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Abstract— This paper presents robust controllers solving
the disturbance decoupling problem of a class of uncertain
max-plus linear systems, whose system matrices vary between
intervals with known lower and upper bounds. The disturbance
decoupling problem in this paper is defined as finding a
control interval such that the output trajectory interval for the
disturbed controlled system belongs to the output trajectory
interval for the undisturbed controlled system. In other words,
the controls are able to absorb the effects of disturbances
robustly for such uncertain systems by preserving the output
trajectories in the same set with or without disturbances. Both
of the open-loop control intervals and the output feedback
control intervals solving the DDP are constructed using the
residuation theory and proved to be optimal based on the just-
in-time control criterion. The main results of this paper are
illustrated by a high throughput screening system for drug
discovery.

I. INTRODUCTION

Max-plus linear systems([1], [9]) are used to model timed
discrete-event systems with system operations as discrete
sequences of events in time. Many fundamental problems for
max-plus linear systems have been studied by researchers, for
example, controllability([15]), observability([7]), and model
reference control([13]). However, in order to take in consid-
eration of noises, system delays, and system malfunctions
in discrete-event systems, this paper focuses on a class of
uncertain max-plus linear systems, whose system matrices
vary between intervals. This class of uncertain max-plus
linear systems represents the timed event graphs (TEGs),1

where time delays are varying and belong to intervals with
known lower and upper bounds. There are some existing
work for such uncertain max-plus linear systems, such as
model predictive control([2], [12]) and optimal control([14],
[10]). This paper, on the other hand, presents further inves-
tigations on the disturbance decoupling problem (DDP)([8],
[16], [17]) in geometric control ([4], [18]) for such uncertain
max-plus linear systems.
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Traditionally speaking, the uncertain max-plus linear sys-
tem in Eq. (7) is called disturbance decoupled by an open-
loop controller (or by a feedback controller) if and only
if the system output signals will not be changed by any
disturbances, for all the variations of the matrices. However,
this definition is rather restrictive, especially, for uncertain
max-plus linear systems, the solution to this problem are
usually null sets. Instead, the DDP in this paper is defined
as finding an control interval such that the output trajectory
interval, generated by the disturbance interval and the control
interval, belongs to the output trajectory interval, generated
by the control interval only. In other words, that the DDP is
solvable means that finding the interval of controls to absorb
the effects of disturbances in a robust way and maintain
the output trajectory interval same as before despite of
disturbances’ presence. For a manufacturing system, solving
the DDP means that the outputs will be delayed more than
the delays caused by the disturbances. From a practical
point of view, it would be interesting to ask the question as
whether there exists a controller such that the system is not
disturbed more than the delays caused by the disturbances.
With practical motivations, this paper presents the modified
disturbance decoupling problem (MDDP), which is defined
as finding a control interval such that the output trajectory
interval, generated by the control and disturbance intervals,
belongs to the output interval generated with disturbances
only. In the past literature, the DDP can be categorized as the
model reference control ([6]), whose the reference model is
the uncertain max-plus linear system with only the controls.
On the other hand, the MDDP can be categorized as the
model reference control, whose the reference model is the
uncertain max-plus linear system with disturbances only.

This paper is organized as the following. Section II in-
troduces mathematical preliminaries needed in this paper.
Section III defines the uncertain max-plus linear systems
in this paper as well as the γ-domain analysis, i.e. the
equivalent event-domain analysis similar as z-transform for
discrete-time systems. Section IV defines the DDP and
MDDP problems for the uncertain max-plus linear systems
and presents the optimal open-loop control intervals solving
the MDDP. Such a solution can solve the DDP with a
necessary and sufficient condition. Section V presents the
optimal output feedback control intervals solving the MDDP.
Similarly, such an optimal solution can solve the DDP with
the same necessary and sufficient condition as the open-
loop case. Section VI illustrates the main results using a
scheduling problem for a high throughput screening system
in drug discovery.



II. MATHEMATICAL PRELIMINARIES

A. Idempotent Semirings and Residuation

Definition 1: A semiring is a set S, equipped with two
operations ⊕ and ⊗, such that (S,⊕) is a commutative
monoid (the zero element will be denoted ε), (S,⊗) is a
monoid (the unit element will be denoted e), operation ⊗ is
right and left distributive over ⊕, and ε is absorbing for the
product (i.e. ε⊗ a = a⊗ ε = ε,∀a).

A semiring S is idempotent if a ⊕ a = a for all a ∈ S.
In an idempotent semiring S , operation ⊕ induces a partial
order relation

a � b ⇐⇒ a = a⊕ b, ∀a, b ∈ S. (1)

Then, a∨b = a⊕b. An idempotent semiring S is complete if
sums of infinite numbers of terms are always defined, and if
multiplication distributes over infinite sums too. In particular,
the sum of all the elements of the idempotent semiring is
denoted > (for “top”). In this paper, we denote Zmax =
(Z ∪ {−∞,+∞},max,−∞,+, 0) as the integer max-plus
semiring, where ε = −∞ is the neutral(zero) element for
max and e = 0 is the neutral(unit) element for +. A non
empty subset B of a semiring S is a sub-semiring of S if
for all a, b ∈ B we have a⊕ b ∈ B and a⊗ b ∈ B.

