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Abstract: This paper deals with the control of uncertain (max,+)-linear systems, more precisely
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1. INTRODUCTION

The theory of (max,+)-algebra enables the study of Dis-
crete Event Dynamic Systems (DEDS) characterized by
delay and synchronization phenomena such as production
systems, computing networks and transportation systems
(see Baccelli et al. (1992) and Heidergott et al. (2006)).
Such systems can be described by linear models, thanks
to the particular algebraic structure called idempotent
semiring (or dioid) and the residuation theory enables to
deal with their control. For instance, some model matching
problems are solved by the way of different control struc-
tures (open-loop or close-loop structures) as presented in
Cottenceau et al. (2001) and Maia et al. (2005). These
results assume that the model is perfectly known.

Over the last past years, more and more studies have been
done for systems described by intervals which contain their
behavior.

• Firstly, due to some uncertain or variable parameters
(see Lhommeau et al. (2004) and Di Loreto et al.
(2009)), the transfer of the system may fluctuate. In
spite of such variations, the system can be framed by
an interval describing its upper and lower behaviors.
• Secondly, it is shown in Boutin et al. (2009) that when

a system has some ressource sharing or routing prob-
lems these phenomena are not managed by (max,+)-
linear properties. Nevertheless, it is sometimes possi-
ble to handle an interval the bounds of which are two
(max,+)-linear systems framing the real system.
• Finally, a (max,+)-linear system of high dimension

can invalidate toolboxes which handle it both in
storage capacity and in computing time. As shown
in Le Corronc et al. (2009), the real system can be
included in an interval easier to compute thanks to
algorithms of linear complexity and restricted data-
processing representation.

All these works share a feature that a system is not exactly
modeled but is described by an interval containing its
behaviors. The lower and the upper bounds of the interval
correspond to (max,+)-linear systems and illustrate the
extreme behaviors of the system. Fig. 1 illustrates that
kind of context. For all inputs u, a system of which the
transfer h belongs to an interval [ h , h ] has an output y
included in an interval too. In other words, if h ∈ [ h , h ]
then ∀u, y ∈ [ hu , hu ].
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Fig. 1. Uncertain (max,+)-linear system [ h , h ] with an
exact input u and an output y included in an interval.
Maximal distances of this interval in event and time
domains are respectively ∆γ and ∆δ.

Thus for a given input u, output y is only known with
an approximation, i.e. an uncertainty linked to the size of
the interval and defined by the distances ∆γ for the event
domain and ∆δ for the time domain.

This paper puts forward that by adding an upstream cor-
rector p to an uncertain system then the controlled system
hp also belongs to an interval [ hp , hp ] which has at worst
the same uncertainty. The synthesis of such a controller
is given here in order to decrease this uncertainty. This
control problem is given as a research of a fixed point of
an isotone mapping.

In order to introduce this work, the paper is organized as
follows. Section 2 recalls some algebraic tools required for
the DEDS study through idempotent semiring, residuation
theory and fixed point of isotone mapping theory. In the
third section, the modelling of (max,+)-linear systems is
presented, as well as interval of such systems. Finally, in



the fourth section, the controller p reducing the uncer-
tainty of the interval is proposed and some examples are
given.

2. ALGEBRAIC PRELIMINARIES

For this section, interested reader is invited to peruse
(Baccelli et al., 1992, Chap 4).

2.1 Dioid theory

Definition 1. An idempotent semiring D is a set endowed
with two inner operations denoted ⊕ and ⊗. The sum ⊕ is
associative, commutative, idempotent (i.e. ∀a ∈ D, a ⊕
a = a) and admits a neutral element denoted ε. The
product ⊗ is associative, distributes over the sum and
accepts e as neutral element.

An idempotent semiring is said to be complete if it is closed
for infinite sums and if the product distributes over infinite
sums too. In this case, the greatest element of D is denoted
T (for Top) and represents the sum of all its elements
(T =

⊕
x∈D x). Finally, a subset Dsub of a semiring D is

called a subsemiring if ε ∈ Dsub, e ∈ Dsub and if Dsub is
closed for ⊕ and ⊗.

