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Abstract: Discrete-event systems exhibiting synchronization and delay phenomena can be
modeled as timed event graphs (TEGs), which admit a linear representation in some idempotent
semirings. For such linear systems, a control theory has been constructed. In this paper, we build
onto this control framework by proposing a formal method to determine the optimal (just-in-
time) control inputs in face of changes in the output-references for a number of TEGs that
share one or more resources. The approach is based on a prespecified priority policy among the
component subsystems. Simple examples are presented to illustrate the results.
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1. INTRODUCTION

Timed event graphs (TEGs) constitute a subclass of timed
Petri nets, being characterized by the fact that each place
has precisely one upstream and one downstream transition
and all arcs have weight 1. They are well suited to model
timed discrete-event systems exhibiting synchronization
and delay phenomena. In some idempotent semirings, like
the max-plus and min-plus algebras, it is possible to repre-
sent the dynamic behavior of TEGs by linear models (see
Baccelli et al. (1992) for a thorough coverage), which can
serve as a basis for performance evaluation as well as for
control. In this context, optimal control normally refers
to a just-in-time philosophy: given an output-reference
specifying, say, a desired production schedule, the aim is to
determine the latest possible way to fire the input transi-
tions while guaranteeing that the output ones fire not later
than required. In industrial applications, for example, this
amounts to satisfying customer demand while minimizing
internal stocks. For a tutorial introduction to this control
framework, the reader may refer to Hardouin et al. (2018).

In some applications, it may be necessary to update the
reference for the system’s output during run-time, for
instance when customer demand is increased and a new
production objective must be considered. In Menguy et al.
(2000), a strategy has been presented to optimally update
the input in face of such changes in the output-reference.

Systems of practical interest often involve limited resources
that are shared among different users (subsystems). As
examples, one can think of a railway network where single-
track segments are used by multiple trains, or of compu-
tational tasks competing for the use of a fixed number of
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processors. TEGs do not allow for concurrency or choice
and hence are inapt to model such resource-sharing phe-
nomena. Overcoming this limitation has motivated several
efforts in the literature. In Corré̈ıa et al. (2009), constraints
due to resource sharing are translated into additional in-
equalities in the system model. Addad et al. (2012) model
conflicting TEGs by max-plus time-varying equations; the
models are restricted to safe conflict places. Boussahel
et al. (2016) relax the safety hypothesis on the conflict
places and study cycle time evaluation on conflicting TEGs
with multiple shared resources. In Moradi et al. (2017),
the modeling and control of a number of TEGs that share
multiple resources is addressed. Obviously, because of re-
source sharing, the overall system is no longer a TEG.
Under a prespecified priority policy, the authors show
how to compute the optimal (just-in-time) input for each
subsystem with respect to its individual output-reference.

In this paper, we propose a formal method to obtain the
optimal control inputs in face of changes in the output-
references for TEGs that share resources under a given
priority policy, thus merging the results from Menguy et al.
(2000) with those of Moradi et al. (2017). To the best
of our knowledge, this problem has not been previously
handled in the literature. Prospective applications include
emergency call centers (as studied, e. g., in Allamigeon
et al. (2015)), where the arrival of high-priority calls may
render it necessary to reschedule the answers to lower-
priority ones. We consider a set of TEGs operating under
optimal schedules with respect to their individual output-
references and to the priority policy; supposing the output-
reference of one or more of the subsystems is updated
during run-time, we show how to optimally update all
their inputs so that their outputs are as close as possible to
the corresponding new references and the priority policy
is still observed. In case the performance limitation of the



subsystems, combined with the limited availability of the
resources, make it impossible to respect some of the new
references, we also provide the optimal way to relax such
references so that the ultimately obtained inputs lead to
tracking them as closely as possible.

The examples presented along this paper serve solely
the purpose of illustrating and helping elucidating the
results. Due to space limitations, we do not present a
more comprehensive example. The proposed method can,
however, be applied to larger, more general systems of
practical relevance (see Section 5.3 for further comments).

The paper is organized as follows. Section 2 summarizes
well-known facts on idempotent semirings. In Section 3, we
adapt existing results on the control of TEGs with output-
reference uptade to the idempotent semiring used in this
paper. Section 4 provides an overview of previous results
on modeling and control of TEGs with shared resources.
The major purpose of these three sections is making
the paper as self-contained as possible. In Section 5, the
main contributions of the paper are presented; namely,
we formulate and solve the problem of determining the
optimal control inputs for TEGs with shared resources in
face of changes in the output-references. Section 6 presents
the conclusions and final remarks.

2. PRELIMINARIES

In this section, we present a summary of some basic
definitions and results on idempotent semirings and timed
event graphs; for an exhaustive discussion, the reader may
refer to Baccelli et al. (1992). We also touch on some
topics from residuation theory and control of TEGs (see
Blyth and Janowitz (1972) and Hardouin et al. (2018),
respectively).

2.1 Idempotent semirings

An idempotent semiring D is a set D endowed with two
binary operations, denoted ⊕ (sum) and ⊗ (product),
such that: ⊕ is associative, commutative, idempotent
(i. e., (∀a ∈ D) a ⊕ a = a), and has a neutral (zero)
element, denoted ε; ⊗ is associative, distributes over ⊕,
and has a neutral (unit) element, denoted e; the element
ε is absorbing for ⊗ (i. e., (∀a ∈ D) a ⊗ ε = ε). As
in conventional algebra, the product symbol ⊗ is often
omitted. An order relation can be defined over D by

(∀a, b ∈ D) a � b ⇔ a⊕ b = b .