Definition 2: A mapping f : S → S , where S is a
complete idempotent semiring, is residuated if and only if
f(ε) = ε and f is lower-semicontinuous, that is,

f

(⊕
i∈I

ai

)
=
⊕
i∈I

f (ai) ,

for any (finite or infinite) set I . The mapping f is said to
be residuated and f ] is called its residual.

Theorem 1: ([1]) When f is residuated, f ] is the unique
order preserving mapping such that

f ◦ f ] � Id f ] ◦ f � Id, (2)

where Id is the identity mapping from S to S.
It is straightforward that : La : S → S, x 7→ ax and

Ra : S → S, x 7→ xa are lower semi-continuous. Therefore
these mappings are both residuated i.e., La(x) � b (resp.
Ra(x) � b) admits a greatest solution, then the following
notations are considered :

L]a(b) = a ◦\b =
⊕
{x|ax � b} and

R]a(b) = b◦/a =
⊕
{x|xa � b} , ∀a, b ∈ S,

where L]a and R]a(b) are the residual mappings.
Theorem 2: ([1]) Over a complete max-plus algebra, the

implicit equation x = ax ⊕ b admits x = a∗b as the
least solution, where a∗ = ⊕i∈Nai ((·)∗ is the Kleene Star
operator) with a0 = e.

There are basic properties for star and residuation opera-
tions in the residuation theory ([1]), for example,

a∗(ba∗)∗ = (a⊕ b)∗ = (a∗b)∗a∗, (3)
(ab)∗a = a(ba)∗, (4)

a(a◦\(ax)) = ax, (5)
(ab)◦\x = b◦\(a◦\x). (6)

B. Semiring of Intervals
A semiring of interval may be constructed by considering

an idempotent semiring of pairs. The set of pairs (x′, x′′)
with x′, x′′ ∈ S, and (y′, y′′) with y′, y′′ ∈ S endowed with
the following coordinate-wise algebraic operations:

(x′, x′′)⊕ (y′, y′′) , (x′ ⊕ y′, x′′ ⊕ y′′)
(x′, x′′)⊗ (y′, y′′) , (x′ ⊗ y′, x′′ ⊗ y′′)

is a semiring denoted by C(S) with (ε, ε) as the zero element
and (e, e) as the identify element. The set of pairs (x′, x′′),
where x′ � x′′ is denoted by C0(S).

A closed interval in an idempotent semiring S is a set of
the form

x = [x, x] = {t ∈ S|x � t � x},

where [x, x] = Z2

max, and x or x is called to be the lower
or the upper bound for the interval x, respectively.

Definition 3: The set of interval, denoted as I(S), is
defined by two coordinate-wise algebraic operations:

x⊕y = [x⊕ y, x⊕ y],
x⊗y = [x⊗ y, x⊗ y],

is a semiring, where the interval ε = [ε, ε] is the zero
element in I(S) and e = [e, e] is the unit element in I(S).
Moreover, the semiring I(S) is isomorphic with C0(S).

Definition 4: Let {xα} be an infinite subset of I(S), then
the infinite sum of element of this subset is⊕

xα =
[⊕

xα,
⊕

xα
]
.

The interval I(S) can be endowed with a natural (partial)
order: a �I(S) b⇔ a = a⊕b⇔ a � b and a � b.

Proposition 1 ([11]): Mapping La : I(S) → I(S), x 7→
a⊗x is residuated. Its residual is equal to

L]a(b) = a◦\b =
[
a◦\b ∧ a◦\b, a◦\b

]
.

Proposition 2 ([11]): Mapping Ra : I(S) → I(S), x 7→
a⊗x is residuated. Its residual is equal to

R]a(b) = a◦/b =
[
a◦/b ∧ a◦/b, a◦/b

]
.

III. UNCERTAIN MAX-PLUS LINEAR SYSTEMS

An uncertain max-plus linear system2, is defined as

x(k) = Ax(k − 1) ⊕ Bu(k) ⊕ Sq(k),

y(k) = Cx(k), (7)

where system matrices lie in corresponding matrix intervals
with known lower and upper bounds, specifically, A ∈ A =
[Al, Au] ∈ I(Zmax)

n×n, B ∈ B = [Bl, Bu] ∈ I(Zmax)
n×p,

S ∈ S = [Sl, Su] ∈ I(Zmax)
n×r, and C ∈ C = [Cl, Cu] ∈

I(Zmax)
q×n. And the states are x(k) ∈ X ∼= Znmax, the

inputs are u(k) ∈ U ∼= Zpmax, the disturbances are q(k) ∈
Q ∼= Zrmax, and the outputs are y(k) ∈ Y ∼= Zqmax and
k ∈ Z.

