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Abstract

The paper focuses on the set-estimation for uncertain Max-Plus Linear systems, with bounded random parameters. This
estimation process involves determining the conditional reach set, which is a compact set of all possible states that can be
reached from a previous set through the transition model (dynamics) and can lead to the observed measurements through the
observation model. In the context of Bayesian estimation theory, this set represents the support of the posterior probability
density function of the system’s state. We compare two approaches, a disjunctive approach, presented in literature, and a
concise approach, presented as a contribution of this paper, to exactly compute this set. Even if both approaches are with an
exponential theoretical complexity, it is shown that the concise approach is more efficient.
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1 Introduction

Timed Discrete Event Systems without concurrency but
with synchronization can be described by max-plus lin-
ear state equations. Timed Event Graphs (TEGs) are
widely employed as graphical representations of these
systems. TEGs are timed Petri nets where each place
has a minimum holding time and are with only one up-
stream and one downstream transitions. The states con-
sidered are the firing dates of TEG transitions. Such
systems have found extensive applications in manufac-
turing plants, telecommunication networks, railway net-
works and parallel computing [7].

This paper focuses on state estimation for uncertain
Max-Plus Linear (uMPL) systems, i.e. when the holding
times associated to the TEG places vary in a bounded
way. The literature has explored different approaches to
tackle this problem:

State observer inspired by Luenberger’s work, utilizing
residuation theory, is proposed in [19] to estimate the
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true state from available measurements. The estimation
approximates the state from below and is shown to be
compatible with the measurements, but no probabilistic
guarantee is provided.

Stochastic filtering for uMPL systems in [25,15,14].
These algorithms follow a two-step calculation similar to
classical Bayesian filtering. The prediction step utilizes
the expectation of max-affine functions, and the correc-
tion step refines the prediction using measurement out-
puts. This approach employs a suboptimal procedure
based on interval analysis [21]. It is important to remark
that this approach risks convergence to unfeasible states
due to over-optimism.

Set-membership filtering also known as set-
estimation, has been studied in [11,10] based on previous
works in [1]. This approach computes the exact support
set of the posterior probability density function (PDF)
as a set. It is important to remark that this approach
tends to be over-pessimistic by discarding inconsistent
states w.r.t. the measurements.

In this study, we address the issue of set estimation by
employing max-plus polyhedra [5]. We present a method
to calculate the set of reachable states from a predic-
tion (max-plus) polyhedron, which encompasses all po-
tential previous states. Following that, we determine the
(max-plus) polyhedron that includes states consistent
with the available measurement, referred to as the like-
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lihood (max-plus) polyhedron. Lastly, we employ the
likelihood (max-plus) polyhedron to adjust the predic-
tion polyhedron, leading to the estimation (max-plus)
polyhedron that characterizes the support of the poste-
rior probability density function (PDF). Furthermore,
we demonstrate the superior efficiency of our novel ap-
proach compared to Difference-BoundMatrices (DBMs)
used in prior studies [1,11,10,27].

The paper is organized as follows: Section 2 recalls the
the basic notions on max-plus algebra, intervals, DBM,
max-plus polyhedra. Section 3 presents the main contri-
butions of this work and section 4 presents an applica-
tion: computing the support of the posterior PDF. Nu-
merical examples are given to show the details of the
computations. Finally, Section 5 concludes the work and
presents some ideas for future works.

2 Preliminaries

2.1 Max-plus algebra

The max-plus algebra, denoted as Rmax, is a set that
includes R along with the elements−∞ and +∞, i.e. R∪
{−∞,+∞}. It is equipped with two associative binary
operations: a⊕ b := max(a, b) and a⊗ b := a+ b. In this
algebra, we have ε := −∞ as the neutral element for ⊕,
i.e. a ⊕ ε = ε ⊕ a = a, which also acts as an absorbing
element for ⊗, i.e. a ⊗ ε = ε ⊗ a = ε. There is also a
neutral element e := 0 for the operation ⊗ i.e. a ⊗ e =
e ⊗ a = a. This algebra is a semiring because it shares
similarities with a ring by dropping the requirement that
each element must have an additive inverse. However,
an inverse for ⊗ exists for all x ∈ Rmax \ {−∞,+∞},
denoted as x−1 := −x, such that x⊗x−1 = x−1⊗x = e.
The operation ⊕ is idempotent, meaning that a⊕a = a.
Consequently, the natural order relation a ≤ b ⇔ a⊕b =
b is defined for elements a, b ∈ Rmax, where ≤ represents
the linear order on R. In the sequel, the symbol ⊗ can
be omitted in the absence of ambiguity.

