries of an uMPL system

matrix are assumed to be in closed real intervals, i.e., the
entries of [A] are of the type [aij ] = [(a,≥), (a,≤)], where
a, a ∈ Rmax. The signs ≥ and ≤ can be omitted and these
entries can be represented as simply [aij ] = [a, a]. This
simplified representation of closed intervals will be considered
to express interval matrices that represent uMPL systems.
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Hyperrenctangles will still be represented by considering the
notation presented in section II-A.

Notation 2: Given an interval matrix [A] representing an
uMPL system, we denote by A and A the matrices of lower
and upper bounds of [A], respectively. Hence, A has entries
aij and A has entries aij .

Example 2: Consider the following uMPL system: x(k) =
A(k)⊗ x(k − 1), A(k) ∈ [A] , where

[A] =

(
[(1,≥), (3,≤)] 2
[(2,≥), (4,≤)] [(3,≥), (6,≤)]

)
.

By considering Notations 1 and 2, the interval matrix [A] and
the matrices of lower and upper bounds can be represented,
respectively as:

[A] =

(
[1, 3] 2
[2, 4] [3, 6]

)
, A =

(
1 2
2 3

)
, A =

(
3 2
4 6

)
.

Similarly to MPL systems, any nonautonomous uMPL sys-
tem can be transformed into an augmented autonomous uMPL
model, see (17).

C. Residuation
Residuation theory [2] deals with solution of equation

f(x) � y in semiring. In particular, in Rmax, it yields the
way to compute the greatest solution of A ⊗ X � B, with
A ∈ Rn×p

max, X ∈ Rp×m
max and B ∈ Rn×m

max . This greatest solution
is denoted X̂ = A\◦B and achieves equality if it exists. Each
entry of X̂ is computed as follows:

x̂ij =

n∧
k=1

(aki\◦bkj), (19)

where aki\◦bkj = bkj−aki and then it is the greatest solution of
equality aki⊗ x = bkj . In the same way, the greatest solution
of inequality X ⊗ C � B , with X ∈ Rn×p

max, C ∈ Rp×m
max and

B ∈ Rn×m
max , is denoted X̂ = B /◦C and is computed by

x̂ij =

m∧
k=1

(bik /◦cjk) =

m∧
k=1

(bik − cjk). (20)

From these definitions it is useful to remark that the system
A⊗x � b, with A ∈ Rn×p

max, x ∈ Rp×1
max and b ∈ Rn×1

max yields
the greatest x̂ = A\◦b with

x̂j =

n∧
k=1

(akj\◦bk) =

n∧
k=1

(bk − akj), (21)

and the greatest A is given by Â = b /◦x with

âij = bi /◦xj = bi − xj . (22)

Hence, this Â achieves equality, i.e, Â⊗x = b. Furthermore,
it should be remarked that the greatest solution of the system
A⊗x � b, with A ∈ R1×p

max, x ∈ Rp×1
max and b ∈ Rmax is given

by x̂ = A\◦b with

x̂j = a1j\◦b = b− a1j . (23)

Hence,

A⊗ x̂ =

p⊕
j=1

a1j ⊗ x̂j =

p⊕
j=1

a1j ⊗ (b− a1j) = b, (24)

i.e., x̂ is the greatest vector ensuring A⊗ x̂ = b.

III. IMAGE AND INVERSE IMAGE OF A POINT

This section presents an approach to compute the image
and the inverse image of a point w.r.t. the uMPL equation
described by:

z = A⊗ x, A ∈ [A] , A ∈ Rn×p
max, (25)

where each entry of A can take an arbitrary value in the
interval defined by the corresponding entry of [A].

Remark 3: Equation (25) can be used to represent general
uMPL systems, including autonomous and nonautonomous
uMPL systems. For instance, in order to represent an au-
tonomous uMPL system, consider p = n, z ≡ x(k), x ≡
x(k − 1) and A ≡ A(k), see equation (18).

A. The Image of a Point

Let equation (25) be an uMPL system. If the point x is
given, then z ∈ [z] where:

[z] = [A]⊗ x. (26)

From (26), (13) and (14), it can be demonstrated that zi is
in the interval defined by:

[zi] =

 p⊕
j=1

(
aij ⊗ xj , ≥

)
,

p⊕
j=1

(aij ⊗ xj , ≤)

 . (27)

Therefore, the image of a point x w.r.t. the uMPL system
is the hyperrectangle given by:

I[A]{x} =
n⋂

i=1

z ∈ Rn :

p⊕
j=1

aij ⊗ xj � zi �
p⊕

j=1

aij ⊗ xj

 , (28)

or equivalently,

I[A]{x} =
{
z ∈ Rn : A⊗ x � z � A⊗ x

}
. (29)

Thus, the image of a given point can be promptly computed
by using (26) or (27).