Note that ε is the bottom element of D, as (∀a ∈ D) ε � a.

An idempotent semiring D is complete if it is closed for
infinite sums and if the product distributes over infinite
sums. For a complete idempotent semiring, the top element
is defined as > =

⊕
x∈D x, and the greatest lower bound

operation, denoted ∧, by

(∀a, b ∈ D) a ∧ b =
⊕

x�a,x�b

x .

∧ is associative, commutative, and idempotent, and we
have a⊕ b = b ⇔ a � b ⇔ a ∧ b = a.

Example 1. The set Z def
= Z ∪ {−∞,+∞}, with the mini-

mum operation as⊕ and conventional addition as⊗, forms
a complete idempotent semiring called min-plus algebra,

denoted Zmin, in which ε = +∞, e = 0, and > = −∞.
Note that in Zmin we have 2⊕5 = 2, so 5 � 2; the order is
reversed with respect to the conventional order over Z. 3

A mapping Π : D → C, with D and C two idempotent
semirings, is isotone if (∀a, b ∈ D) a � b⇒ Π(a) � Π(b).

Remark 2. The composition of two isotone mappings is
isotone. 3

Remark 3. Let Π be an isotone mapping over a complete
idempotent semiring D, and let Y = {x ∈ D |Π(x) = x}
be the set of fixed points of Π.

∧
y∈Y y (resp.

⊕
y∈Y y) is

the least (resp. greatest) fixed point of Π. 3

Algorithms exist (e. g., Hardouin et al. (2018)) which allow
to compute, in a finite number of steps, the least and
greatest fixed points of isotone mappings over complete
idempotent semirings, provided such fixed points are finite.

In a complete idempotent semiring D, the Kleene star
operator on a ∈ D is defined as a∗ =

⊕
i≥0 a

i, with a0 = e.

Remark 4. The implicit equation x = ax ⊕ b over a
complete idempotent semiring admits x = a∗b as least
solution (see Baccelli et al. (1992)). 3

2.2 Semirings of formal power series

Let s = {s(t)}t∈Z be a sequence over Zmin. The δ-
transform of s is a formal power series in δ with coefficients
in Zmin and exponents in Z, defined by

s =
⊕
t∈Z

s(t)δt .

We denote both the sequence and its δ-transform by the
same symbol, as no ambiguity will occur. Since

s⊗ δ =
⊕
t∈Z

s(t)⊗ δt+1 =
⊕
t∈Z

s(t− 1)⊗ δt ,

multiplication by δ can be seen as a backward shift
operation.

Definition 5. The set of formal power series in δ with
coefficients in Zmin and exponents in Z, with addition and
multiplication defined by

s⊕ s′ =
⊕
t∈Z

(s(t)⊕ s′(t))δt ,

s⊗ s′ =
⊕
t∈Z

(⊕
τ∈Z

(s(τ)⊗ s′(t− τ))
)
δt ,

is a complete idempotent semiring, denoted Zmin[[δ]]. Note
that the order in Zmin[[δ]] is induced by the order in Zmin,
i. e., s � s′ ⇔ (∀t ∈ Z) s(t) � s′(t). 3

In this paper we will use sequences to represent the number
of firings of transitions in TEGs, so that, e. g., s(t) repre-
sents the accumulated number of firings of a transition
up to time t. Such sequences are clearly nonincreasing
(in the order of Zmin), meaning their δ-transforms obey
s(t − 1) � s(t) for all t. We will henceforth refer to such
series s as counters.

Definition 6. The set of counters (i. e., nonincreasing
power series) in Zmin[[δ]] is a complete idempotent semir-
ing, named Zmin,δ[[δ]], with zero element sε given by sε(t) =
ε for all t, unit element se given by se(t) = e for t ≤ 0 and



se(t) = ε for t > 0, and top element s> given by s>(t) = >
for all t. We will denote this semiring by Σ, for brevity. 3

Counters can be represented compactly by omitting terms
s(t)δt whenever s(t) = s(t + 1). For example, a counter s
with s(t) = e for t ≤ 3, s(t) = 1 for 4 ≤ t ≤ 7, s(t) = 3
for 8 ≤ t ≤ 12, and s(t) = 6 for t ≥ 13 can be written
s = eδ3 ⊕ 1δ7 ⊕ 3δ12 ⊕ 6δ+∞.

2.3 TEG models in idempotent semirings

Timed event graphs (TEGs) are timed Petri nets in which
each place has exactly one upstream and one downstream
transition and all arcs have weight 1. With each place p is
associated a holding time, representing the minimum time
every token needs to spend in p before it can contribute to
the firing of its downstream transition. In a TEG, we can
distinguish input transitions (those that are not affected
by the firing of other transitions), output transitions
(those that do not affect the firing of other transitions),
and internal transitions (those that are neither input
nor output transitions). In this paper, we will limit our
discussion to SISO TEGs, i. e., TEGs with only one input
and one output transition, which we denote respectively
by u and y; internal transitions are denoted by xi. An
example of a SISO TEG is shown in Fig. 1.