The two binary operations in Rmax are naturally ex-

tended to matrices. Given A,B ∈ R
n×p

max , C ∈ R
p×q

max and
α ∈ Rmax, we have (A⊕B)ij = (aij ⊕ bij), (A⊗C)ij =
(
⊕p

k=1 aik ⊗ ckj) and (α ⊗ A)ij = α ⊗ aij . The natu-
ral order relation is also applied to matrices as follows

A ≤ B ⇔ A ⊕ B = B for A,B ∈ R
n×p

max , where ≤
refers to the partial order on Rn×p. The column-space

of A ∈ R
n×p

max , denoted col(A) ⊆ R
n

max, consists of all

possible products A⊗ x, for x ∈ R
p

max.

Given k ∈ N and A ∈ R
n×n

max , A
⊗k = A⊗· · ·⊗A (k-fold).

The matrix A⊗0 is the n-dimensional identity matrix In,
with e on themain diagonal and ε elsewhere. The absorb-
ing matrix En×m is defined as the (n ×m)-dimensional
matrix whose entries are ε. The all-e matrix En×m is
such that all entries are equal to e.

A system of linear inequalitiesAx ≤ y, whereA ∈ R
m×n

max ,

x ∈ R
n

max and y ∈ R
m

max admits the greatest solution
x̂ = A♯(y) given by the following residuation formula
(A♯(y))i = minmj=1 (−aji + yj) , which is equivalent to

−(AT ⊗ (−y)). Obviously, if Ax = y admits a solution,
then x̂ is the greatest solution and Ax̂ = y holds. In [8],
to check equality Ax = y, i.e. y ∈ col(A), the following
test is considered, with a complexity O(nm)

Ax = y ⇔
n⋃

i=1

argmin
j∈{1,...,m}

(−aji + yj) = {1, . . . ,m}. (1)

2.2 Interval over the max-plus algebra

Interval analysis in the max-plus algebra was originally
presented in [23]. A (closed) interval [x] in max-plus al-
gebra is a subset of Rmax of the form [x] = [x, x] = {x ∈
Rmax | x ≤ x ≤ x} with x < x. We denote by IRmax

the set of intervals of Rmax. An interval [x] ⊆ [y] if and
only if y ≤ x ≤ x ≤ y. Similarly, [x] = [y] if and only if

x = y and x = y. A value x ∈ Rmax can be represented
by the degenerated interval [x, x]. The ⊕ and ⊗ opera-
tions exist for intervals: [x, x] ⊕ [y, y] = [x ⊕ y, x ⊕ y]
and [x, x] ⊗ [y, y] = [x ⊗ y, x ⊗ y]. An interval ma-
trix in max-plus algebra is a matrix whose elements
are intervals. The operations ⊕ and ⊗ can be extended
to interval matrices. Given the interval matrices [A] =
[A,A], [B] = [B,B] and [C] = [C,C] of dimensions
(n×p), (n×p) and (p×q), then ([A]⊕ [B])ij = [aij ]⊕[bij ]

and ([A]⊗ [C])ij =
⊕p

k=1 ([aik]⊗ [ckj ]). Moreover, the

product of α ∈ Rmax by [A] is given by α ⊗ [A] =
[α ⊗ A,α ⊗ A] and the k-th power of [A] is given by

[A]⊗k = [A⊗k, A
⊗k

].

2.3 Zones and Difference-Bound Matrices

Definition 1 (Zones [26]) Zones are used to represent
affine invariants. In mathematical terms, given a vec-
tor x in Rn, a zone represents the intersection of a fi-
nite number of difference-bound constraints. These con-
straints have the form xi−xj ▷◁ αij and xi ▷◁ αij, where
αij ∈ R ∪ {+∞} and ▷◁∈ {<,≤} (with a well-defined
ordering 1 ). Additionally, the indices i and j represent
distinct elements in the range {0, . . . , n}, where x0 is de-
fined as 0. The zone captures the set of all possible values
of x that satisfy these difference-bound constraints.

Zones are represented by Difference-Bound Matrices
(DBMs) [12], where the entries are a pair of the upper
bound and strictness of the sign of the difference-bound
constraint, i.e. (αij , ▷◁).

1 The symbols < and ≤ used in the constraints are assumed
to have a total order, i.e. < is strictly less than ≤.
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DBMs have some interesting operations such as inter-
section and union (element-wise min and max, respec-
tively), canonical form (cubic complexity using Floyd-
Warshall algorithm) and orthogonal projection. The in-
terested reader is invited to see [1] for more details.

2.4 Max-plus polyhedra

A (max-plus) half space 2 is analogous to a classical half

space, and is defined as the set of points x ∈ R
n

max sat-
isfying (

⊕n
j=1 aj ⊗ xj)⊕ b ≤ (

⊕n
j=1 cj ⊗ xj)⊕ d, where

aj , b, cj , d ∈ Rmax (see [16]).