Example 3: Consider the uMPL system of Example 2.
From (27), given x(0) = (1 1)T , we have that

[x] (1) = [A]⊗ x(0) =

(
[(3,≥), (4,≤)]
[(4,≥), (7,≤)]

)
.

Therefore, I[A]{x(0)} =
{
x ∈ R2 : 3 ≤ x1 ≤ 4, 4 ≤ x2 ≤ 7

}
.

B. The Inverse Image of a Point

The computation of the inverse image of a given point
depicted by vector z w.r.t. an uMPL system is now addressed,
this task is not as straightforward as the direct image compu-
tation. Let equation (25) be an uMPL system, then the inverse
image of z is defined as:

I−1[A]{z} = {x ∈ Rp : ∃A ∈ [A] : A⊗ x = z}. (30)

Lemma 1: Given x and z, if A ⊗ x � z � A ⊗ x then,
there exists A ∈ [A] (i.e., A � A � A) such that A⊗ x = z.

Proof: The greatest A that satisfies A ⊗ x � z is given
by Â = z /◦x (see (22)). Therefore, A ⊗ x � z ⇒ A � Â. In
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addition, since A � A: A � Â∧A � A. Now, let us consider
z′ = (Â ∧ A)⊗ x, from (22), âij = zi − xj and, from (7):

z′i =

m⊕
k=1

{[(zi − xk) ∧ aik]⊗ xk} =

m⊕
k=1

{[zi ∧ (aik ⊗ xk)]}

= zi ∧
m⊕

k=1

[aik ⊗ xk] .

Hence, z′ = z∧A⊗x. By assumption, z � A⊗x, therefore,
z′ = z. Hence, if A⊗x � z � A⊗x the matrix (Â∧A) ∈ [A]
is such that (Â ∧ A)⊗ x = z.

Example 4: Consider the matrix [A] of Example 2. Given
x(0) = (1 1)T and x(1) = (3.3 4.8)T , note that A⊗ x(0) �
x(1) � A⊗ x(0). Then, form Lemma 1, there exists A(1) ∈
[A] such that A(1) ⊗ x(0) = x(1). Moreover, the greatest
A(1) ∈ [A] that satisfies this expression is given by

Â ∧ A =

(
2.3 2
3.8 3.8

)
, where Â = x(1) /◦x(0).

Proposition 1: A point x is in the inverse image of z w.r.t.
an uMPL system if and only if z is in the image of x w.r.t.
the uMPL system , i.e.,

x ∈ I−1[A]{z} ⇔ A⊗ x � z � A⊗ x.

Proof: From (30) if x ∈ I−1[A]{z} ⇒ A⊗x � z � A⊗x,
since A ∈ [A]. Lemma 1 yields that if A ⊗ x � z � A ⊗ x
there is A ∈ [A] such that A⊗x = z, i.e., x ∈ I−1[A]{z}, hence
A⊗ x � z � A⊗ x⇒ x ∈ I−1[A]{z}.
From Proposition 1, it appears that a point x belongs to
the inverse image of a point z if and only if the following
inequalities are true:

A⊗ x � z, (31)
A⊗ x � z. (32)

Thus, the inverse image of a point z can be represented by
the intersection of two sets:

I−1[A]{z} = U ∩ L (33)

where U is the set of all x that satisfies (31) and L is the set
of all x that satisfies (32).

By using residuation, see (21), the set U is given by:

U = {x ∈ Rp : A⊗ x � z}
= {x ∈ Rp : x � A\◦z} . (34)

The set L is given by:

L =
{
x ∈ Rp : A⊗ x � z

}
=

n⋂
i=1

x ∈ Rp : zi �
p⊕

j=1

aij ⊗ xj

 . (35)

In order to obtain a representation of L that can be represented
by interval matrices, some mathematical manipulation are
required. First, recall that, according to De Morgan’s Laws, the

complement of the intersection of n sets and the complement
of the union of n sets are, respectively, given by n⋂

j=1

Aj

c

=

n⋃
j=1

Ac
j ,

 n⋃
j=1

Aj

c

=

n⋂
j=1

Ac
j . (36)

An alternative equation to compute the complement of the
intersection is given by: n⋂

j=1

Aj

c

= Ac
1 ∪
[
A1 ∩ Ac

2

]
∪ · · · ∪

[(
n−1⋂
k=1

Ak

)
∩ Ac

n

]

=

n⋃
j=1

[(
j−1⋂
k=1

Ak

)
∩ Ac

j

]
, (37)

where
⋂0

k=1Ak = Rp.
Note that, from (36), the complement of the intersection of

sets can be represented by a union of sets and, from (37), the
complement of the intersection can be represented by a union
of pairwise disjoint sets. As it will be demonstrated in this
section, equation (37) plays an important role in the handling
of set L since it yields a representation defined by the union of
pairwise disjoint sets, which reduces the computational effort
to compute the inverse image of a point.