2In this paper, the class of uncertain max-plus linear systems are restricted
to model TEGs with First In First Out (FIFO) places and transitions, where
the ordering of events preserves linearity.



A trajectory of a timed event graph transition x is a firing
date sequence {x(k)} ∈ Zmax. For each increasing sequence
{x(k)}, it is possible to define the transformation X(γ) =⊕
k∈Z

x(k)γk where γ is a backward shift operator in event

domain (i.e., Y (γ) = γX(γ) ⇐⇒ {y(k)} = {x(k − 1)},
(see [1], p. 228). This transformation is analogous to the z-
transform used in discrete-time classical control theory and
the formal series X(γ) is a synthetic representation of the
trajectory x(k). The set of the formal power series in γ is
denoted by Zmax[[γ]] and constitutes an idempotent semiring.
Therefore, the state equation in Eq. (7) becomes a polynomial
equation or a frequency domain representation,

X(γ) = AX(γ)⊕BU(γ)⊕ SQ(γ), where A = γA,

Y (γ) = CX(γ), (8)

where the state series are X(γ) ∈
(
Zmax[[γ]]

)n
, the out-

put series are Y (γ) ∈
(
Zmax[[γ]]

)q
, the input series are

U(γ) ∈
(
Zmax[[γ]]

)p
, and the disturbance series are Q(γ) ∈(

Zmax[[γ]]
)r

. Moreover, A ∈ [γAl, γAu] , [Al, Au] ∈
I
(
Zmax[[γ]]

)n×n
, B ∈ [Bl, Bu] ∈ I

(
Zmax[[γ]]

)n×p
, C ∈

[Cl, Cu] ∈ I
(
Zmax[[γ]]

)q×n
and S ∈ [Sl, Su] ∈ I

(
Zmax[[γ]]

)n×r
represent the link between transitions. Furthermore, accord-
ing to the state equation (8), the evolution of the system is

X(γ) = A
∗
BU(γ)⊕A∗SQ(γ),

Y (γ) = CA
∗
BU(γ)⊕ CA∗SQ(γ). (9)

The trajectories U(γ) and Y (γ) can be related ([1], p. 243)
by the equation Y (γ) = H(γ)U(γ), where the least solution
H(γ) = CA

∗
B ∈ H = CA

∗
B = [ClA

∗
lBl, CuA

∗
uBu] ∈

I
(
Zmax[[γ]]

)q×p is called the transfer matrix of the TEG
using Theorem 2, where H represents the interval in which
the transfer functions lie in, for all variations of the system
matrices.

IV. SOLVING DDP AND MDDP USING OPEN-LOOP
CONTROLLERS

This paper defines DDP as finding an interval of control
U such that the output interval induced by such a control
interval is unchanged by any disturbance interval Q. In
another words, there always exists a control U(γ) belonging
to an interval U such that the output trajectory interval Y (γ)
with disturbances belongs to the output trajectory interval
without disturbances, i.e., the controlled system is able to
absorb the disturbances in a robust manner.

Definition 5: The uncertain max-plus linear system in Eq.
(7) is called disturbance decoupled by an open-loop control
interval if and only if the following equality

CA
∗
BU ⊕ CA

∗
SQ = CA

∗
BU, (10)

holds due to equation (9), for some intervals of matrices A,
B, C, S, the disturbance interval Q, and the control interval
U.

The underlying meaning of Eq. (10) is that all output
trajectories of a controlled uncertain max-plus system with
disturbances belong to the same set of the output trajectories
of the same system without disturbances. In the sense that the
output trajectories are robustely invariant with and without
disturbances. For a manufacturing system, a disturbance is
an event which blocks the occurrence of an event (it could

be a machine breakdown or a delay in a component supply)
and the control consists in choosing the date of an input
event (e.g. when a job should be started on a machine).
Hence, solving the DDP means finding input dates such
that outputs will be delayed more than the delays caused
by the disturbances. From a practical point of view, it
should be more interesting to find a control such that the
system is not delayed more than the delays caused by the
disturbances. For example, when a system breakdown occurs,
we can put the input parts of the manufacturing lines as
late as possible to reduce the unnecessary waiting time in
the network. Therefore, the modified disturbance decoupling
problem (MDDP) in ([8], [16], [17]) is to find appropriate
controls such that the output signals will not be delayed more
than the outputs caused by the disturbances.

Definition 6: The max-plus linear system described in Eq.
(7) is called modified disturbance decoupled by an open-loop
control interval if and only if the following equality

CA
∗
BU ⊕ CA

∗
SQ = CA

∗
SQ, (11)

due to equation (9), for some intervals of matrices A, B,
C, S, the disturbance interval Q, and the control interval U.