As conventional convex polyhedra, the (convex) max-
plus (or tropical) polyhedra can be described as an in-
tersection of n max-plus half space. This can be sum-
marized in matrix form as follows Ax ⊕ b ≤ Cx ⊕ d,

where A,C ∈ R
s×n

max and b, d ∈ R
s

max, this external repre-
sentation of the max-plus polyhedron is hereafter called
H-form. It is also possible to represent the H-form as
the homogenous system Ez ≤ Fz where E = (A b),

F = (C d), x ∈ R
n

max and α ∈ Rmax, the term (xT , α)T

refers to the vector z ∈ R
n+1

max whose first n coordinates
coincide with x and the latter is α.

As in the conventional context [16, Minkowski-Weyl
Th.], a max-plus polyhedron is also internally rep-
resented by its V-form, i.e. as the set of points
x ∈ R

n

max which can be written as the affine com-

bination of generators vi ∈ V ⊂ R
n

max (extreme

points) and rj ∈ R ⊂ R
n

max (extreme rays) as
x =

(⊕p
i=1 λiv

i
)
⊕
(⊕q

i=1 µir
i
)
,
⊕p

i=1 λi = e.

Furthermore, the V-form of max-plus polyhedra admits

a homogenous matrix representation as follows

x

α

 =

G

λ

µ

 , G =

 V R

e . . . e ε . . . ε

 with V = (v1, . . . , vp) and

R = (r1, . . . , rq) , i.e. seen as generating matrices 3 . If x is a
point then α = e otherwise α = ε because x is a ray. It is
worth to mention that by simply analyzing the last row
of G, we are able to deduce if a generator, i.e. a column
of G, is an extreme point (α-part is e) or an extreme
ray (α-part is ε). A max-plus polyhedron is said to be
bounded if the last row of G is composed of e and the
other rows have elements that lie in Rmax \ {−∞,+∞}.

It is always possible to go from aH-form to a V-form, and
vice versa, with exponential complexity in the dimension

2 It is worth to recall that every conventional half space is
a max-plus half space, but the converse does not hold.
3 A finite subset of R

n
max, for instance V = {v1, . . . , vr} is

equivalently represented by the matrix V = (v1, . . . , vr).

n as presented in [5]. We present in the sequel the main
results on this complexity analysis.

Theorem 1 ([4,3]) Let P ⊆ R
n+1

max be a max-plus
polyhedron in its homogenous H-form, defined as

P = {z ∈ R
n+1

max | Ez ≤ Fz}, where E and F are ma-

trices in R
s×(n+1)

max (with s ≥ 0). Let G0, . . . , Gs be the

sequence of finite subsets of R
n

max defined as follows
G0 =

{
ϵi
}
1≤i≤n+1

, Gi = {g ∈ Gi−1 | Eig ≤ Fig} ∪
{(Eih)g ⊕ (Fig)h | g, h ∈ Gi−1, Eig ≤ Fig,Eih > Fih},
for all i ∈ {1, . . . , s}, where Ei and Fi are the i-th rows

of E and F and ϵi ∈ R
n+1

max is a vector whose i-th coordi-
nate is equal to e and the others to ε. Then P is finitely
generated by the set Gs.

Remark 1 The complexity of the algorithm derived
from Theorem 1 is O(s2nβ2), where β represents the
maximum number of extreme generators in the inter-
mediate polyhedra represented by Gi. The value of β is
bounded by O(s⌊

n
2 ⌋), i.e. it grows exponentially w.r.t.

n for a fixed s [5]. In practical implementations, the
double description of max-plus polyhedra [5] can be effi-
ciently handled using Polymake [17], which incorporates
the functionality of TPlib [2]. These tools facilitate the
translation of a H-form representation into a V-form
representation and vice versa.

It is important to note that this inductive approach pro-
duces redundant generators, which can be eliminated
using the following procedure.

Procedure 1 ([9]) Consider that V = {v1, . . . , vp}
represents the V-form of a max-plus polyhedron. De-
fine V ′ = V \ {vi} then we can use (1) to verify if
vi ∈ col(V ′), i.e. to compute a basis of col(V ). This
Procedure 1 has complexity O(np2).

Zones, originally defined over the standard algebra, can
also be represented as max-plus polyhedra as described
in [24].

Example 1 Given the difference-bound constraints
x1 ≤ 10 and x1 − x2 ≤ 9. It is not hard to obtain

the following matrix inequality

(
e ε

e ε

)(
x1

x2

)
⊕

(
ε

ε

)
≤(

ε ε

ε 9

)(
x1

x2

)
⊕

(
10

ε

)
, which represents the H-form of

a max-plus polyhedron, i.e. as Ax⊕ b ≤ Cx⊕ d.

Remark 2 Every max-plus polyhedron can be expressed
as a collection of finitely many DBMs (see [1, Prop. 7]).