Example 5: Let us compute the complement of the set
{x ∈ R3 : x < (5, 2, 4)T }. This set can be expressed as
{x ∈ R3 : x1 < 5}︸ ︷︷ ︸

A1

∩{x ∈ R3 : x2 < 2}︸ ︷︷ ︸
A2

∩{x ∈ R3 : x3 < 4}︸ ︷︷ ︸
A3

.

According to (36): {x ∈ R3 : x < (5, 2, 4)T }c =
{x ∈ R3 :x1 ≥ 5} ∪ {x ∈ R3 : x2 ≥ 2} ∪ {x ∈ R3 : x3 ≥ 4},
which is the union of non pairwise disjoint sets. And,
according to (37): {x ∈ R3 : x < (5, 2, 4)T }c = {x ∈ R3 :
x1 ≥ 5} ∪ ({x ∈ R3 : x1 < 5} ∩ {x ∈ R3 : x2 ≥ 2}) ∪ ({x ∈
R3 : x1 < 5} ∩ {x ∈ R3 : x2 < 2} ∩ {x ∈ R3 : x3 ≥ 4}),
which is the union of pairwise disjoint sets.

From (36), the complement of L is given by:

Lc =

 n⋂
i=1

x ∈ Rp : zi �
p⊕

j=1

aij ⊗ xj


c

=

n⋃
i=1

x ∈ Rp : zi �
p⊕

j=1

aij ⊗ xj


c

.

Since zi is scalar,
{
x ∈ Rp : zi �

⊕p
j=1 aij ⊗ xj

}c

={
x ∈ Rp : zi �

⊕p
j=1 aij ⊗ xj

}
. Thus,

Lc =

n⋃
i=1

x ∈ Rp :

p⊕
j=1

aij ⊗ xj ≺ zi

 (38)

Lemma 2: The set Lc can be expressed by:

Lc =

n⋃
i=1

{
x ∈ Rp : x < X(i)

}
(39)

where X(i) is a vector with entries defined by X(i)
j = zi−aij .
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Proof: Observe that:
p⊕

j=1

aij ⊗ xj ≺ zi ⇔ (∀j, xj < zi − aij = X(i)
j ).

Therefore,
⊕p

j=1 aij ⊗ xj ≺ zi ⇔ x < X(i).
Each term of the union that represents Lc in (39) can be

expressed as an intersection of sets as follows:{
x ∈ Rp : x < X(i)

}
=

{
x ∈ Rp : xj < X(i)

j ∀j ∈ {1, ..., p}
}

=

p⋂
j=1

{
x ∈ Rp : xj < X(i)

j

}
.

Therefore, equation (39) can be expressed as:

Lc =

n⋃
i=1

 p⋂
j=1

{
x ∈ Rp : xj < X(i)

j

} . (40)

Notation 3: The sets U and L are defined by unions
and intersections of subsets defined by inequalities. In the
following, it will be used a short notation to represent this
subsets, in which these inequalities appear in braces {·}.
For instance, the set

{
x ∈ Rp : xj < X(i)

j

}
is represented by{

xj < X(i)
j

}
. Note that, this notation will be used when it is

clear that x ∈ Rp, since this information is omitted.
The set L can be obtained by computing the complement of
Lc, i.e., L = (Lc)c. Thus, the set L is given by (see (36)):

L =

[
n⋃

i=1

(
p⋂

j=1

{
xj < X(i)

j

})]c
=

n⋂
i=1

[(
p⋂

j=1

{
xj < X(i)

j

})c]
.

(41)
According to (36),(

p⋂
j=1

{
xj < X(i)

j

})c

=

p⋃
j=1

{
xj < X(i)

j

}c

=

p⋃
j=1

{
xj ≥ X(i)

j

}
.