Similarly as the DDP, the underlying meaning of Eq. (11)
is that all the output trajectories of a controlled uncertain
max-plus system with disturbances belong to the same set
of the output trajectories of the uncontrolled system with
only the disturbances, i.e. the output trajectories are robustly
invariant with and without controls. This problem is reason-
able because we don’t want to impose longer delays than
the disturbances have acted on the system. Therefore, the
DDP can be categorized as the model reference control ([6]),
where the reference model is the uncertain max-plus linear
system without disturbance. On the other hand, the MDDP
is the model reference control with the reference model
as the uncertain max-plus linear system with disturbance
only. Moreover, DDP can also be understood as the output
trajectory interval induced by the disturbed control system
is invariant despite of the disturbances. MDDP can be
understood as the output trajectory interval induced by the
disturbances is invariant with controls in order to achieve
just-in-time criterion in manufacturing setting.

A. Solving MDDP by Open-Loop Controller

B C

A

Y(γ)X(γ)U(γ)

P

V(γ)

Q(γ) S
System

Fig. 1: The controller structure for MDDP.

The block diagram of an open-loop controlled max-plus
linear system is illustrated in Fig. 1. We can solve the
MDDP problem by finding an optimal interval PMDDP

opt =
[Plopt, Puopt] of the pre-controller U = PQ⊕V, where U =
[Ul, Uu], P = [Pl, Pu], Q is an interval of the disturbances,
and V is an interval of arbitrary external inputs, such that



Eq. (11) holds. Without loss of generality, assuming V = ε,
Eq. (11) becomes

CA
∗
B PMDDP

opt ⊕ CA
∗
S = CA

∗
S, (12)

⇐⇒ CA
∗
BPMDDP

opt � CA
∗
S.

Notice that Eq. (12) indicates that CA
∗
BPMDDP

opt and
CA

∗
S satisfy the order relation �I(Zmax[[γ]])

in the semiring
of intervals of series.

Proposition 3: The optimal interval satisfying CA
∗
BP �

CA
∗
S, is given by PMDDP

opt , CA
∗
B ◦\CA

∗
S =[

PMDDP
lopt , PMDDP

uopt

]
, where

PMDDP
lopt = ClA

∗
lBl ◦\ClA

∗
l Sl ∧ CuA

∗
uBu ◦\CuA

∗
uSu,

PMDDP
uopt = CuA

∗
uBu ◦\CuA

∗
uSu. (13)

And the control interval U = PMDDP
opt Q solves the MDDP.

Moreover, any interval P � PMDDP
opt satisfies Eq. (12).

Proof: The construction of the optimal pre-filter interval
PMDDP

opt is the direct extension of proposition 1, where a =

CA
∗
B and b = CA

∗
S. For any choice of disturbance Q,

Eq. (12) is satisfied, i.e. CA
∗
BPMDDP

opt � CA
∗
S, that is[

ClA
∗
lBlP

MDDP
lopt , CuA

∗
uBuP

MDDP
uopt

]
�
[
ClA

∗
l Sl, CuA

∗
uSu

]
.

The right hand side interval is the output trajectory interval
induced by all the disturbances (where Q is omitted), and
the left hand side interval is the output trajectory interval
induced by the controls. Therefore, the MDDP is solved by
the control U = PMDDP

opt Q.

B. Solving DDP by Open-Loop Controller
If the optimal pre-controller PMDDP

opt is a candidate for
solving the DDP, then the next reasonable question is, under
what condition, the same optimal pre-controller PMDDP

opt ,
solving the MDDP, solves the DDP as well, i.e. the inequality
holds

CA
∗
S � CA

∗
BPMDDP

opt .

By Proposition 3, CA
∗
BPMDDP

opt � CA
∗
S is already

satisfied. Combining the two inequalities, we just need to
show whether we can have the following equality:

CA
∗
BPMDDP

opt = CA
∗
S.

Proposition 4: The pre-controller interval U =
PMDDP

opt Q, where PMDDP
opt , CA

∗
B ◦\CA

∗
S, solves

the DDP, i.e. the equality CA
∗
BPMDDP

opt = CA
∗
S holds, if

and only if ImCA
∗
S ⊆ ImCA

∗
B, i.e. there exists an interval

L, such that CA
∗
BL = CA

∗
S.

Proof: “Sufficiency ⇐=:” If ImCA
∗
S ⊆ ImCA

∗
B,

i.e. there exists an interval L, such that CA
∗
BL = CA

∗
S,

then L � PMDDP
opt , CA

∗
B◦\CA

∗
S. Hence we have

CA
∗
BPMDDP

opt ⊕CA
∗
S

= CA
∗
BPMDDP

opt ⊕CA
∗
BL

= CA
∗
BPMDDP

opt .