Definition 2 (Polytrope [22]) A polytrope is a spe-

cific type of max-plus polyhedra of R
n

max that represents
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a single compact zone of Rn, which is convex both in the
standard algebra and in the max-plus algebra.

In [16], the authors demonstrate that polytropes can
be represented in a canonical manner. Specifically, they
showed that in the V-form, a polytrope can be repre-
sented by n+ 1 extreme points. Additionally, in the H-
form, the representation involves n + 1 max-plus half
spaces. In the following propositions, we will present ev-
idences to support the validity of these findings.

Proposition 1 A polytrope of R
n

max is represented by the
intersection of n+ 1 max-plus half spaces.

PROOF. First, a polytrope is a compact zone. Then,
all variables are bounded, i.e. xj ≤ xj ≤ xj with xj < xj

for j ∈ {1, . . . , n}, and are intersected with the con-
straints xi−xj ≤ dij for i ̸= j where i, j ∈ {1, . . . , n} and
dij ∈ R. Thus,

∧n
j=1 xj − xj ≤ 0 ⇔ maxnj=1(xj − xj) ≤

0, (1 half space) and we have for all j ∈ {1, . . . , n}, xj ≤
xj ∧

∧n
i=1,i̸=j xi − dij ≤ xj ⇔ max(xj ,maxni=1,i̸=j(xi −

dij)) ≤ xj , (1 half space) which leads to obtain n + 1
max-plus half spaces. ■

Proposition 2 ([18]) A polytrope of R
n

max is repre-
sented by n+1 extreme points given by g0 = (x1, . . . , xn)

T

and gk = (xk − dk1 . . . xk − dkn)
T for k ∈ {1, . . . , n}

and with xi − xj ≤ dij, xj ≤ xj ≤ xj, xj < xj for
i, j ∈ {1, . . . , n} (dii = 0).

Based on Proposition 2 one obtains that the V-form of
the polytrope that represents the interval vector [x] ∈
IR

n

max is given by V = (x x(1) . . . x(n)), where x(i) =
(x1, x2, . . . , xi, xi+1, . . . , xn)

T .

The intersection of two max-plus polyhedra is also a
max-plus polyhedron which is given in its homogenous

H-form as follows: P1∩P2 = {z ∈ R
n+1

max | (ET
1 ET

2 )
T z ≤

(FT
1 FT

2 )T z} ≡ {z ∈ R
n+1

max | z ∈ P1 and z ∈ P2}. where
P1 = {z ∈ R

n+1

max | E1z ≤ F1z} and P2 = {z ∈ R
n+1

max |
E2z ≤ F2z} with R

n

max where E1, F1 ∈ R
s×(n+1)

max and

E2, F2 ∈ R
q×(n+1)

max .

Remark 3 To compute the V-form of P1 ∩ P2, we can
invoke Theorem 1. If the V-form of P1 or P2 is available,
then it is possible to speed up this algorithm by initializing
the matrix G0 with the generators of P1 or P2. To an
extensive presentation of set-theoretical operations, the
reader is invited to consult [6].

3 Computation of image of a set and the inverse
image of a point over uMPL systems

In this section, we recall the disjunctive method and
present the concise method to compute the image of a

compact set assumed to be a max-plus polyhedron (or
equivalently a collection of zones) and the inverse image
of a point over uncertain Max-Plus Linear systems.

3.1 Uncertain Max-Plus Linear systems

A (autonomous 4 ) Max-Plus Linear (MPL) system [7] is
defined as S : {x(k) = Ax(k− 1), z(k) = Cx(k) where

A ∈ R
n×n

max and C ∈ R
p×n

max . In this paper, we assume the
system S is uncertain, i.e. the matrices have some entries
which are random variables belonging to intervals. Thus,
an uncertain MPL (uMPL) system is defined as

Su :

{
x(k) = A(k)x(k − 1),

z(k) = C(k)x(k)
(2)

where A(k) ∈ [A] = [A,A] ∈ IR
n×n

max and C(k) ∈ [C] =

[C,C] ∈ IR
p×n

max are nondeterministic matrices. Hence,

x(k) ∈ [Ax(k − 1), Ax(k − 1)] ⊂ R
n

max. We assume that
the system works under FIFO (first in, first out) rule, i.e.
x(k) ≥ x(k − 1) which implies that A(k) ≥ In for all k.

In practice, many real systems can be described by an
implicit equation as

x(k) = A0(k)x(k)⊕A1(k)x(k − 1). (3)

Here, A0(k) ∈ [A0] = [A0, A0] ∈ IR
n×n

max and A1(k) ∈
[A1] = [A1, A1] ∈ IR

n×n

max . To obtain an explicit repre-
sentation, we can consider x(k) = A(k)x(k − 1), where
A(k) ∈ [A] =

(⊕
k∈N[A0]

⊗k
)
[A1]. This representation

serves as an over-approximation of the reachable space
of (3) w.r.t. a given initial condition x(0).