(42)
Thus,

L =

n⋂
i=1

 p⋃
j=1

{
xj ≥ X(i)

j

} (43)

From (43) it can be shown that the set L can be represented
by a union of N = pn hyperrectangles. In order to reduce the
computational effort, in the following it is shown that if we
consider (37) instead of (36) to compute the complement of
an intersection of sets, the set L can be represented by a set
of N ′ ≤ N pairwise disjoint hyperrectangles.

According to (37), equation (42) becomes: p⋂
j=1

{
xj < X(i)

j

}c

=

p⋃
j=1

[(
j−1⋂
k=1

{
xk < X(i)

k

})
∩
{
xj ≥ X(i)

j

}]
(44)

where x ∈ Rp and
⋂0

k=1

{
xk < X(i)

k

}
= Rp.

From (41) and (44):

L =

n⋂
i=1

 p⋃
j=1

[(
j−1⋂
k=1

{
xk < X(i)

k

})
∩
{
xj ≥ X(i)

j

}] (45)

Defining:

setij =

[
j−1⋂
k=1

{
xk < X(i)

k

}]
∩
{
xj ≥ X(i)

j

}
, (46)

we have that:

L =

n⋂
i=1

p⋃
j=1

setij

=
(
set11 ∪ · · · ∪ set1p

)
∩
(
set21 ∪ · · · · · · ∪ set2p

)
∩

· · · ∩
(
setn1 ∪ · · · ∪ setnp

)
=

(
set11 ∩ set21 ∩ · · · ∩ setn1

)
∪
(
set11 ∩ set21 ∩ · · · ∩ setn2

)
· · · ∪

(
set1p ∩ set2p ∩ · · · ∩ setnp

)
(47)

In order to obtain a compact representation of (47), the set of
coefficients G is defined as:

G = {1, ..., p}n. (48)

Remark 4: If g ∈ G, then g = (g1, g2, · · · , gn), where
gi ∈ {1, · · · , p}.

Thus, equation (47) can be rewritten as:

L =
⋃
g∈G

n⋂
i=1

setigi . (49)

Now, let us define:

SET g =

n⋂
i=1

setigi . (50)

Lemma 3: The sets SET g for g ∈ G are pairwise disjoint
hyperrectangles.

Proof: Consider g and g′ ∈ G with g 6= g′. In this case,
there is k ∈ {1, ..., n} such that gk 6= g′k. From (50),

SET g ∩ SET g′ =

n⋂
i=1

setigi ∩
n⋂

i=1

setig′i

=

 n⋂
i=1
i 6=k

(setigi ∩ set
i
g′i

)

 ∩ [setkgk ∩ setkg′k] .
Note that, according (37), the sets {seti1, ..., setip}, with setij
defined by (46), are pairwise disjoint for a fixed i. Therefore,
since gk 6= g′k, we have that setkgk ∩ set

k
g′k

= ∅ and hence

SET g ∩ SET g′ = ∅.
From (49) and (50), the set L can be expressed as:

L =
⋃
g∈G

SET g (51)

Remark 5: In the worst-case scenario the set L, given
by (51), can be represented by N ′ = pn pairwise disjoint
hyperrectangles. However, some SET g may be empty. Hence,
in general, the set L can be represented by N ′ ≤ pn pairwise
disjoint hyperrectangles.

Then, from (33), we have that:

I−1[A]{z} = U ∩
⋃
g∈G

SET g =
⋃
g∈G

(SET g ∩ U) , (52)

where U is defined by (34).
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Example 6: Consider the autonomous uMPL system given
by:

x(k) = A(k)⊗ x(k − 1),

where,

A(k) ∈
(

[1, 4] [2, 3]
[1, 2] [0, 4]

)
.

Given x(1) = (5, 4)T , let us compute I−1[A]{x(1)}. Accord-
ing to (34), the set U is given by:
U =

{
x ∈ R2 : x � A\◦x(1)

}
, where,

A\◦x(1) =

(
1 2
1 0

)
\◦
(

5
4

)
=

(
(5− 1) ∧ (4− 1)
(5− 2) ∧ (4− 0)

)
=

(
3
3

)
.

Thus, U =
{
x ∈ R2 : x1 ≤ 3, x2 ≤ 3

}
. In order to compute

the sets setij , i, j ∈ {1, 2} , we must compute first X(i) for
i ∈ {1, 2} (see (39)):

X(1) =

(
x1(1)− a11
x1(1)− a12

)
=

(
(5− 4)
(5− 3)

)
=

(
1
2

)
,

X(2) =

(
x2(1)− a21
x2(1)− a22

)
=

(
(4− 2)
(4− 4)

)
=

(
2
0

)
.