Due to the idempotency of addition, an order relation
can be associated with D by the following equivalences:
∀a, b ∈ D, a � b ⇐⇒ a = a⊕ b and b = a ∧ b. Because of
the lattice properties of a complete idempotent semiring,
a ⊕ b is the least upper bound of D whereas a ∧ b is its
greatest lower bound.

Example. The set Zmax = (Z ∪ {−∞,+∞}) endowed
with the max operator as sum ⊕ and the classical sum
as product ⊗, is a complete idempotent semiring where
ε = −∞, e = 0 and T = +∞. On Zmax, the greatest lower
bound ∧ takes the sense of the min operator.

Example. The set of formal series with two commu-
tatives variables γ and δ, Boolean coefficients in {ε, e}
and exponents in Z, is a complete idempotent semiring
denoted BJγ, δK where ε =

⊕
k,t∈Z εγ

kδt (null series) and

e = γ0δ0. The series s ∈ BJγ, δK is written in a single way
by s =

⊕
n,t∈Z s(n, t)γ

nδt where s(n, t) = e (presence of

the monomial) or ε (absence of the monomial).

Example. The quotient of BJγ, δK by the equivalence
(γ ⊕ δ−1)∗ provides the complete idempotent semiring
Max

in Jγ, δK. By considering this equivalence in a graphical
point of view, an element γnδt ofMax

in Jγ, δK is represented
by a southeast cone with coordinates (n, t).

2.2 Residuation theory

Residuation is a general notion in lattice theory which
allows to define “pseudo-inverse” of some isotone maps.
In particular, the residuation theory provides optimal
solutions to inequalities f(x) � b, where f is an order-
preserving mapping (i.e., a � b ⇒ f(a) � f(b)) defined
over ordered sets.

Definition 2. Let f : D → C be an isotone mapping, where
D and C are complete idempotent semirings. Mapping f
is said residuated if ∀b ∈ C, the greatest element denoted
f ](b) of subset {x ∈ D|f(x) � b} exists and belongs to

this subset. Mapping f ] is called the residual of f . When
f is residuated, f ] is the unique isotone mapping such
that f ◦ f ] � IdC and f ] ◦ f � IdD, where IdC and IdD are
respectively the identity mappings on C and D.

Example. Mapping La : x 7→ a ⊗ x defined over D is
residuated. Its residual is usually denoted L]a : x 7→ a ◦\x
and called left quotient. Therefore, a ◦\b is the greatest
solution to inequality a⊗x � b, i.e. a ◦\b = x̂ =

⊕
{x | a⊗

x � b}. Several properties of La are given in appendix A.

Then, connected to the residuation theory, the mapping
restriction allows to have some projectors from a set to
another set.

Definition 3. Let Id|Dsub
: Dsub 7→ D, x 7→ x be the

canonical injection from a complete subsemiring into a
complete semiring. Injection Id|Dsub

is residuated and its
residual is a projector denoted PrDsub

.

2.3 Fixed point of isotone mapping

Whereas residuation theory provides optimal solutions to
inequalities f(x) � b, the fixed point theory enables to find
greatest finite solutions to equations f(x) = x, where f is
an isotone mapping defined over a complete idempotent
semiring D.

Definition 4. Let Ff = {x ∈ D | f(x) = x} be the set
of fixed points of an isotone mapping f defined over D.
Respectively, let Pf = {x ∈ D | f(x) � x} be the set
of post-fixed points which can be interpreted in Ff as
following equivalence shows: f(x) � x⇔ f(x) ∧ x = x.

Theorem 5. (Knaster-Tarski) Let Ff be a complete lat-
tice. The greatest fixed solution ŷ of Ff is given by:

ŷ = lim
n→∞

fn(T )

where fn+1 = f ◦ fn and f0 = IdD.

In order to obtain this solution, the following theorem puts
forward a method to compute it in a recurrent way.

Theorem 6. Let f be an isotone mapping defined over D
and let us recall that Ff is the set of fixed points of f .
Now consider the following iterative scheme:

Let x0 = T ,
do xn+1 = f(xn),
until xm+1 = xm for m ∈ N.