3.2 Image and inverse image computation

First, we consider a compact set Xk−1 ⊂ Rn, which is a
single (bounded) max-plus polyhedron, i.e. a collection
of finitely many DBMs (see Remark 2), and we define
its image w.r.t. to A(k) ∈ [A] as

Im[A]{Xk−1} = {Ax | x ∈ Xk−1, A ∈ [A]}, (4)

i.e. as the set all states x that can be reached from x(k−
1) ∈ Xk−1 through the dynamics equation. Then we
consider the inverse image of z(k) w.r.t. C(k) ∈ [C],
formally

Im−1
[C]{z(k)} = {x ∈ Rn | ∃C ∈ [C], Cx = z(k)}, (5)

i.e. the set of all x that can lead to z(k) through the
observation equation.

4 Any nonautonomous MPL system can be converted into
an autonomous one without loss of generality [7, Sec. 2.5].
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3.3 Disjunctive approach

The details of the Piece Wise Affine partition of Max-
Plus Linear systems and uncertain Max-Plus Linear sys-
tems can be found in [20,1,11,7,27]. In this paper, we con-
sider that uMPL systems are also represented by affine
dynamics in the standard algebra within partitions 5 of
the state-space.

Following [1,11], the steps below are necessary to com-
pute the image of set Xk−1 ⊂ Rn and the inverse image
of the point z(k).

Image of Xk−1 ⊂ Rn:
Let Xl ⊂ Rn be a DBM, for all state-space partition:
(1) compute the Cartesian product of Rn and Xl;
(2) intersect the obtainedDBMwith the DBMgenerated
by the state-space partition and the affine dynamics;
(3) compute the canonical form of the intersection;
(4) project the canonical-form representation over x(k).

Since Xk−1 =
⋃N

l=1 Xl then this procedure is repeated
a finite number of times.

As Xk−1 is represented by the collection of N DBMs,
and we calculate the image of each DBM w.r.t. all state-
space partitions (bounded by nn), the total complexity
required to compute Im[A]{Xk−1} of (4) is O(Nnn+3).

Remark 4 If we consider system (3), the image of
the compact set Xk−1 (represented as the collection of
finitely many DBMs) is given by Im[A0],[A1]{Xk−1} =

{
(⊕

k∈N A⊗k
0

)
A1x | x ∈ Xk−1, A0 ∈ [A0], A1 ∈ [A1]}.

The complexity of this computation is O(N(2n)n+3) as
demonstrated in [11].

Inverse image of z(k): Let Z ⊂ Rn be a DBM repre-
senting z(k):
(1) compute the Cartesian product of Z and R;
(2) intersect the obtained DBM with the DBM gener-
ated by the measurement-space partition and the affine
dynamics;
(3) compute the canonical form of the intersection;
(4) project the canonical-form representation over the
variables x(k − 1).

Hence, to compute the inverse image 6 of z(k) w.r.t. all
measurement-space partitions (bounded by np) the com-
plexity amounts to O(np(p+ n)3).

3.4 Concise approach

Based on Remark 2, it is possible to avoid the inherent
disjunctive nature of the zones’ collection using max-

5 The number of partitions is bounded by nn and np for the
state-space and measurement-space, respectively.
6 In [10], the authors use disjoint hyperrectangles to repre-
sent (5) which is computed with complexity O(pnp+1).

plus polyhedra. Based on this fact, we now study the
use of a concise approach to obtain equivalent result
with a lower complexity than the disjunctive approach.
First, we recall that a bounded linear map is defined
as A : R

n

max → R
n

max such that A ≤ A ≤ A. Hence
x 7→ [Ax,Ax] and the following equivalences hold:

(1) α[A]x = [A](αx) ⇔ αA⊗ x = A(αx), ∀A ∈ [A],
(2) [A]x ⊕ [A]y = [A](x ⊕ y) ⇔ Ax ⊕ Ay = A(x ⊕

y), ∀A ∈ [A],

for all α ∈ Rmax and x, y ∈ R
n

max. Moreover, let

[A] ◦ V be the set {[A]vi | vi ∈ V } for V ⊂ R
n

max,
more precisely {[A]v1, . . . , [A]vp} with each [A]vi an

interval box of IR
n

max, i.e. a polytrope. For w ∈ R
n

max
we have w ∈ [A]vi ⇔ w ∈ P, where P is the
max-plus polyhedron in its V-form represented by
Φ = {Avi, g(1)(vi), . . . g(n)(vi)} with g(j)(vi) =
(Avi1, Av

i
2, . . . , Avij , Av

i
j+1, . . . , Avin)

T .