A TEG is said to be operating under the earliest firing
rule if every transition fires as soon as it is enabled.

With each transition xi, we associate a sequence {xi(t)}t∈Z,
for simplicity denoted by the same symbol, where xi(t)
represents the accumulated number of firings of xi up to
and including time t. Similarly, we associate sequences
{u(t)}t∈Z and {y(t)}t∈Z with transitions u and y, respec-

tively. In Zmin, the number of firings of transition x1 of
the TEG from Fig. 1 follows, under the earliest firing rule,

(∀t ∈ Z) x1(t) = u(t)⊕ 2x2(t− 2) ,

which, through the δ-transform, can be expressed in Σ as

x1 = u⊕ 2δ2x2 .

We can obtain similar relations for x2 and y and, defining
the vector x = [x1

x2
], write

x =

[
ε 2δ2

eδ3 ε

]
x⊕

[
eδ0

ε

]
u ,

y =
[
ε eδ0

]
x .

In general, a TEG can be described by implicit equations
over Σ of the form

x = Ax⊕Bu ,
y = Cx .

(1)

From Theorem 4, the least solution of (1) is given by

y = CA∗Bx , (2)

where G = CA∗B is the transfer function of the system.
For instance, for the system from Fig. 1 we obtain the
(scalar) transfer function G = eδ3(2δ5)∗.

2.4 Residuation theory

Residuation theory provides, under certain conditions,
greatest (resp. least) solutions to inequalities such as
f(x) � b (resp. f(x) � b).

u x1 3 x2

2

y

Fig. 1. A SISO TEG, with input u and output y.

Definition 7. An isotone mapping f : D → C, with D and
C complete idempotent semirings, is said to be residuated
if for all y ∈ C there exists a greatest solution to the
inequality f(x) � y. This greatest solution is denoted
f ](y), and the mapping f ] : C → D, y 7→

⊕
{x ∈

D | f(x) � y}, is called the residual of f .
Mapping f is said to be dually residuated if for all y ∈ C
there exists a least solution to the inequality f(x) � y.
This least solution is denoted f [(y), and the mapping
f [ : C → D, y 7→

∧
{x ∈ D | f(x) � y}, is called the

dual residual of f . 3

Note that, if equality f(x) = y is solvable, f ](y) and f [(y)
yield its greatest and least solutions, respectively.

Theorem 8. (Blyth and Janowitz (1972)) Mapping f as in
Def. 7 is residuated if and only if there exists a unique
isotone mapping f ] : C → D such that f ◦ f ] � IdC and
f ] ◦f � IdD, where IdC and IdD are the identity mappings
on C and D, respectively. 3

Remark 9. For a ∈ D, mapping La : D → D, x 7→ a ⊗ x,
is residuated; its residual is denoted by L]a(x) = a◦\x. 3

Theorem 10. (Blyth and Janowitz (1972)) Mapping f as
in Def. 7 is dually residuated if and only f(>) = > and
(∀A ⊆ D) f(

∧
x∈A x) =

∧
x∈A f(x). 3

2.5 Optimal control of TEGs

Assume that a TEG to be controlled is modeled by
equations like (1) and that an output-reference z ∈ Σ is
given. Under the just-in-time paradigm, we aim at firing
the input transition u the least possible number of times
while guaranteeing that the output transition y fires, by
each time instant, at least as many times as specified by z.
In other words, we seek the greatest (in the order of Zmin)
u such that y = G ⊗ u � z. Based on (2) and Remark 9,
the solution is directly obtained by

uopt = G◦\z . (3)

Example 11. For the TEG from Fig. 1, suppose it is
required that transition y fires once at time t = 43,
twice at t = 47, and three times at t = 55, meaning the
accumulated number of firings of y should be e (= 0) for
t ≤ 42, 1 for 43 ≤ t ≤ 46, 3 for 47 ≤ t ≤ 54, and 6
for t ≥ 55. This is represented by the output-reference
z = eδ42 ⊕ 1δ46 ⊕ 3δ54 ⊕ 6δ+∞. Applying (3), we get
uopt = eδ38 ⊕ 1δ41 ⊕ 2δ43 ⊕ 3δ46 ⊕ 4δ51 ⊕ 6δ+∞, and the
corresponding optimal output is yopt = G⊗ uopt = eδ41 ⊕
1δ44 ⊕ 2δ46 ⊕ 3δ49 ⊕ 4δ54 ⊕ 6δ+∞. One can easily verify
that yopt � z. 3

3. OPTIMAL CONTROL OF TEGS WITH
OUTPUT-REFERENCE UPDATE

The material of this section is a dual version, adapted to
the point of view of counters, of the results from Menguy
et al. (2000).



It is plausible to consider that the reference for the output
of a system may be updated during run-time, for instance
when customer demand is increased and a new production
objective must be taken into account. For a system like
the one from Example 11, let reference z be updated to
a new one, z′, at time T . The problem at hand is to
find the input u′opt which optimally tracks z′ without,
however, changing the inputs given up to time T . Define
the mapping rT : Σ→ Σ,

[rT (u)](t) =

{
u(t), if t ≤ T ;
ε , if t > T .

(4)

Our objective can then be restated as follows: find the
greatest element u′opt of the set

F = {u ∈ Σ |G⊗ u � z′ and rT (u) = rT (uopt)} ,
where uopt is the optimal input with respect to reference
z, computed as in (3). The following theorem provides,
given that certain conditions are met, a way to compute
this greatest element.