If function f admits a fixed point x ∈ Ff and x 6= ε, then
the previous algorithm converges toward the greatest fixed
point ŷ = xm.

Proof. Firstly, as xm+1 = xm, xm = f(xm) and so xm
belongs to the set Ff . Secondly, it is necessary to show
that xm is the greatest solution of Ff . Let x′ ∈ Ff , since
x0 = T , x0 � x′. Finally, if xm � x′ then xm+1 � x′:
xm+1 = f(xm) � f(x′) = x′ (thanks to the isotony of f
and knowing that x′ ∈ Ff ).

It is also possible to use this algorithm in order to find the
greatest fixed point less than a given value of D. In that
case, the following corollary is given.

Corollary 7. Let h : D 7→ D be an isotone mapping and
val ∈ D; let f defined by f : D 7→ D, x 7→ h(x) ∧ val.
If f admits a fixed point x ∈ Ff , then the algorithm of
theorem 6 converges toward the greatest fixed point of h
less than val, that is ŷ = xm � val.



3. SYSTEM MODELLING

3.1 Models of (max,+)-linear systems

The complete idempotent semiring Max
in Jγ, δK enables to

model DEDS which involve synchronization and delay phe-
nomena. Indeed, equivalence (γ ⊕ δ−1)∗ for all Max

in Jγ, δK
series is well suited to describe the weakly increasing
nature of DEDS. A monomial γnδt ∈ Max

in Jγ, δK is inter-
preted as follows: the nth event occurs at earliest at time
t. These systems can thus be modeled by the following
input/output relation:

y = hu = CA∗Bu (1)

where A ∈ Max
in Jγ, δKn×n, B ∈ Max

in Jγ, δKn×p and C ∈
Max

in Jγ, δKq×n while n, p and q refer respectively to the
state vector size, the input vector (u) size and the output
one (y). In this equation, A∗ =

⊕
i∈ZA

i with A0 = e and

h is the transfer function of the system 1 .

Criterion 8. According to (Baccelli et al., 1992, Theorem
5.39) and Gaubert (1992), a (max,+)-linear system defined
by equation (1) is necessarily such that h is periodic and
causal 2 which is denoted h ∈ Max

in Jγ, δKcaus. In other
words, the system has no anticipation neither on event
domain nor on time domain.

Definition 9. The canonical injection Id|caus :Max
in Jγ, δKcaus

7→ Max
in Jγ, δK is residuated and its residual is denoted

Prcaus :Max
in Jγ, δK 7→ Max

in Jγ, δK. Formally, series Prcaus(s)
is the greatest causal series less than or equal to s:

Prcaus(s) = Prcaus
(⊕
i∈N

f(ni, ti)γ
niδti

)
=
⊕
i∈N

g(ni, ti)γ
niδti

where

g(ni, ti) =

{
f(ni, ti) if (ni, ti) ≥ (0, 0),
ε otherwise.

3.2 Interval of (max,+)-linear system

The systems considered here are not exact (max,+)-linear
systems but described by intervals [ h , h ] containing in a
guaranteed way their behavior. In these intervals, h and h
are periodic and causal series of the idempotent semiring
Max

in Jγ, δKcaus and represent respectively the lower and the
upper behaviors of the system. Hence, as illustrated in Fig.
2, for a given input u, output y evolves in an area framed
by the interval [ hu , hu ].

Fig. 2. Uncertain (max,+)-linear system [ h , h ] with an
exact input u and an output y included in interval
[ hu , hu ].

Remark 10. Currently, a toolbox called MinMaxGD (see
Cottenceau et al. (2000)) enables to handle series of
Max

in Jγ, δK. Elementary operations of (max,+)-linear sys-
tems, such as addition ⊕, product ⊗ or residuation ◦\,
1 Which corresponds to the impulse response of the system.
2 The exponents of all the monomials of h are positives or null.

are proposed in this library. However, some correlations
between system elements can reveal that the computations
are expensive both in storage capacity and in computing
time. In such a case, another toolbox called Container-
MinMaxGD (see Le Corronc et al. (2009)) enables a more
effective handling of interval, the bounds of which have
convexity properties. Thus, starting from a known system,
i.e. a system with known matrices C,A,B (see equation
(1)), the toolbox is able to compute an interval [ h , h ]
that contains h = CA∗B even if the matrices have high
dimensions.