Lemma 1 (Image of bounded polyhedra) Let A :

R
n

max → R
n

max be a bounded linear map such that A ∈ [A]

and X ⊂ R
n

max be the bounded max-plus polyhedron in its

V-form, which is generated by V = {v1, . . . , vp} ⊂ R
n

max,
such that x ∈ X ⇔ x =

⊕p
i=1 λiv

i,
⊕p

i=1 λi = e.
Then Im[A]{X} of (4) is given by a max-plus polyhe-
dron in its V-form generated by {Φ1, . . . ,Φp} where Φi =
{ϕ1(i), . . . , ϕn+1(i)} is the set of n + 1 generators that
characterizes a box [A]vi for vi ∈ V .

PROOF. We want to compute the image of all x ∈ X.
Then, x′ ∈ Im[A]{X} ⇔ x′ ∈ {Ax | x ∈ X,A ∈ [A]}
is rewritten as x′ = A

(⊕p
i=1 λiv

i
)

=
⊕p

i=1 λi(Av
i)⊕p

i=1 λi = e,A ∈ [A] sinceA ∈ [A] thenAvi ∈ [A]vi and

Avi =
⊕n+1

j=1 β
(i)
j ϕj(i) with

⊕p
i=1 λi =

⊕n+1
j=1 β

(i)
j = e

and ϕj(i) ∈ Φi. Thus, x
′ =

⊕p
i=1 λi

(⊕n+1
j=1 β

(i)
j ϕj(i)

)
,⊕p

i=1 λi =
⊕n+1

j=1 β
(i)
j = e, i.e. x′ =

⊕p(n+1)
k=1 αkξ

k

where
⊕p(n+1)

k=1 αkξ
k =

⊕p
i=1

⊕n+1
j=1 λiβ

(i)
j ϕj(i) with

αk = λiβ
(i)
j , ξk ∈ {Φ1, . . . ,Φp},

⊕p(n+1)
k=1 αk = e. ■

Since X ⊂ R
n

max is a bounded max-polyhedron,
then its generators vi (extreme points) lie in (Rmax \
{−∞,+∞})n. It is not hard to see that the Avi, and as
consequence ϕj(i), also lies in (Rmax \ {−∞,+∞})n for
all A ∈ [A]. Thus, Im[A]{X} is clearly also a bounded
max-plus polyhedron.

Procedure 2 To compute the image of a bounded max-
plus polyhedron Xk−1, in its V-form, w.r.t. the dynamics
of the uMPL system of (2), the following steps are nec-
essary

• Compute the image of Xk−1, denoted Im[A]{Xk−1},
based on Lemma 1;
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• Remove the redundant generators of the obtained set
(see Procedure 1).

If Xk−1 is generated by V = {v1, . . . , vp} ⊂ Rn in its
V-form, then the computation of its image is done with
complexity O(n3p2). To prove this result, we verify that
this image is characterized by a generating matrix of
size (n + 1) × p(n + 1). Finally, to remove redundant
generators of the set that represents this image, we apply
a procedure with complexityO(n3p2) (see Procedure 1).

Remark 5 The image of a bounded max-plus polyhe-
dron Xk−1 w.r.t. the dynamics of practical systems (3),

formally Im[A0],[A1]{Xk−1} = {
(⊕

k∈N A⊗k
0

)
A1x | x ∈

Xk−1, A0 ∈ [A0], A1 ∈ [A1]}, can also be handled us-
ing the concise approach but in a conservative way. The
main idea is to use (3) to define a bounded linear map
x 7→ Hx, H ∈ [H] = ([A0] [A1]) and then apply the
Procedure 2.

Example 2 Let A ∈ [A] =

[4, 6] [3, 5]

[3, 7] [4, 5]

 and X0 = {x |

0 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 3}. Then, to compute the im-
age of X0 we first write the following x ∈ X0 ⇔ x =

λ1

 e

1

 ⊕ λ2

 1

1

 ⊕ λ3

 e

3

 , λ1 ⊕ λ2 ⊕ λ3 = e. For

each generator (extreme point) representing X0, we
calculate its image in the form of a polytrope w.r.t.

[A], more precisely Φ1 =


4

5

 ,

6

5

 ,

4

7

 ,Φ2 =
5

5

 ,

7

5

 ,

5

8

 ,Φ3 =


6

7

 ,

8

7

 ,

6

8

 . Finally

the image of X0 is {Φ1,Φ2,Φ3}(by removing redundant
generators - Procedure 1) and the following holds x′ ∈

Im[A]{X0} ⇔ x′ = µ1

 8

7

⊕ µ2

 4

5

⊕ µ3

 5

8

⊕ µ4

 7

5

,

µ1 ⊕ µ2 ⊕ µ3 ⊕ µ4 = e. The result is graphically detailed
in Figure 1. For the sake of comparison, this max-plus
polyhedron is also obtained by the collection of the fol-
lowing two zones {x′ | 4 ≤ x′

1 ≤ 7, 5 ≤ x′
2 ≤ 8,−2 ≤

x′
2 − x′

1 ≤ 3} ∪ {x′ ∈ Rn | 4 ≤ x′
1 ≤ 8, 5 ≤ x′

2 ≤ 8,−1 ≤
x′
2 − x′

1 ≤ 3}.