Theorem 12. (Menguy et al. (2000)) Let D and C be
complete idempotent semirings, f1, f2 : D → C residuated
mappings, and c1, c2 ∈ C. If the set

S = {x ∈ D | f1(x) � c1 and f2(x) = c2}
is nonempty, we have

⊕
x∈S x = f ]1(c1) ∧ f ]2(c2). 3

An obvious correspondence between F and S can be
established by taking D as Σ, f1 as LG (which is well
known to be residuated — see Remark 9), c1 as z′, f2 as
rT , and c2 as rT (uopt).

Remark 13. Mapping rT as defined in (4) is residuated,
with

[r ]T (u)](t) =

{
u(t), if t ≤ T ;
u(T ), if t > T .

In fact, r ]T is clearly isotone and we have 1 rT ◦ r
]
T =

rT � IdΣ and r ]T ◦ rT = r ]T � IdΣ, so the conditions
from Theorem 8 are fulfilled. 3

Hence, if set F is nonempty, Theorem 12 provides the
desired solution u′opt. In general, however, F can be empty.
Considering the set

F̃ = {u ∈ Σ | rT (u) = rT (uopt)} ,
it is easy to see that

u
def
=
∧
u∈F̃

u = rT (uopt) .

Moreover, rT ◦ rT = rT implies u ∈ F̃ , as rT (u) =
rT
(
rT (uopt)

)
= rT (uopt); isotony of LG thus implies

F 6= ∅ ⇔ G⊗ u � z′ .
Since the condition rT (u) = rT (uopt) cannot be relaxed,
in case G⊗ u � z′ we must increase z′; more precisely, we
wish to find the least counter z′′ � z′ such that

Fz′′ = {u ∈ Σ |G⊗ u � z′′ and rT (u) = rT (uopt)}
is not empty. The following result provides the answer.

Proposition 14. The least counter z′′ � z′ such that
Fz′′ 6= ∅ is z′′ = z′ ⊕ (G⊗ u).

1 Note that the order � on Σ induces an order, for simplicity also
denoted �, on the set of mappings over Σ: for any such mappings
Θ1,Θ2, one has Θ1 � Θ2 ⇔ (∀x ∈ Σ) Θ1(x) � Θ2(x) .

Fig. 2. Resource-sharing TEGs.

Proof. For z′′ = z′⊕ (G⊗ u), we have u ∈ Fz′′ , therefore
Fz′′ 6= ∅. Take now an arbitrary z̃′′ � z′ such that Fz̃′′ 6= ∅,
and take any v ∈ Fz̃′′ . Clearly v ∈ F̃ and hence u � v;
as LG is isotone, we have G ⊗ u � G ⊗ v � z̃′′, implying
z′′ = z′ ⊕ (G⊗ u) � z′ ⊕ z̃′′ = z̃′′. �

Applying Theorem 12 and recalling that r ]T ◦ rT = r ]T , we
obtain

u′opt = G◦\
(
z′ ⊕ (G⊗ u)

)
∧ r ]T (uopt) . (5)

Note that in case F 6= ∅ we have z′′ = z′ ⊕ (G⊗ u) = z′.

Example 15. For the system from Example 11 (Fig. 1)
operating according to the optimal input obtained for
output-reference z, suppose that at time T = 42 a new
demand is received: two firings of y are now required at
t = 54 and one at t = 55 (instead of three firings at t = 55).
This translates into z′ = eδ42⊕1δ46⊕3δ53⊕5δ54⊕6δ+∞.
In this case one can verify that set F is empty, so we
seek the least z′′ � z′ such that Fz′′ 6= ∅, according to
Proposition 14. With u = rT (uopt) = eδ38 ⊕ 1δ41 ⊕ 2δ42 ⊕
εδ+∞, we obtain z′′ = z′ ⊕ (G⊗ u) = eδ42 ⊕ 1δ46 ⊕ 3δ53 ⊕
4δ54⊕6δ+∞, which is the reference we will effectively track.
From (5), we get u′opt = eδ38⊕ 1δ41⊕ 2δ43⊕ 3δ46⊕ 4δ50⊕
5δ51 ⊕ 6δ+∞. 3

4. MODELING AND OPTIMAL CONTROL OF
RESOURCE-SHARING TEGS

We now turn our attention to systems in which a number
of TEGs S1, . . . , SK share a resource, as illustrated in
Fig. 2; β may, in general, be a TEG (or, in simple
cases, just a single place) describing the capacity of the
resource as well as the minimal delay between release
and allocation events. Clearly, the overall system is no
longer a TEG. For simplicity, let us assume that there
is only one shared resource (with arbitrary capacity) and
that input transitions (uk) are connected to resource-
allocation transitions (xkA) via a single place with zero
delay and no initial tokens, the same being true for the
connection between resource-release transitions (xkR) and
output transitions (yk). The extension to more general
cases is straightforward; for details, the reader is referred
to Moradi et al. (2017), on which this section is mainly
based.



4.1 Modeling of resource-sharing TEGs

It is not possible to model systems exhibiting such
resource-sharing phenomena by linear equations like (1).
In order to express the relationship among counters xkA
and xkR, k ∈ {1, . . . ,K}, the Hadamard product of series is
introduced (Hardouin et al. (2008)).