3.3 Maximal uncertainty of the interval

According to the following theorem coming from the
second order theory of (max,+)-linear systems detailed in
MaxPlus (1991), the distance between the bounds of an
interval [ h , h ] of (max,+)-linear system can be measured
easily.

Theorem 11. (MaxPlus (1991)) Let u and v be two series
of Max

in Jγ, δK and u � v. The series v ◦\u is called the
correlation of u over v and contains the maximal distances
between u and v in the event domain γ as well as in time
domain δ. More precisely, monomial γνδ0 of series v ◦\u
gives the maximal event distance ν between u and v also
denoted by:

ν = ∆γ(u, v) = min{n | γnv � u},
whereas γ0δ−τ provides the maximal time distance τ
denoted by:

τ = ∆δ(u, v) = min{t | δtu � v}.
Remark 12. It is possible that v ◦\u = ε. In such a case,
distances ∆γ(u, v) and ∆δ(u, v) are infinite.

Example. Let u = γ1δ1 ⊕ γ3δ3(γ3δ2)∗ and v = γ1δ1 ⊕
γ2δ4⊕γ4δ6(γ3δ2)∗ be two series ofMax

in Jγ, δK (see Fig. 3a).
The correlation of u over v is the following series (see Fig.
3b): v ◦\u = γ0δ−3 ⊕ γ2δ−1 ⊕ γ5δ1(γ3δ2)∗. The maximal
event distance is ∆γ(u, v) = 5, whereas the maximal time
distance is ∆δ(u, v) = 3.
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Fig. 3. Maximal distances in event and time domains
between two series of Max

in Jγ, δK.

Then, thanks to theorem 11, the maximal uncertainty at
the output of an uncertain system belonging to [ h , h ] is
given by the following proposition.

Proposition 13. Let [ h , h ] with h � h, be an interval
of (max,+)-linear system. The computation of correla-
tion h ◦\h provides the maximal distances 3 ∆γ(h, h) and

3 These distances are called the maximal uncertainty of [ h , h ].



∆δ(h, h). Moreover for any input u these distances are the
maximal distances of interval [ hu , hu ] in which output
y evolves in a guaranteed way. Formally:

∆γ(h, h) = max
∀u∈D

{∆γ(hu, hu)},

∆δ(h, h) = max
∀u∈D

{∆δ(hu, hu)}.

Proof. According to theorem 11, correlation (hu) ◦\(hu)
represents the maximal event and time distances between
the bounds of [hu , hu]. Then, the following inequality is
shown:

(hu) ◦\(hu) = (uh) ◦\(uh) since ⊗ commutative,

= h ◦\(u ◦\(uh)) see (A.2),

� h ◦\h see (A.1).

Hence, ∀u:

∆γ(hu, hu) ≤ ∆γ(h, h),

∆δ(hu, hu) ≤ ∆δ(h, h).

Remark 14. A particular input u which leads to equality
in these equations is given by u = e.

Example. Let h = γ1δ0 ⊕ γ4δ1(γ2δ1)∗ and h = γ1δ0 ⊕
γ2δ3 ⊕ γ4δ5(γ2δ1)∗ be two series of Max

in Jγ, δK forming an
interval of (max,+)-linear system and u = γ0δ0(γ2δ3)∗ be
its input. The computation of (hu) ◦\(hu) and h ◦\h with
the toolbox MinMaxGD is given below.

// Script for the example with Scilab/MinMaxGD
// lh and uh = lower and upper bounds of h
lh = series([1 0],[4 1],[2 1])
uh = series([1 0;2 3],[4 5],[2 1])
u = series(eps,e,[2 3])
lhu = lh * u
uhu = uh * u
correlation1 = uhu \ lhu
correlation2 = uh \ lh

The results are:

correlation1 = (hu) ◦\(hu) = γ0δ−3 ⊕ γ1δ0(γ2δ1)∗,

correlation2 = h ◦\h = γ0δ−4(γ2δ1)∗

= γ0δ−4 ⊕ γ2δ−3 ⊕ γ4δ−2 ⊕ γ6δ−1 ⊕ γ8δ0(γ2δ1)∗.

so (hu) ◦\(hu) � h ◦\h. As regards to distances in event and
time domains:

∆γ(hu, hu) = 1 ≤ ∆γ(h, h) = 8,

∆δ(hu, hu) = 3 ≤ ∆δ(h, h) = 4.