To obtain the inverse image of a point z w.r.t. the obser-
vation of the system (2), we recall that x′ ∈ Im−1

[C]{z} ⇔
Cx′ ≤ z ≤ Cx′.

Lemma 2 ([13]) The set Im−1
[C]

{z} of (5) is equivalent

to the following max-plus polyhedron in its H-form x′ ∈

Im−1
[C]

{z} ⇔

Ep×n

b

x′ ⊕

Ep×1

ε

 ≤

 d

E1×n

x′ ⊕

Ep×1

e


where b = (−C♯(z))T and d = diag⊕(−z)C.

Example 3 Let C(k) ∈ [C] =
(
[1, 3] [0, 2]

)
and x′ =

Fig. 1. Computation of Im[A]{X0} of Example 2 and of

Im−1
[C]{z} of Example and 3.

(6, 7)T and C(1) = (2 1). Then, the set Im−1
[C]{z =

C(1)x′} is represented by the following max-plus poly-

hedron in its H-form x′ ∈ Im−1
[C]{z} ⇔

(
ε ε

−7 −8

)
x′ ⊕(

e

ε

)
≤

(
−5 −6

ε ε

)
x′⊕

(
ε

e

)
or equivalently in its V-form

such that x′ = γ1

(
7

ε

)
⊕γ2

(
ε

8

)
⊕γ3

(
5

ε

)
⊕γ4

(
ε

6

)
,

γ1⊕γ2⊕γ3⊕γ4 = e. In the Figure 1, these extreme points
are easily verified. For the sake of comparison, this max-
plus polyhedron is also obtained by the collection of the
following two zones {x′ | 5 ≤ x′

1 ≤ 7, x′
2 ≤ 8, x′

2 − x′
1 ≤

1} ∪ {x′ ∈ Rn | x′
1 ≤ 7, 6 ≤ x′

2 ≤ 8, 1 ≤ x′
2 − x′

1}.

4 Application: set-estimation

In a stochastic estimation approach, the uncertain state
vector x is characterized by probability density func-
tions (PDFs). Conversely, in set estimation approach, x
is characterized by a set X such that x ∈ X. Both ap-
proaches are related by the fact that X represents the
support of the PDF that represents x. Furthermore, han-
dling sets is easier than computing PDFs for uMPL sys-
tems mainly because the Bayesian filtering is not fully
addressed (see [25]). Of course, PDFs provide more ac-
curacy rather than simply obtaining their support, but
their computation is intractable.

Definition 3 (Conditional reach set) Let X0 ⊂ Rn

be a compact set of initial conditions such that x(0) ∈ X0.
Given that z(k) for k ≥ 0 is known, then x(k) ∈ Xk|k
corresponds to the conditional reach set from x(k − 1) ∈
Xk−1|k−1 (assuming that X0|0 = X0) obtained via the
dynamics of (2), which leads to z(k) via the observation
of (2).

The interpretation of Definition 3 is given below
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x(k) ∈ Xk|k = Xk|k−1 ∩ X̃k|k, (6)

where Xk|k−1 = Im[A]{Xk−1|k−1} as given by (4) is the
support of the prior PDF p(x(k)|z(1), . . . , z(k−1)) com-
puted thanks to the support of p(x(k−1)|z(1), . . . , z(k−
1)), i.e. Xk−1|k−1, by using the dynamics equation
and the Chapman-Kolmogorov equation based on all
information available at the event step k − 1. In the
correction stage, the support of the posterior PDF
p(x(k)|z(1), . . . , z(k − 1), z(k)) is obtained by correct-
ing the support of the posterior PDF, by using the
new measurement z(k) and observation equation (mea-
surement likelihood), i.e. by intersecting Xk|k−1 with

X̃k|k = Im−1
[C]{z(k)} (given by (5) with complexity

O(max(np, p3)) due to matrix operations). Therefore,
Xk|k (which represents the set-estimation version of
the Bayes rule) is always as a bounded max-plus poly-
hedron. This is because Xk|k−1 is also bounded, and

when it is intersected with X̃k|k, the resulting set is

always bounded even if X̃k|k itself is unbounded. In
other words, Xk|k is a compact set of Rn representing
the support of the posterior PDF, which contains all
the information about the stochastic state x(k) and
is efficiently computed using Remark 3 with the aid
of the library [2] (the complexity is exponential in the
dimension n as stated in Remark 1).