Then, DDP is solvable.
“Necessity =⇒: ”The pre-controller interval U =

PMDDP
opt Q, where PMDDP

opt , CA
∗
B◦\CA

∗
S, solves the

DDP, i.e. the equality CA
∗
BPMDDP

opt = CA
∗
S holds, it

implies ImCA
∗
S ⊆ ImCA

∗
B, i.e. there exists an interval

L = PMDDP
opt , such that CA

∗
BL = CA

∗
S. This implies

that Eq. (10) holds, therefore, the DDP is solved by U =
PMDDP

opt Q.

V. SOLVING MDDP AND DDP USING OUTPUT
FEEDBACK CONTROLLERS

This section proposes an output feedback control structure
shown in Fig. 2. In order to solve the DDP and MDDP
using the output feedback control interval U = FY ⊕ V =
FCX ⊕ V, where V in this structure is proposed to be
PQ⊕W. Without loss of generality, we assume W = ε
in this paper. In order to solve the DDP and MDDP in
terms of the output feedback controls, first, we design a
robust feedback control interval F such that it preserves
the behaviors of the system with the open-loop control
interval V only; second, we choose V as the optimal open-
loop controller solving DDP and MDDP, respectively. We
will prove such an output feedback control interval solves
MDDP. With the same necessary and sufficient condition in
Proposition 4, such an output feedback control solves DDP
as well.

B C

A

Y(γ)X(γ)U(γ)

P

W(γ)

Q(γ) S
System

F

V(γ)

Fig. 2: The output feedback structure.

A. Robust Feedback Control Interval Preserving Open-loop
Behaviors

First, we choose U(γ) = FCX(γ) ⊕ V (γ) in the control
interval U = FCX⊕V, such that the output signals are
the same as the output signals controlled by the open-
loop controller V (γ), for any variations of system matrices
A ∈ [Al, Au], B ∈ [Bl, Bu], C ∈ [Cl, Cu], S ∈ [Sl, Su] and
disturbance Q(γ). In summary, that is, the following equality
holds

C(A⊕B FC)∗B̃

(
V (γ)
Q(γ)

)
= CA

∗
B̃

(
V (γ)
Q(γ)

)
. (14)

where B̃ = [B | S]. Obviously, F = ε is solution, then the
greatest solution of

C
(
A⊕BFC

)∗
B̃ � CA

∗
B̃, (15)

leads to equality. Noting that B = B̃

(
e
ε

)
, we have

C

(
A⊕ B̃

(
e
ε

)
FC

)∗
B̃ � CA

∗
B̃, (16)

Due to Eq. (3) and Eq. (4), we have that

C

(
A⊕ B̃

(
e
ε

)
FC

)∗
B̃ � CA∗B̃ ⇐⇒

CA
∗
B̃

((
e
ε

)
FC A

∗
B̃

)∗
� CA∗B̃.

(17)



Define H̃ = CA
∗
B̃, hence, the objective of the robust

feedback synthesis is to find a controller F which achieves
the following inequality,(

H̃

(
e
ε

)
F

)∗
H̃ � H̃, (18)

for all H̃ ∈ H̃ = [ClA
∗
l B̃l, CuA

∗
uB̃u], B̃l = [Bl |Sl] and

B̃l = [Bu |Su]. Moreover, the problem is equivalent to finding
the interval of output feedback controls F = [Fl, Fu] such
that the following equality of intervals is satisfied:

C(A⊕B FC)∗B̃ = CA
∗
B̃. (19)

The right hand side is clearly less than the left hand side
of the equality, so essentially, we only need to show

C(A⊕B FC)∗B̃ � CA
∗
B̃. (20)

Next, we find an efficient way to compute the greatest
interval denoted as ˆ̃

F, which ensures the output trajectories
are lower than H̃ ∈ I(Zmax[[γ]])

q×(p+r) for all H̃ ∈ H̃, i.e.
computing the upper bound of the following set{

F̃ ∈ I(Zmax[[γ]])
(p+r)×q|(H̃F̃)∗H̃ �I(Zmax[[γ]])

H̃
}
, (21)

where F̃ =

(
e
ε

)
F =

[(
e
ε

)
Fl,

(
e
ε

)
Fu

]
.