According to (46), the sets setij , i, j ∈ {1, 2}, are given by:

set11 =
{
x ∈ R2 : x1 ≥ 1

}
, set12 =

{
x ∈ R2 : x1 < 1, x2 ≥ 2

}
set21 =

{
x ∈ R2 : x1 ≥ 2

}
, set22 =

{
x ∈ R2 : x1 < 2, x2 ≥ 0

}
Now, for each g ∈ {1, 2}2 = {(1, 1), (1, 2), (2, 1), (2, 2)}
we compute the sets SET g as follows:

SET (1,1) = set11 ∩ set21 =
{
x ∈ R2 : x1 ≥ 2

}
,

SET (1,2) = set11 ∩ set22 =
{
x ∈ R2 : 1 ≤ x1 < 2, x2 ≥ 0

}
,

SET (2,1) = set12 ∩ set21 = ∅,
SET (2,2) = set12 ∩ set22 =

{
x ∈ R2 : x1 < 1, x2 ≥ 2

}
.

Finally we compute I−1[A]{x(1)} =
⋃

g∈{1,...,p}n
(SET g ∩ U)

(see (52)):

I−1[A]{x(1)} =
{
x ∈ R2 : 2 ≤ x1 ≤ 3, x2 ≤ 3

}
∪
{
x ∈ R2 : 1 ≤ x1 < 2, 0 ≤ x2 ≤ 3

}
∪
{
x ∈ R2 : x1 < 1, 2 ≤ x2 ≤ 3

}
.

The inverse image of x(1) can be observed in Figure 1. Note
that I−1[A]{x(1)} is a union of pairwise disjoint hyperrectangles.

Remark 6: The inverse image of a point z w.r.t. an uMPL
system may not exist, in this case, there is no x such that
z ∈ [A]⊗ x and therefore (33) will return the empty set.

In the next section, it is presented an algorithm to compute
the inverse image of a point based on the interval matrices.

C. An algorithm to compute I−1[A]{z}
First, note that (52) can be expressed as:

I−1[A]{z} =
⋃
g∈G

(SET g ∩ U)

=
⋃
g∈G

n⋂
i=1

(
setigi ∩ U

)
=
⋃
g∈G

SET gU, (53)

-3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

4

S
E
T
(1
,1
)
∩
US
E
T
(1
,2
)
∩
USE T (2,2) ∩U

x1

x
2

Fig. 1. Inverse image of x(1).

where SET gU =
⋂n

i=1

(
setigi ∩ U

)
.

The set U , given by (34), can be represented by:

[U] =


[
(−∞, >),

(
X1,≤

)]
...[

(−∞, >),
(
Xp,≤

)]
 . (54)

where X = A\◦z.
From (46),

setij ∩ U =

[
j−1⋂
k=1

{
xk < X(i)

k

}]
∩
{
xj ≥ X(i)

j

}
∩ U. (55)

Thus, the intersection setij ∩ U can be represented by the
following (p× 1) interval matrix:

[
setij ∩U

]
=



[
(−∞, >), min

{(
X(i)

1 , <
)
,
(
X1,≤

)}]
...[

(−∞, >), min
{(

X(i)
j−1, <

)
,
(
Xj−1,≤

)}][(
X(i)

j ,≥
)
,
(
Xj ,≤

)][
(−∞, >),

(
Xj+1,≤

)]
...[

(−∞, >),
(
Xp,≤

)]


.

(56)
Remark 7: Note that, whenever X(i)

j > Xj , the intersection
setij ∩ U will represent an empty region (see section II-A).
Unnecessary computations can be avoided by taking this fact
into account.
After computing

[
setij ∩U

]
for all i and j, the sets SET gU

can be computed by:

[SETgU] =

n⋂
i=1

[
setigi

∩U
]
. (57)

Thus, the inverse image of a point can be represented by

I−1[A]{z} =
⋃
g∈G

[SETgU] . (58)
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Thus the inverse image of a point w.r.t. an uMPL system can
be completely represented by the union of pairwise disjoint
hyperrectangles.

Algorithm 1 describes a general procedure for computing
(58). The inputs of the algorithm are the point z and system
interval matrix [A], the output is the collection of hyper-
rectangles representing the inverse image of z. The worst-
case complexity of the Algorithm is computed as follows: the
worst-case complexity of step 10 is O(pn) and the complexity
of steps 11 to 13 amounts to O(np). Therefore, the worst-case
complexity of the algorithm is O(npn+1).

Remark 8: It is recalled that the worst-case complexity to
compute the inverse image of a point w.r.t. an uMPL system
using the DBM approach is O(pn(n+ p)3) [27], [28].