Example 4 Let us consider (2) with the following

matrices A(k) ∈ [A] =

[1, 3] [3, 4]

[2, 3] [2, 4]

 and C(k) ∈ [C] =[1, 3] [1.5, 2.5]

[1, 1] [1, 3]

 . A simulation of the system yields nu-

merical values for x(k) and z(k) for k ∈ {0, 1, 2, 3}.
Let us consider the following compact set of initial
conditions X0|0 = X0 =

{
x ∈ R2 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

}
such that x(0) = (0.06, 0.02)T ∈ X0. This set is the
following bounded max-plus polyhedron in its V-form
(it is an interval, thus a polytrope) x ∈ X0|0 ⇔ x =

λ1

 e

e

 ⊕ λ2

 e

1

 ⊕ λ3

 1

e

 , λ1 ⊕ λ2 ⊕ λ3 = e. The first

step consists in computing X1|0 = Im[A]{X0|0} as given
by (4) by using Procedure 2. This set corresponds to
the prior PDF of the state p(x(1)|x(0)). It is equal
to the following bounded max-plus polyhedron in its

V-form x′ ∈ X1|0 ⇔ x′ = µ1

 4

5

 ⊕ µ2

 3

2

 ⊕ µ3

 5

3

 ,

µ1 ⊕ µ2 ⊕ µ3 = e. Finally, we are able to compute the
conditional reach set X1|1 = X1|0 ∩ X̃1|1 using the mea-
surement likelihood, i.e. the information of z(1), which

is X̃1|1 = Im−1
[C]{z(1) = (6.14, 6.34)T }. X1|1 corresponds

to the support of the PDF p(x(1)|z(1)), i.e. the correc-
tion of the support of the prior PDF computed in the first
step. The following max-plus polyhedron in its H-form,

Fig. 2. Calculation ofXk|k for k ∈ {1, 2, 3} of Example 4. The
red crosses and the black dots represent the true state-vector
x(k) and the extreme points of Xk|k, respectively.

represents X̃1|1 x′ ∈ X̃1|1 ⇔


ε ε

ε ε

−5.14 −4.64

x′ ⊕


e

e

ε

 ≤


−3.14 −3.64

−5.34 −3.34

ε ε

x′ ⊕


ε

ε

e

.Then, we compute the V-form of

X1|1 using the idea of Remark 3, i.e. using the extremes
points that define X1|0 as initial generating set of the
algorithm derived from Theorem 1.

The conditional reach setsXk|k for k ∈ {1, 2, 3, 4} are de-
picted in Figure 2. Precisely for k = 1 we have x′ ∈ X1|1 ⇔

x′ = γ1

 5

3.34

 ⊕ γ2

 3.64

4.64

 ⊕ γ3

 3.14

3.34

 ⊕ γ4

 3

3.64

 ,

γ1 ⊕ γ2 ⊕ γ3 ⊕ γ4 = e.

4.1 Complexity analysis

The Table 1 compares the complexity of the disjunctive
and concise approaches. As a notation, we have:

• N as the number of DBM to represent Xk−1|k−1;
• N1 andN2 as the number of DBM to representXk|k−1

and X̃k|k, respectively;
• G the number of extreme points that generate the

max-plus polyhedron Xk−1|k−1;
• p = n, the dimensions of the state and measurement-

spaces are equal.

Proc. Xk|k−1 X̃k|k Xk|k

Disj. O(Nnn+3) O(nn+3) O(N1N2n
3)

Conc. O(G2n3) O(n3) O(nn+3)

Table 1
Comparison of the complexity.

To summarize both approaches have theoretical expo-
nential complexity, nevertheless the efficiency of the con-
cise approach in computing Xk|k−1 (polynomial time)
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leads to a more efficient practical complexity to compute
Xk|k.

5 Conclusion

Although computing the posterior probability density
function (PDF), which is essential in Bayesian formula-
tion, is not feasible in practice for uMPL systems with
stochastic processing times, we have presented two ap-
proaches to compute its support as a set: the disjunctive
approach and the concise approach. Both approaches
can be cumbersome in worst-case scenarios, but the con-
cise approach computes the support of the prior PDF
(prediction state) faster. It is worth noting that this
support can be utilized in Particle filter algorithms, as
demonstrated in [11,10]. Additionally, this support is
useful for validating stochastic filtering algorithms, such
as the one proposed in [25,14]. In the future, it could
be interesting to develop a more efficient procedure to
compute the correction stage, i.e. on obtaining the sup-
port of the posterior PDF in a faster manner, making it
possible to enhance the scalability for large dimensional
systems.
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