4. REDUCING THE UNCERTAINTY OF A
(MAX,+)-LINEAR SYSTEM THANKS TO A

CONTROLLER

According to the previous section, when a system belongs
to an interval [ h , h ], the maximal uncertainty over its
output y can be found for all inputs u thanks to correlation
h ◦\h. This section shows that the use of a (max,+)-linear
controller p ∈ Max

in Jγ, δK placed upstream of the system
can reduce this uncertainty or even cancel it completely.

4.1 Computation of the uncertainty with a controller

First of all, if a controller p is placed upstream of an
uncertain system [ h , h ], as illustrated in Fig. 4, the
controlled system becomes the interval [ hp , hp ] and its
output y is therefore included in the interval hpv � y �
hpv.

Fig. 4. Controlled system.

Then, the maximal uncertainty over the output of the
controlled system [ hp , hp ] can be computed in the same
way as in proposition 13.

Proposition 15. Let [ hp , hp ] with hp � hp, be an
interval of a (max,+)-linear controlled system. Correlation
(hp) ◦\(hp) provides the maximal distances 4 ∆γ(hp, hp)

and ∆δ(hp, hp). Moreover, for any input v these distances
are the maximal distances of the interval [hpv , hpv] in
which the output y evolves in a guaranteed way. Formally:

∆γ(hp, hp) = max
∀v∈D

{∆γ(hpv, hpv)},

∆δ(hp, hp) = max
∀v∈D

{∆δ(hpv, hpv)}.

Finally, the uncertainty over the controlled system output
is smaller than the maximal uncertainty of [ h , h ], i.e.
the one of the uncontrolled system:

∆γ(hp, hp) ≤ ∆γ(h, h),

∆δ(hp, hp) ≤ ∆δ(h, h).

Proof. The proof is immediate by applying proposition
13 for the interval [ hp , hp ].

Remark 16. In the case where ∆γ(h, h) and ∆δ(h, h) are

infinite distances 5 , for some p, ∆γ(hp, hp) and ∆δ(hp, hp)
may be finite distances. Indeed, the controller enables to
slow down the production rate of the controlled system
until it reaches the slowest behavior of the system alone,
behavior given by series h.

4.2 Reduction of the uncertainty

According to proposition 15, a controller can reduce the
size of the box inside of which the output function evolves.
It is then interesting to look for a controller p such that
∆γ(hp, hp) and ∆δ(hp, hp) are no greater than a fixed ν0
for the former and a fixed τ0 for the latter. Among the
controllers which allow these constraints to be achieved, it
is relevant to compute the greatest one, i.e. the optimal
controller in regards of the just in time criterion. Hence,
the objective can be stated as follows:

p̂ =
⊕
{p | ∆γ(hp, hp) ≤ ν0 and ∆δ(hp, hp) ≤ τ0}

⇔ p̂ =
⊕
{p | (hp) ◦\(hp) � γ0δ−τ0 ⊕ γν0δ0} (2)

where γ0δ−τ0 ⊕ γν0δ0 ∈Max
in Jγ, δK is a polynomial and by

considering the following equivalences:

∆γ(hp, hp) ≤ ν0 ⇔ (hp) ◦\(hp) � γν0 , (3)

4 These distances are called the maximal uncertainty of [ hp , hp ].
5 In other word, h and h have two different asymptotic slopes.



∆δ(hp, hp) ≤ τ0 ⇔ (hp) ◦\(hp) � δ−τ0 . (4)

According to the results of section 2.3, this objective can
be reworded by the following proposition and its corollary.

Proposition 17. The greatest controller p̂ as defined in
equation (2) corresponds to the greatest finite fixed point
of the equation:

p = p ∧ h ◦\(γ−ν0hp) ∧ h ◦\(δτ0hp). (5)

This equation can be written as x = x ∧ f(x) where
f(x) = h ◦\(γ−ν0hx) ∧ h ◦\(δτ0hx) is an isotone mapping.