Proposition 5: Define a mapping MH̃ :

I(Zmax[[γ]])
(p+r)×q → I(Zmax[[γ]])

q×(p+r) : F̃ 7→ (H̃F̃)∗H̃. The
greatest interval F̃ such that MH̃ � H̃, is given by

ˆ̃
F =

⊕{
F̃ ∈ I(Zmax[[γ]])

(p+r)×q|(H̃F̃)∗H̃ � H̃
}

= H̃ ◦\H̃◦/H̃. (22)

Proof: In order to find the greatest F̃, denoted by ˆ̃
F,

satisfying (H̃F̃)∗H̃ � H̃, it is equivalent as finding the
greatest F̃ satisfying (e ⊕ H̃F̃ ⊕ H̃F̃H̃F̃ ⊕ · · · )H̃ � H̃.
Equivalently, we need to find the greatest F̃ satisfying the
set of the following inequalities:

H̃ � H̃ (23)
H̃F̃H̃ � H̃ (24)

H̃F̃H̃F̃H̃ � H̃ (25)
...

inequality (23) is clearly satisfied. The greatest solution
to inequality to Inequality (24) is ˆ̃

F = H̃◦\H̃◦/H̃ thanks to
Proposition 1 and Proposition 2. In addition,

H̃
ˆ̃
FH̃

ˆ̃
FH̃ � H̃

ˆ̃
FH̃ � H̃,

Inequality (25) is also satisfied, so on and so forth. Therefore,
ˆ̃
F is also the greatest solution for the rest of the inequalities.
Hence ˆ̃

F is the greatest solution F̃ satisfying (H̃F̃)∗H̃ � H̃.

Remark 1: Using Proposition 1 and Proposition 2, we can
easily compute the interval

ˆ̃
F = H̃◦\H̃◦/H̃

=
[
H̃l◦\H̃l◦/H̃l ∧ H̃u◦\H̃u◦/H̃u, H̃u◦\H̃u◦/H̃u

]
. (26)

Corollary 1: The greatest interval F, where F̃ =

(
e
ε

)
F,

such that MH̃ � H̃, is given by

F̂ =
⊕{

F ∈ I(Zmax[[γ]])
(p)×q|

(
H̃

(
e
ε

)
F

)∗
H̃ � H̃

}
= H ◦\H̃◦/H̃. (27)

Proof: Based on Proposition 5, ˆ̃
F = H̃◦\H̃◦/H̃ is the

greatest solution satisfying
(
H̃F̃

)∗
H̃ � H̃, where ˆ̃

F =(
e
ε

)
F̂. Hence, F̂ is

F̂ =

(
e
ε

)
◦\ ˆ̃F =

(
e
ε

)
◦\
((

CA
∗
B̃
)
◦\H̃◦/H̃

)
=

(
CA

∗
B̃

(
e
ε

))
◦\H̃◦/H̃ due to Eq.(6)

=
(
CA

∗
B
)
◦\H̃◦/H̃

= H ◦\H̃◦/H̃.

Remark 2: Because H̃ is in the image of MH̃, therefore,

F̂ is the greatest solution such that
(
H̃

(
e
ε

)
F

)∗
H̃ = H̃,

which is the same as Eq. (19).
Remark 3: For calculation, we have

F̂ = H◦\H̃◦/H̃ =
[
F̂lopt, F̂uopt

]
=

[
Hl◦\H̃l◦/H̃l ∧Hu◦\H̃u◦/H̃u, Hu◦\H̃u◦/H̃u

]
. (28)

Hence, F̂ is the greatest interval F satisfying the equality

C(A⊕B FC)∗B̃ = CA
∗
B̃.

B. Solving MDDP and DDP using Output Feedback Con-
trols

Solving MDDP implies that we need to find intervals
of the feedback control F and the open loop control V
satisfying have the following equality

C(A⊕B FC)∗BV ⊕ C(A⊕B FC)∗SQ = CA
∗
SQ. (29)

Similarly, solving DDP implies that we need to find
intervals of the feedback control F and the open loop control
V satisfying have the following equality

C(A⊕B FC)∗BV ⊕ C(A⊕B FC)∗SQ =

C(A⊕B FC)∗BV. (30)

If we pick F̂ as the feedback control interval in Eq. (29), we
only need to find an open-loop control V solving the DDP
and MDDP, respectively, then the pair would solve the DDP
and MDDP as well.

Proposition 6: If we choose the output feedback control
interval U = F̂CX⊕V, where F̂ = H ◦\H̃◦/H̃ and V =

PMDDP
opt Q (w.l.o.g. assuming W = ε), then this output

feedback control interval solves the MDDP. This output
feedback control solves the DDP as well if and only if
Im CA

∗
S ⊆ Im CA

∗
B.



Proof: Because F̂ = H ◦\H̃◦/H̃ solves Eq. (19), i.e.

C(A⊕B F̂C)∗BV ⊕ C(A⊕B F̂C)∗SQ =

CA
∗
BV ⊕ CA

∗
SQ. (31)

If we pick V = PMDDP
opt Q, then the preceding equation

holds, because

CA
∗
BPMDDP

opt Q ⊕ CA
∗
SQ � CA

∗
SQ. (32)

Therefore, F̂ and V solve the MDDP.
If and only if the condition Im CA

∗
S ⊆ Im CA

∗
B

in Proposition 4, is satisfied, we have CA
∗
BPMDDP

opt =

CA
∗
S. Hence,

CA
∗
BPMDDP

opt Q ⊕ CA
∗
SQ = CA

∗
BPMDDP

opt Q

� C(A⊕B F̂C)∗BPMDDP
opt Q. (33)

Therefore, the output feedback control interval U =

F̂CX⊕V solves the DDP as well.