Algorithm 1 Computing the inverse image of a point w.r.t. an
uMPL system.

input: z and [A] = [A, A], where A, A ∈ Rn×p
max

output: I−1
[A]
{z}

1: I−1
[A]
{z} ← ∅;

2: X← A\◦z;
3: Compute [U] according to (54);
4: for each i ∈ {1, ..., n} do
5: Compute X(i) defined by X(i)

j = zi − aij
6: for each j ∈ {1, ..., p} do
7: setjiU{i, j} ←

[
setij ∩U

]
according to (56);

8: end for each
9: end for each

10: for each g ∈ G do
11: if setjiU{i, g(i)} 6= ∅ for all i ∈ {1, ..., n} then
12: Compute [SETgU] according to (57);
13: if [SETgU] 6= ∅ then
14: I−1

[A]
{z} ← I−1

[A]
{z} ∪ {[SETgU]}

15: end if
16: end if
17: end for each

IV. APPLICATION TO A FILTERING PROBLEM

This section deals with the solution of a filtering problem.
The procedures for computing the image and the inverse image
of a point, presented in this paper, are applied to compute and
represent the support of the posterior probability density func-
tion (p.d.f) of the system states as a union of hyperrectangles.
The obtained hyperrectangles are then efficiently used to solve
the filtering problem.

Problem 1: Consider the uMPL system given by:

x(k) = A(k)⊗ x(k − 1), A(k) ∈
(

[1 3] [0 4]
[2 4] 2.5

)
,(59)

z(k) = C(k)⊗ x(k), C(k) ∈
(
0.5 [0 1]

)
. (60)

In addition, consider that the nondeterministic matrices entries
are random variables uniformly distributed in the given inter-
vals, e.g., the element a12 of A(k) is uniformly distributed
between 0 and 4. Given x(0) = (0, 0)T and z(1) = 3.8,
we aim at computing an estimate for E[x(1)|x(0), z(1)], the
expected value of x(1) given x(0) and z(1).

Theoretically, this problem could be solved by drawing
a set of samples distributed according to the posterior p.d.f

p(x(1)|x(0), z(1)). However, in practice, it is a difficult task
to drawn samples directly from the posterior p.d.f. The Monte-
Carlo method called Importance Sampling is a technique
to approximate a target distribution p(x) by using samples
drawn from a importance distribution q(x), similar4 to p(x),
by means of a process of weighting the samples [37]. Ac-
cording to the Importance Sampling it can be shown that
an approximation for the posterior p.d.f p(x(1)|x(0), z(1))
can be obtained by using a set of weighted particles, noted
by {x(r)(1), ω(r)}|Nr=1, drawn from an importance density
q(x(1)|x(0), z(1)) as follows:

p(x(1)|x(0), z(1)) ∼=
N∑
i=1

ω(r)δ(x(1)− x(r)(1)), (61)

where δ(τ) is the Dirac delta function and ω(r) is the impor-
tance weight of sample x(r)(1) and is given by:

ω(r) ∝ p(x(r)(1)|x(0)) · p(z(1)|x(r)(1))

q(x(r)(1)|x(0), z(1))
. (62)

Given a set of N weighted particles {x(r)(1), ω(r)}|Nr=1 an
estimate for the expected value of x(1) is given by:

E[x(1)|x(0), z(1)] ≈
∑N

r=1 x
(r)(1) · ω(r)∑N

r=1 ω
(r)

. (63)

The most common choice for the importance density is the
prior p.d.f p(x(1)|x(0)). However, since the prior p.d.f is
independent of observations, the state space may not be
efficiently explored. Indeed, for the problem considered in this
section (see Problem 1) it can be observed that the probability
of x(1) ∈ {x ∈ R2 : x1 = 3.3, x2 ≤ 3.8} is non-null.
However, by using the prior p.d.f, the probability of obtaining
a sample in the region {x ∈ R2 : x1 = 3.3, x2 ≤ 3.8} is null.
In order to overcome this drawback the following choice for
the importance density is proposed:

q(x(1)|x(0), z(1)) =
T (x(1);x(0), z(1)) · p(x(1)|x(0))

Ψ
,

(64)
where:

Ψ =

∫
T (x(1);x(0), z(1)) · p(x(1)|x(0))∂x(1), (65)

T (x(1);x(0), z(1)) is a function used to incorporate informa-
tions given by x(0) and the observation z(1) to the importance
density. These informations will be given by the support of
the posterior p.d.f which can be computed by solving the
conditional reachability problem [28]: given x(0) and z(1),
compute the set of all x(1) that can be reached from x(0)
through the transition model and that can lead to z(1) through
the measurement function. This set, noted by X1|1, represents
the support of p(x(1)|x(0), z(1)), mathematically:

X1|1 = I[A]{x(0)} ∩ I−1[C]{z(1)}. (66)

From (29): I[A]{x(0)} = {x ∈ R2 : 1 ≤ x1 ≤ 4, 2.5 ≤ x2 ≤
4} and by using Algorithm 1, the inverse image of z(1) is

4A probability density q(x) is similar to p(x) if ∀x : p(x) > 0 ⇒
q(x) > 0.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 9

given by: I−1[C]{z(1)} = {x ∈ R2 : x1 = 3.3, x2 ≤ 3.8} ∪
{x ∈ R2 : x1 < 3.3, 2.8 ≤ x′2 ≤ 3.8}. Thus, X1|1 = R1∪R2,
where:

R1 = {x ∈ R2 : x1 = 3.3, 2.5 ≤ x2 ≤ 3.8},
R2 = {x ∈ R2 : 1 ≤ x1 < 3.3, 2.8 ≤ x2 ≤ 3.8}.

Given X1|1 the function T (x(1);x(0), z(1)) is defined as:

T (x(1);x(0), z(1)) =


δ(x1 − 3.3), if x(1) ∈ R1,

1, if x(1) ∈ R2,

0, otherwise .
(67)

Remark 9: Note that, in order to have a non-null proba-
bility of generating a particle in region R1 the function T (·)
has an impulsive behavior in this region.

Now, let us compute the normalization constant Ψ. Note
that (65) can be expressed as Ψ = ψ1 +ψ2, where, (for more
details on the following computations refer to Appendix A)

ψ1 =

∫
R1

T (x(1);x(0), z(1)) · p(x(1)|x(0))∂x

=

∫
R1

δ(x1 − 3.3) · p(x(1)|x(0))∂x

= px1(3.3|x(0)) ·
∫ 3.8

2.5−
px2(x2(1)|x(0))dx2

= 0.2250

ψ2 =

∫
R2

T (x(1);x(0), z(1)) · p(x(1)|x(0))∂x

=

∫ 3.3

1−
px1

(x1(1)|x(0))dx1 ·
∫ 3.8

2.8−
px2

(x2(1)|x(0))dx2

= 0.4125

where px1
(x1(1)|x(0)) and px2

(x2(1)|x(0)) are the marginal
prior p.d.f of x1 and x2, respectively. Expressions for the
marginal p.d.f are derived in Appendix A.

Remark 10: Note that, thanks to the hyperrectan-
gles representation for the support of the posterior p.d.f
p(x(1)|x(0), z(1)), given by R1 and R2, it is possible to
express a multiple integral as a product of single variables
integrals, whose integrating functions are the marginal p.d.f
pxi(xi(1)|x(0)). By definition, the integral of a marginal p.d.f
is a marginal cumulative density function (c.d.f). Expressions
for the marginal c.d.f are derived in Appendix A.
If x(1) is sampled from the importance density (64) the
probability of x(1) ∈ R1 is given by P [x(1) ∈ R1] =
ψ1/(ψ1 + ψ2). Equivalently, P [x(1) ∈ R2] = ψ2/(ψ1 + ψ2).
Thus:

P [x(1) ∈ R1] = 0.3529, P [x(1) ∈ R2] = 0.6471. (68)

The importance weight ω(r) of a sample x(r)(1) drawn from
the importance density (64) can be computed by (78), in
Appendix B. Algorithm 2 describes a procedure for generating
a set of N weighted particles representing the posterior p.d.f
of the states of the system (59)-(60).

In order to test the efficiency of the approach, a simulation
was carried out, where Algorithm 2 was used to generate sets
of N = 102, 103 and 104 particles representing approxima-
tions for the posterior p.d.f of the system states. These sets

Algorithm 2 Generating a set of weighted particles
output: {x(r), ω(r)}|Nr=1 (A set of weighted particles)

1: for each r ∈ {1, ..., N} do
2: Generate a random number u uniformly distributed in the interval

[0, 1];
3: if u ≤ 0.3529 (see eq. (68)) then
4: x

(r)
1 ← 3.3;

5: repeat
6: Generate a random matrix A2: ∈

(
[2 4] 2.5

)
;

7: x
(r)
2 ← A2: ⊗ x(0);

8: until x(r) ∈ R1

9: ω(r) ← min{3.8− x
(r)
2 ; 1}, see eq. (78);

10: else
11: repeat

12: Generate a random matrix A ∈
(
[1 3] [0 4]
[2 4] 2.5

)
;

13: x(r) ← A⊗ x(0);
14: until x(r) ∈ R2

15: ω(r) ← 1, see eq. (78);
16: end if
17: end for each

of particles were used to estimate the expected value of x(1)
according to (63). The expected value was also analytically
computed. The results can be observed in Table I.