Definition 16. The Hadamard product of s1, s2 ∈ Σ,
written s1 � s2, is the counter defined as follows:

(∀t ∈ Z) (s1 � s2)(t) = s1(t)⊗ s2(t) .

This operation is commutative, distributes over ⊕ and ∧,
has neutral element eδ+∞, and sε is absorbing for it (i. e.,
(∀s ∈ Σ) s� sε = sε). 3

Consider a join structure (i. e., a place with two or more
incoming transitions) as shown in Fig. 3. At any time
instant t, the accumulated number of firings of γ cannot
exceed that of λ1 and λ2 combined, which translates to
λ1 � λ2 � γ.

Similarly, for a fork structure (i. e., a place with two or
more outgoing transitions) such as the one shown in Fig. 3,
the accumulated number of firings of γ1 and γ2 combined
can never exceed that of λ, meaning λ � γ1 � γ2.

Generalizing these ideas allows us to write, for the system
from Fig. 2,

x1
R � · · · � xKR � α1 and α2 � x1

A � · · · � xkA
which, combined with β ⊗ α1 � α2, leads to

β ⊗
( K⊙
k=1

xkR
)
�

K⊙
k=1

xkA . (6)

4.2 Optimal control of TEGs with resource sharing

For a system like the one from Fig. 2, competition for the
resource is, in general, going to make it impossible for all
subsystems to concurrently follow a just-in-time schedule
with respect to their individual output-references. One
way to settle the dispute is introducing a priority policy
among the subsystems. We henceforth assume, without
loss of generality, that subsystem Sk has higher priority
than Sk+1, for all k ∈ {1, . . . ,K − 1}. The priority policy
is based on a simple rule: for each k ∈ {2, . . . ,K} and
for all j ∈ {1, . . . , k − 1}, Sk cannot interfere with the
performance of Sj .

Let the input-output behavior of each Sk, ignoring all
other subsystems, be described by yk = Gk⊗uk — which,
according to the assumptions made above, is equivalent to
xkR = Gk⊗xkA — and assume that corresponding references
zk are given. The subsystem with highest priority, S1, is
free to use the resource at will, therefore we can effectively
neglect all other subsystems and simply compute its opti-
mal input by

u1
opt = x1

Aopt
= G1◦\z1

Fig. 3. A join and a fork structure.

u1 x1
A 3 x1

R

2

y1

u2 x2
A 5 x2

R y2

S1:

S2:

Fig. 4. Two TEGs sharing a resource with capacity 2.

(cf. Section 2.5). For S2, we must compute the optimal
input under the restriction that the optimal behavior of
S1 is unchanged; based on (6), this means we must respect

β ⊗ (x1
Ropt
� x2

R) � x1
Aopt
� x2

A . (7)

In fact, we want to determine the greatest x2
A — and thus

also the corresponding u2 — fulfilling both G2 ⊗ u2 � z2

and (7); seeing that (7) implies

x1
Ropt
� x2

R � β◦\(x1
Aopt
� x2

A) , (8)

the following result comes in handy.

Proposition 17. (Hardouin et al. (2008)) For any a ∈ Σ,
the mapping Πa : Σ → Σ, x 7→ a � x, is residuated. For
any b ∈ Σ, Π]

a(b), denoted b �] a, is the greatest x ∈ Σ
such that a� x � b. 3

From Proposition 17, inequality (8) leads to

x2
R �

(
β◦\(x1

Aopt
� x2

A)
)
�] x1

Ropt

which, combined with x2
R = G2 ⊗ x2

A � z2, implies

x2
A � G2◦\

[(
β◦\(x1

Aopt
� x2

A)
)
�] x1

Ropt

]
∧ G2◦\z2 . (9)

The greatest x2
A satisfying (9), x2

Aopt
, is the greatest fixed

point (provided it exists) of the mapping Φ2 : Σ→ Σ,

Φ2(x2
A) = G2◦\

[(
β◦\(x1

Aopt
�x2

A)
)
�]x1

Ropt

]
∧ G2◦\z2 ∧ x2

A .

(10)
As Φ2 can be verified to be isotone (see Remark 2),
Remark 3 ensures the existence of its greatest fixed point,
which yields the desired optimal solution x2

Aopt
(= u2

opt).

Using the same procedure, we obtain, for each k ∈
{3, . . . ,K},

xkA � Gk◦\
[(
β◦\
(( k−1⊙

i=1

xiAopt

)
� xkA

))
�]
( k−1⊙
i=1

xiRopt

)]
∧ Gk◦\zk

and, defining a mapping Φk by analogy with (10), its
greatest fixed points provides xkAopt

and therefore also ukopt.

Example 18. Consider the system from Fig. 4, where sub-
systems S1 and S2 share a resource with capacity 2. S1,
including the resource and ignoring S2, is the system from
Example 11, whose transfer function is G1 = eδ3(2δ5)∗ (cf.
Section 2.3). For S2, considering the resource and ignoring
S1, we obtain G2 = eδ5(2δ7)∗. In this example, β = 2δ2.

The references z1 = eδ42 ⊕ 1δ46 ⊕ 3δ54 ⊕ 6δ+∞ and z2 =
eδ39⊕1δ50⊕2δ54⊕3δ+∞ are given. Note that z1 is the same
as z in Example 11 and, since S1 has the highest priority,
we can simply compute u1

opt = x1
Aopt

= G1◦\z1, which is the

same counter as uopt previously obtained. To determine
x2
Aopt

, we follow the procedure described in this section.