VI. APPLICATION TO A HIGH THROUGHPUT SCREENING
SYSTEM IN DRUG DISCOVERY

High throughput screening (HTS) is a standard technology
in drug discovery. In HTS systems, optimal scheduling is
required to finish the screening in the shortest time, as well
as to preserve the consistent time spending on each activity.
The HTS system in this section, adapted from [3], consists of
three activities: activity 1, executed on the resource Pipettor,
is filling the chemical compound A into the wells of a
microplate, which lasts from 3 to 5 time units. Next, the
microplate is transferred to a storage or incubator for at least
1 time unit. Before the waiting time is done for the compound
A, activity 3, executed on the resource Robot, is that the robot
picks up another compound B, which takes 1 to 3 time units.
Once the 1 unit waiting time for the compound A is over,
the robot moves the compound B to the microplate carrying
the substance A. Activity 2 is that the microplate containing
the compound AB is transferred to the pipettor again for 4
to 6 time units.

x5 x6u3 0[1, 3]0

act 2

1

x7

x1 x2u1

[3, 5]0

1

x3 x4 y

0[4, 6]

1

u2

0 1

1

q1 0

q2

0

1

act 1

act 3

Fig. 3: The TEG model of the HTS system.

If we are interested in the start and release event time of
each activity, we can model the HTS system as a TEG model,

shown in Fig. 3, in which x1 and x2 denote the start and
release time of the activity 1 on the pipettor, denoted as act
1, x3 and x4 denote the start and release time of the activity
2 on the same pipettor, denoted as act 2, and x5 and x7
denote the start and release time of the activity 3 on the robot,
denoted as act 3. x6 is the event time that the compound B
is ready to be transferred to the microplate containing the
compound A. The inputs u1, u2, and u3, are the starting
time of the activity 1, 2, and 3, respectively, which the
users can decide when to load the chemical compounds. The
disturbance q1 delays the release time of the pipettor after
activity 1, and the disturbance q2 delays the release time of
the pipettor after activity 2, e.g. uncontrollable system delays
or uncontrollable transition time delays. The output y is the
release time of the pipettor. The circles represent places and
the bars represent the transitions xi. Each black token in the
places represents that the corresponding resource is available,
i.e. the activity is ready to start.

For the TEG model of a HTS system shown in Fig. 3, the
system over the max-plus algebra Zmax[[γ]] is described as
the following:

X(γ) = AX(γ)⊕BU(γ)⊕ SQ(γ)

Y (γ) = CX(γ),

where

A =



ε 1γ ε 1γ ε ε ε
[3, 5] ε ε ε ε ε ε
ε 1 ε 1γ ε 1 ε
ε ε [4, 6] ε ε ε ε
ε ε ε ε ε ε 1γ
ε ε ε ε [1, 3] ε ε
ε ε 1 ε ε e ε


,

B =



[e, e] ε ε
ε ε ε
ε [e, e] ε
ε ε ε
ε ε [e, e]
ε ε ε
ε ε ε


, S =



ε ε
[e, e] ε
ε ε
ε [e, e]

ε ε
ε ε


,

C =
[
ε ε ε [e, e] ε ε ε

]
.

The example has been computed by using toolbox
MinMaxGD, a C++ library allowing to handle periodic series
as introduced in ([5]), and it can be noted that this library
is also interfaced with Scilab and MATLAB. We obtain
the transfer function intervals between the output Y (γ) and
disturbance U(γ) and the input Q(γ) are given, respectively,
as

CA
∗
B =

[
ClA

∗
lBl, CuA

∗
uBu

]
, where

ClA
∗
lBl =

[
8(9γ)∗, 4(9γ)∗, 6(9γ)∗

]
CuA

∗
uBu =

[
12(13γ)∗, 6(13γ)∗, 10(13γ)∗

]
CA

∗
S =

[
ClA

∗
l Sl, CuA

∗
uSu

]
, where

ClA
∗
l Sl = [5(9γ)∗, (9γ)∗] ,

CuA
∗
uSu = [7(13γ)∗, (13γ)∗] ,

in which each component of these matrices consists of
periodic series. Essentially, the γ-periodic series represent the



output sequence when an infinity of tokens is put in the sys-
tem at time 0 (impulse input). For instance, ClA

∗
lBl(1, 1) =

8(9γ)∗ represents the impulse response of the pipettor as
y(0) = 8, y(1) = 17, y(2) = 26, etc.