TABLE I
EXPECTED VALUE OF x(1) (AVERAGE OVER 20 EXPERIMENTS)

State Estimated Value Analytically
N = 102 N = 103 N = 104 Computed Value

x1 2.5883 2.5865 2.5880 2.5873
x2 3.1530 3.1518 3.1524 3.1525

V. CONCLUSIONS

In this work we have presented an approach based on the
interval matrices to compute the inverse image of a point w.r.t.
an uMPL system. The algorithm presented has complexity
O(npn+1), which is lower than the worst case complexity
of the DBM approach to compute the inverse image of a
point. Although the DBM approach is more general, in the
sense that it can be applied to compute the inverse image of
more general set than a single point, the approach presented
in this work is particularly more interesting than the DBM
approach in filtering problems. As future work the authors aim
to generalize the approach presented in section IV in order to
develop a recursive filtering procedure for MPL systems.

APPENDIX A
CUMULATIVE AND PROBABILITY DENSITY FUNCTIONS OF

AN UMPL EQUATION

Consider the uMPL equation given (25). In addition, con-
sider that, the entries of matrix A are deterministic values
or random variables uniformly distributed in the intervals
given by [A]. Thus probability density function (p.d.f) and
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the cumulative density function (c.d.f) of the non-deterministic
entries, noted by pA

ij(τ) and FA
ij(τ), respectively, are given by:

pA
ij(τ) =

{
(aij − aij)−1 if aij ≤ τ ≤ aij
0 otherwise.

(69)

FA
ij(τ) =


0 if τ < aij
τ − aij
aij − aij

if aij ≤ τ ≤ aij

1 τ > aij .

(70)

For the deterministic entries:

pA
ij(τ) = δ(τ − aij), FC

ij(τ) = u(τ − aij), (71)

where δ(τ) is the Dirac delta function and u(τ) is the step
function. In [21, Appendix A] it is demonstrated that the
cumulative density function of z(k) given x(k) is given by:

F (z(k)|x(k)) =

n∏
i=1

Fzi(z(k)|x(k)), (72)

where Fzi(z(k)|x(k)) is the marginal c.d.f of zi, given by:

Fzi(z(k)|x(k)) =

p∏
j=1

FA
ij (zi − xj). (73)

The p.d.f of z(k) is obtained by differentiating (72) succes-
sively with respect z1(k), ..., zn(k), which yields:

p(z(k)|x(k)) =

n∏
i=1

pzi(zi(k)|x(k)), (74)

where pzi(zi(k)|x(k)) is the marginal p.d.f of zi, given by:

pzi(zi(k)|x(k)) =
p∑

j=1

pAij(zi − xj)
p∏

k=1,
k 6=j

FA
ik(zi − xk). (75)

APPENDIX B
DERIVATION OF THE IMPORTANCE WEIGHTS EQUATION

According to (62), if the importance density is given by
(64), the importance weights are given by:

ω(r) ∝ p(x(r)(1)|x(0)) · p(z(1)|x(r)(1))

T (x(r)(1);x(0), z(1)) · p(x(r)(1)|x(0))
·Ψ

∝ p(z(1)|x(r)(1))

T (x(r)(1);x(0), z(1))
. (76)

According to (74), for the uMPL system (59)-(60):

p(z(1)|x(1)) = pC11(z1 − x1) · FC
12(z1 − x2)

+ pC12(z1 − x2) · FC
11(z1 − x1). (77)

From (69) to (71), if z(1) = 3.8 then:

pC
11(z1 − x1) = δ(3.3− x1), FC

11(z1 − x1) = u(3.3− x1),

pC
12(z1 − x2) =

{
1 if 2.8 ≤ x2 ≤ 3.8

0 otherwise,

FC
12(z1 − x2) =


0 if x2 > 3.8

3.8− x2 if 2.8 ≤ x2 ≤ 3.8

1 if x2 < 2.8.

Hence, by substituting (67) and (77) in (76), the non-
normalized weights equation is given by:

ω(r) =

{
min{3.8− x(r)2 ; 1}, if x(r)(1) ∈ R1

1, if x(r)(1) ∈ R2.
(78)
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