Computing the greatest fixed point of Φ2 as in (10), we
get x2

Aopt
= eδ27⊕1δ31⊕2δ34⊕3δ+∞ (= u2

opt) and x2
Ropt

=



eδ32⊕1δ36⊕2δ39⊕3δ+∞ (= y2
opt). Because the availability

of the resource for S2 is subject to the operation of S1,
the firings of y2 have to be given considerably earlier than
required by z2; this is, however, the latest they can be
given so as to respect z2 without interfering with S1. 3

4.3 Supplementary remarks

The following proposition is adapted from Hardouin et al.
(2008).

Proposition 19. Let Σ̃ = {s ∈ Σ | (∀t ∈ Z) s(t) 6= ε}. For

any a ∈ Σ̃, the mapping Πa : Σ→ Σ, x 7→ a� x, is dually
residuated. For any b ∈ Σ, Π[

a(b), denoted b �[ a, is the
least x ∈ Σ such that a� x � b.

Proof. For an arbitrary a ∈ Σ̃, we have (∀t ∈ Z) a(t) ⊗
> = >, therefore Πa(s>) = a � s> = s>. Moreover,
since � distributes over ∧ (cf. Def. 16), for any A ⊆ Σ it
holds that Πa(

∧
x∈A x) = a� (

∧
x∈A x) =

∧
x∈A(a� x) =∧

x∈AΠa(x). The result then follows from Theorem 10. �

Remark 20. (Hardouin et al. (2008)) Given two coun-
ters x1, x2 ∈ Σ, the series s ∈ Zmin[[δ]] defined by
(∀t ∈ Z) s(t) = x1(t) − x2(t) is not necessarily a counter;
x1 �] x2 is the greatest counter lower than or equal to s.

Similarly, provided x2 ∈ Σ̃ (cf. Proposition 19), x1 �[ x2

is the least counter greater than or equal to s. 3

Remark 21. Since we take a term like ηδτ to mean that
a transition has accumulated η firings by time τ , it is
reasonable to assume that the counters u, xi, and y are

elements of Σ̃. Note, additionally, that for any finite subset

B ⊆ Σ̃ one has
⊗

s∈B s ∈ Σ̃ and
⊙

s∈B s ∈ Σ̃. 3

5. OPTIMAL CONTROL OF TEGS WITH
RESOURCE SHARING AND OUTPUT-REFERENCE

UPDATE

In this section, as the main the contribution of this paper,
we incorporate the ideas discussed in Section 3 to the
class of systems studied in Section 4 by showing how
to determine the optimal (just-in-time) control inputs in
face of changes in the output-references for TEGs that
share resources under a given priority policy. We again
emphasize that, in this setting, the overall system is not a
TEG. The assumptions made in Section 4 are still in place.

5.1 Problem formulation

Consider the system from Fig. 2 and assume every sub-
system Sk is operating optimally with respect to its own
output-reference zk, according to the priority-based strat-
egy introduced in Section 4. Now, suppose that at time
T each Sk has its reference zk updated to zk′ (with the
possibility that zk′ = zk for some of them). Analogously
to Section 3, we seek, for each k, the input ukopt

′ which

leads the corresponding output to optimally track zk′

while preserving the input ukopt up to time T . The cru-
cial difference is that now the priority scheme must be
observed and, furthermore, the past resource allocations
by subsystems with lower priority must also be respected.
Such allocations are relevant — despite having occurred
before time T — because the respective resource releases

may take place after T , thus influencing the availability of
the resource in the meantime.

For the purpose of the discussion to follow, let us fix an
arbitrary k ∈ {1, . . . ,K}. When updating the input of
Sk, we must ensure minimal interference of lower-priority
subsystems while respecting the past. Note that, for any
j ∈ {k + 1, . . . ,K}, firings of xjA that were originally

scheduled (according to xjAopt
) but have not taken place

by time T can still be postponed (and hence, from the
point of view of Sk, ignored). For the sake of determining
ukopt
′ = xkAopt

′ , we therefore take into account the firings of

transition xjA that have occurred up to time T , but neglect
all its prospective firings thenceforth; recalling Remark 13,

this is precisely captured by the counter r ]T (xjAopt
). In sum,

(i) we must compute xkAopt

′ in decreasing order of priority;

(ii) when calculating xkAopt

′ for k > 1, we must consider

xiAopt

′ for every i ∈ {1, . . . , k − 1}; (iii) when calculating

xkAopt

′ for k < K, we must consider r ]T (xjAopt
) for every

j ∈ {k + 1, . . . ,K}.
It will be convenient to define the following terms:

Hk =

k−1⊙
i=1

xiAopt

′ , HkG =

k−1⊙
i=1

(Gi⊗ xiAopt

′ ) ,

Lk =

K⊙
j=k+1

r ]T (xjAopt
) , LkG =

K⊙
j=k+1

(Gj⊗ r ]T (xjAopt
)).