Proof.

• Firstly, in the event domain, the constraint is written
as follows:

(hp) ◦\(hp) � γν0 see (3),

⇔ hp � γν0hp see (A.3),

⇔ γ−ν0hp � hp since γ−ν0 ⊗ γν0 = e,

⇔ h ◦\(γ−ν0hp) � p see (A.5) and (A.1),

⇔ p = p ∧ h ◦\(γ−ν0hp) see definition 4.

• Secondly, in the time domain, the objective becomes:

(hp) ◦\(hp) � δ−τ0 see (4),

⇔ hp � δ−τ0hp see (A.3),

⇔ δτ0hp � hp since δτ0 ⊗ δ−τ0 = e,

⇔ h ◦\(δτ0hp) � p see (A.5) and (A.1),

⇔ p = p ∧ h ◦\(δτ0hp) see definition 4.

• Thirdly, by considering these both constraints, the
controller p has to satisfy:

p = p ∧ h ◦\(γ−ν0hp) ∧ h ◦\(δτ0hp).
• Finally, since operators ⊗ and ∧ are isotone and

thanks to property (A.5) of the left quotient, func-
tion f(x) = h ◦\(γ−ν0hx) ∧ h ◦\(δτ0hx) is an isotone
mapping.

Remark 18. The greatest controller p̂ as defined in propo-
sition 17 can be found by applying to equation (5) the
algorithm given in theorem 6. However, this theorem
points out that the initial value is x0 = T and because
of property (A.4) of the left quotient, the first iteration of
the algorithm will compute:

f(x0) = f(T ) = h ◦\(δτ0hT ) ∧ h ◦\(γ−ν0hT ) = T.

Hence, it is necessary to involve corollary 7 which looks
for the greatest fixed point, so the greatest controller,
less than an initial value denoted val. Moreover, since the
controller p is a (max,+)-linear system, it must be causal
(see criterion 8), i.e. it must verify equality p = Prcaus(p).
The problem given in equation (2) becomes:

p̂=
⊕
{p | (hp) ◦\(hp) � γ0δ−τ0 ⊕ γν0δ0,

p = Prcaus(p), p � val}. (6)

Corollary 19. The greatest solution to equation (6) is the
greatest fixed series:

p = p ∧ h(γ−ν0hp) ∧ h ◦\(δτ0hp) ∧ Prcaus(p) ∧ val (7)

where val is a causal series of Max
in Jγ, δKcaus.

Proof. According to definition 9 of projection Prcaus, ∀p,
Prcaus(p) � p. Then, in order to obtain p = Prcaus(p), the
controller p has to satisfy:

Prcaus(p) � p ⇔ p = p ∧ Prcaus(p).

Finally, it is interesting to consider the particular case
ν0 = 0 and τ0 = 0 which means that the objective is to
obtain a controlled system without uncertainty over the
output. In this case the controller p has to satisfy:

hp = hp ⇔
{

∆γ(hp, hp) ≤ 0
∆δ(hp, hp) ≤ 0

⇔
{

(hp) ◦\(hp) � γ0
(hp) ◦\(hp) � δ0

and the greatest controller p̂ is now given by:

p̂ =
⊕
{p | (hp) ◦\(hp) � γ0δ0, p = Prcaus(p), p � val}. (8)

This objective is reworded by the following proposition.

Proposition 20. The greatest controller p̂ as defined in
equation (8) corresponds to the greatest finite fixed point
of the equation:

p = p ∧ h ◦\(hp) ∧ Prcaus(p) ∧ val. (9)

This equation can be written as x = x ∧ f(x) where
f(x) = h ◦\(hx) ∧ Prcaus(x) ∧ val is an isotone mapping.

Proof. The proof takes back the one of proposition 17.

5. APPLICATION

Let us see an example of a controller which cancels
the uncertainty over the output of a controlled system.
In order to compute such a controller, we consider the
uncertain SISO TEG 6 given in Fig. 5. This TEG may
represent a manufacturing system where the tokens (black
dots) mean that the ressource is available whereas the
delays in bracket give the interval in which the place
temporization evolve.