The remaining session presents the pre-filter intervals and
feedback controls solving MDDP and DDP, respectively,
for any disturbances. Using Proposition 3, the pre-controller
interval PMDDP

opt , CA
∗
B ◦\CA

∗
S =

[
PMDDP
lopt , PMDDP

uopt

]
,

where

PMDDP
lopt =

 −5⊕ 6γ(9γ)∗ −12⊕ 1γ(9γ)∗

1(9γ)∗ −6⊕ 5γ(9γ)∗

−3⊕ 8γ(9γ)∗ −10⊕ 3γ(9γ)∗

 ,
PMDDP
uopt =

 −5(13γ)∗ −12(13γ)∗
1(13γ)∗ −6(13γ)∗
−3(13γ)∗ −10(13γ)∗

 .
Moreover, the condition Im CA∗S ⊆ Im CA∗B in

Proposition 4 is satisfied, hence, the pre-controller interval
U = PMDDP

opt Q solves the DDP as well.
This pre-filter interval PMDDP

opt is not causal because
there are negative coefficients in the matrix. The canonical
injection from the causal elements of Zmax[[γ]] (denoted
Zmax[[γ]]

+) in Zmax[[γ]] is also residuated (see [6] for details).
Its residual is given by Pr

(⊕
k∈Z s(k)γ

k
)
=
⊕

k∈Z s+(k)γ
k

where
s+(k) =

{
s(k) if (k, s(k)) ≥ (0, 0),
ε otherwise.

The causal pre-filter interval is PMDDP
opt+ =[

PMDDP
lopt+ , PMDDP

uopt+

]
, where

PMDDP
lopt+ =

 6γ(9γ)∗ 1γ(9γ)∗

1(9γ)∗ 5γ(9γ)∗

8γ(9γ)∗ 3γ(9γ)∗

 ,
PMDDP
uopt+ =

 8γ(13γ)∗ 1γ(13γ)∗

1(13γ)∗ 7γ(13γ)∗

10γ(13γ)∗ 3γ(13γ)∗

 .
Furthermore, by implementing Corollary 1, we can find the

greatest interval F̂ =
[
F̂lopt, F̂uopt

]
, such that the feedback

controls would preserve the behaviors of the open-loop
systems, where

F̂lopt =

 −12⊕ 1γ(9γ)∗

−6⊕ 5γ(9γ)∗

−10⊕ 3γ(9γ)∗

 , F̂uopt =
 −12(13γ)∗−6(13γ)∗
−10(13γ)∗

 .
The causal pre-filter interval F̂+ is given by

F̂lopt+ =

 1γ(9γ)∗

5γ(9γ)∗

3γ(9γ)∗

 , F̂uopt+ =

 1γ(13γ)∗

7γ(13γ)∗

3γ(13γ)∗

 .
The lower bound PMDDP

lopt+ of the pre-filter PMDDP
opt and

the lower bound F̂lopt+ the feedback control F̂ are realized
in the TEG model of the HTS system, shown in Fig. 4. For
example, in Fig. 4, the first element of the causal pre-filter
PMDDP
lopt+ (1, 1) = 6γ(9γ)∗ is represented by a cyclic transition

due to (9γ)∗, where γ indicates one token inside of the place
and 9 units are the holding time of the token, and 6γ is
represented by an additional transition with one token and
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Fig. 4: The TEG model of the HTS system with controllers.
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Fig. 5: The Gantt chart of the HTS system.

6 units holding time. Same analogy works for the feedback
F̂ lopt+ : X → U .

The Gantt chart of the scheduling is illustrated in Fig. 5.
which describes the start and release time for each activity
as the system evolves. For instance, without the disturbance,
the system is running on its own, then it will repeat the same
scheduling every 9 time units according to the TEG model.
For instance, the disturbance is Q(γ)(1, 1) = 4(9γ)∗, which
means the incubator will finish the activity 1 time unit late
every event cycle. In this case shown in the second figure
in Fig. 5, the process time of the activity 1 at k = 0 is 4
time unit with 1 unit delay than the original 3 time units
duration, and all other events shifted 1 time unit comparing
to the undisturbed system. If we implement the lower bound
Plopt+ of the pre-filter interval PMDDP

opt on the system, then
the scheduling is shown in the bottom figure in Fig. 5. The
advantage of the pre-filter is that, according to the just-in-
time control principle, the activity 3, executed on the robot,
does not wait 8 time units to finish the task, and it only needs
3 time units to transport the compound B to the pipettor,
without affecting the output dates. Moreover, such a pre-
filter Plopt+ proposed in this paper is designed no matter
what disturbances are, which can be implemented for online
scheduling processes.



VII. CONCLUSION

This paper presents robust controllers solving disturbance
decoupling problems of a class of uncertain max-plus linear
systems, whose system matrices belong to intervals with
known bounds. Both of the open-loop control intervals and
the output feedback control intervals solving the DDP are
constructed using the residuation theory and proved to be
optimal for the just-in-time control criterion. Future research
can be extended to other geometric control problems, such
as block decoupling problem and non-interacting control
problem in uncertain max-plus linear systems.
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