Hk combines the counters xiAopt

′ of all subsystems Si

with priority higher than that of Sk, referring to the
already-updated optimal schedules of resource-allocation
transitions xiA with respect to the corresponding updated
references zi′; accordingly, HkG combines the counters
xiRopt

′ = Gi⊗ xiAopt

′ representing the respective resource-

release events. In a similar way, Lk combines the coun-

ters r ]T (xjAopt
) of all subsystems Sj with priority lower

than that of Sk, representing the past firings (up to time

T ) of resource-allocation transitions xjA and neglecting
their firings after time T , whereas LkG gathers the re-
spective resource-release events by combining the counters

Gj⊗ r ]T (xjAopt
); it should be emphasized that, even though

we only consider the resource allocations by Sj up to time
T , the respective resource-release events may take place

after T , so in general one may have Gj ⊗ r ]T (xjAopt
) 6=

r ]T (xjRopt
).

Thus, based on (6) and on the foregoing discussion, it must
hold for each k that

β ⊗
(
HkG � (Gk⊗ xkA)� LkG

)
� (Hk� xkA � Lk) , (?)

where it is understood that for k = 1 (resp. k = K), the
degenerate terms H1 and H1

G (resp. LK and LKG ) are to
be neglected. The problem of determining the new optimal
input ukopt

′ (based on xkAopt

′ ) with respect to a reference zk′

given at time T can be formulated as follows: find the
greatest element of the set

Fk =
{
xkA ∈ Σ |Gk⊗ xkA � zk′ and (?) and

rT (xkA) = rT (xkAopt
)
}
. (11)



Remark 22. It should be clear that, for any k ∈ {1, . . . ,K},
if zi′ = zi for all i ∈ {1, . . . , k}, then xiAopt

′ = xiAopt
for all

i ∈ {1, . . . , k}. Nonetheless, if zi′ 6= zi for some i < k, in
general it may be that xkAopt

′ 6= xkAopt
even if zk′ = zk. 3

5.2 Optimal update of the inputs

Let us once more fix an arbitrary k ∈ {1, . . . ,K}, and
now assume xiAopt

′ has been determined for each (if any)

i ∈ {1, . . . , k − 1}. Similarly to Section 3, the set Fk as
defined in (11) may turn out to be empty; as (?) and
rT (xkA) = rT (xkAopt

) are irrevocable, we will then seek

the least way to relax zk′ (i. e., look for the least counter
zk′′ � zk′) such that the set

Fkzk′′ =
{
xkA ∈ Σ |Gk⊗ xkA � zk′′ and (?) and

rT (xkA) = rT (xkAopt
)
}

is nonempty. Define the set

F̃k =
{
xkA ∈ Σ | (?) and rT (xkA) = rT (xkAopt

)
}

and the mapping Υk : Σ→ Σ,

Υk(x) =
[(
β ⊗ (HkG � (Gk⊗ x)� LkG)

)
�[

(Hk� Lk)
]
⊕ rT (xkAopt

) ⊕ x .

Note that, from Proposition 19 and Remark 21, the
mapping Π(Hk�Lk) is dually residuated, so Υk is well
defined. We now proceed to show that the least fixed point

of Υk is an element of F̃k.

Proposition 23.
∧

Υk

def
=
∧
{x ∈ Σ |Υk(x) = x} ∈ F̃k.

Proof. Any xkA ∈ Σ such that Υk(xkA) = xkA satisfies(
β ⊗ (HkG � (Gk⊗ xkA)� LkG)

)
�[ (Hk� Lk) � xkA

and, by consequence, also (?). According to Remark 3,
∧

Υk

is a fixed point of Υk, therefore (?) holds for xkA =
∧

Υk and

it suffices to prove that rT
(∧

Υk

)
= rT (xkAopt

).∧
Υk being a fixed point of Υk implies

∧
Υk� rT (xkAopt

), so

rT
(∧

Υk

)
� rT

(
rT (xkAopt

)
)

= rT (xkAopt
).

Moreover, r ]T (xkAopt
) is a fixed point of Υk, as can be seen

from the following argument. Since we assume xiAopt

′ to be

given for each i ∈ {1, . . . , k−1}, according to (?) we know

x
(k−1)
Aopt

′ fulfills

β ⊗
(
H(k−1)
G � (G(k−1)⊗ x(k−1)

Aopt

′)� L(k−1)
G

)
�

H(k−1)� x(k−1)
Aopt

′ � L(k−1) . (12)

But note that

H(k−1)
G � (G(k−1)⊗ x(k−1)

Aopt

′) = HkG ,

L(k−1)
G = (Gk⊗ r ]T (xkAopt

))� LkG ,

H(k−1)� x(k−1)
Aopt

′ = Hk , and

L(k−1) = r ]T (xkAopt
)� Lk ,

so (12) is equivalent to

β⊗
(
HkG� (Gk⊗r ]T (xkAopt

))�LkG
)
� (Hk�r ]T (xkAopt

)�Lk)

which, in turn, implies(
β⊗(HkG�(Gk⊗r ]T (xkAopt

))�LkG)
)
�[(Hk�Lk) � r ]T (xkAopt

).