Fig. 5. Example of a uncertain SISO TEG.

The system is subject to time variations which means that
processing times are not exactly known but only with
minimum and maximum bounds. Therefore, the system
is modeled by the interval [ h , h ] where h ∈ Max

in Jγ, δK
represents its lower behavior (i.e. all the minimum delays
are considered), and h ∈ Max

in Jγ, δK represents its upper
behavior (i.e. all the maximum one are considered). After
computations, these extreme behaviors are given by:

h = γ0δ8(γ4δ5)∗ ⊕ (γ35δ49 ⊕ γ45δ64)(γ4δ6)∗

6 Single Input Single Output system represented thanks to subclass
Time Event Graphs of Timed Petri Nets in which each place has
exactly one upstream and one downstream transition.



and

h = γ0δ8(γ4δ5)∗ ⊕ (γ15δ24 ⊕ γ25δ39)(γ4δ6)∗.

According to proposition 13, for all inputs u the maximal
uncertainty of interval [ h , h ] is:

∆γ(h, h) = 4 and ∆δ(h, h) = 5.

In order to find the greatest controller p̂ such that the
uncertainty of the controlled system is canceled:

p̂ =
⊕
{p | (hp) ◦\(hp) � γ0δ0, p = Prcaus(p), p � val}

the algorithm of theorem 6 is applied to equation (9):

p = p ∧ h ◦\(hp) ∧ Prcaus(p) ∧ val.
As regards the series val, the correlation h ◦\h which
corresponds to the optimal neutral precompensator is
picked in this example (this choice being left with the
needs for the real application). Therefore, the controller
found will be the greatest controller such that p̂ � h ◦\h.

Thus, the computation of this controller with the toolbox
MinMaxGD is given below.

// Script for the example with Scilab/MinMaxGD
// lh and uh = lower and upper bounds of h
lh = series(eps,[0 8],[4 5])

+ series(eps,[35 49;45 64],[4 6]);
uh = series(eps,[0 8],[4 5])

+ series(eps,[15 24;25 39],[4 6]);
val = prcaus(lh\lh)
p = s_top
fixedPoint = %F;
while fixedPoint == %F
pPrevious = p;
p = (uh\(lh*p)) ^ prcaus(p) ^ val
if pPrevious == p
fixedPoint = %T;

end
end
pOptimal = p
lhp = lh * pOptimal
uhp = uh * pOptimal
correlation = uhp \ lhp

The results obtained in four iterations, are:

pOptimal = γ4δ1 ⊕ . . .⊕ γ49δ62(γ2δ3)∗,

lhp = uhp = γ4δ9 ⊕ . . .⊕ γ49δ70(γ2δ3)∗,

correlation = (hp) ◦\(hp) = γ0δ0 ⊕ . . .⊕ γ29δ37(γ2δ3)∗.

As regards to distances in event and time domains:

∆γ(hp, hp) = 0 ≤ ∆γ(h, h) = 4,

∆δ(hp, hp) = 0 ≤ ∆δ(h, h) = 5.

6. CONCLUSION

This paper has introduced the control of uncertain
(max,+)-linear systems, i.e. the behavior of which is de-
scribed by an interval. The uncertainty at the output of
these systems can be easily measured and thanks to a
controller placed upstream of them, this uncertainty can
decrease or even be completely removed.
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Appendix A. PROPERTIES OF RESIDUATED
MAPPING LA

The following equations introduced properties about the
residuated mapping La. Interested reader will find the
proofs in (Baccelli et al., 1992, p.182-185) and (Gaubert,
1992, §5.3).

a ◦\(ax) � x (A.1)

(ab) ◦\x = b ◦\(a ◦\x) (A.2)

b ◦\a � x ⇔ a � xb (A.3)

a ◦\T = T (A.4)

Moreover, ∀x, y, a ∈ D:

x � y ⇒
{
a ◦\x � a ◦\y (x 7→ a ◦\x is isotone),
x ◦\a � y ◦\a (x 7→ x ◦\a is antitone).

(A.5)