This, together with the fact that r ]T (xkAopt
) � rT (xkAopt

),

imply Υk
(
r ]T (xkAopt

)
)

= r ]T (xkAopt
). Hence,

∧
Υk� r ]T (xkAopt

)

and, as rT is isotone and rT ◦r
]
T = rT , we have rT

(∧
Υk

)
�

rT
(
r ]T (xkAopt

)
)

= rT (xkAopt
), which concludes the proof. �

As clearly F̃k ⊆ {x ∈ Σ |Υk(x) = x}, from Proposition 23
we conclude that

xkA
def
=

∧
x∈F̃k

x =
∧

Υk . (13)

Proposition 24. The least counter zk′′ � zk′ such that
Fkzk′′ 6= ∅ is zk′′ = zk′ ⊕ (Gk⊗ xkA).

Proof. Taking zk′′ = zk′ ⊕ (Gk⊗ xkA), it can be readily
checked that xkA ∈ Fkzk′′ , therefore Fkzk′′ 6= ∅; the proof then
proceeds by direct analogy with that of Proposition 14.�

Now, define the mapping Ψk : Σ→ Σ,

Ψk(x) = zk′′ ∧
[(
β◦\(Hk� x� Lk)

)
�] (HkG � LkG)

]
,

with zk′′ = zk′ ⊕Gk⊗ xkA. Then, we can write

Fkzk′′ =
{
x ∈ Σ |Gk⊗ x � Ψk(x) and rT (x) = rT (xkAopt

)
}

and, based on Theorem 12 and recalling that r ]T ◦rT = r ]T ,
conclude that

xkAopt

′ =
⊕

x∈Fk

zk′′

x =
⊕

x∈Fk

zk′′

{
Gk◦\Ψk(x) ∧ r ]T (xkAopt

)
}
.

Finally, defining the (isotone) mapping Γk : Σ→ Σ,

Γk(x) = Gk◦\Ψk(x) ∧ r ]T (xkAopt
) ∧ x , (14)

we have that xkAopt

′ is the greatest fixed point of Γk.

Example 25. Consider the system from Example 18 (Fig. 4),
with S1 and S2 both operating according to the optimal
inputs u1

opt and u2
opt obtained for output-references z1 and

z2, respectively. Now, suppose new references z1′ = eδ42⊕
1δ45 ⊕ 3δ54 ⊕ 6δ+∞ and z2′ = z2 are received at time
T = 30. In this case, we have r ]T (x2

Aopt
) = eδ27 ⊕ 1δ+∞

and one can check that F1 6= ∅; then, z1′′ = z1′ and we
can directly define F1

z1′′ and look for the greatest fixed
point of Γ1 (defined as in (14)), which is x1

Aopt

′ = eδ37 ⊕
1δ41 ⊕ 2δ42 ⊕ 3δ46 ⊕ 4δ51 ⊕ 6δ+∞.

We now proceed to update x2
A, noticing that in this case

also F2 6= ∅. So, again with z2′′ = z2′, the greatest fixed
point of Γ2 is obtained as x2

Aopt

′ = eδ27⊕1δ30⊕2δ34⊕3δ+∞.

See that, even though z2′ = z2, we have x2
Aopt

′ 6= x2
Aopt

(cf.

Remark 22). 3

Example 26. Assume the same starting point as in Exam-
ple 25 and the same new references z1′ and z2′, only now

given at time T = 36. We then have r ]T (x2
Aopt

) = x2
Aopt

and,

even though there are no restrictions from past firings of u1

(since no such firings have occurred before time T ), it turns
out that now F1 = ∅. From (13) and Proposition 23 we
obtain x1

A = eδ38⊕1δ41⊕2δ43⊕3δ46⊕4δ48⊕5δ51⊕6δ+∞,
so that, according to Proposition 24, the least z1′′ � z1′

such that F1
z1′′ 6= ∅ is z1′′ = z1′ ⊕ (G1⊗ x1

A) = eδ42 ⊕
1δ45 ⊕ 2δ46 ⊕ 3δ54 ⊕ 6δ+∞. Notice that one of the two
outputs required by z1′ at time 46 had to be postponed
to time 47 (as represented by the insertion of the term



2δ46) due to the lack of availability of the resource, as the
new reference arrived when the allocations by S2 scheduled
according to x2

Aopt
had already taken place and would make

it impossible for y1 to accumulate three firings by time 46.
Proceeding with the calculations, we get x1

Aopt

′ = x1
Aopt

; ob-

viously, since the reference-update occurred after all inputs
of S2 had already been fired, we also get x2

Aopt

′ = x2
Aopt

. 3

5.3 Extension to more general cases

The results in this section are developed under the assump-
tions made in the beginning of Section 4. However, they
can be readily extended to more general cases; namely,
the same method can be applied to the case of multiple
shared resources, and the simplifying assumptions on the
connection between input and internal transitions, as well
as between internal and output ones, can be dropped. For
such generalizations in the framework of TEGs with shared
resources but without output-reference update (Section 4),
the reader may consult Moradi et al. (2017). The explicit
generalization of the main results from this paper and a
comprehensive case study are subjects for future work.

6. CONCLUSION

This paper solves the problem of ensuring that a number
of TEGs competing for the use of shared resources operate
optimally (in a just-in-time sense) even in face of changes
in their output-references. The proposed method assumes
a prespecified priority policy on the component TEGs,
and the optimal inputs are computed under the rule that
the operation of lower-priority subsystems cannot interfere
with the performance of higher-priority ones. We also
study the case in which the limited availability of the
resources renders it impossible to respect the updated
output-reference for one or more of the subsystems. In this
case, we show how to relax such references in an optimal
way so that the ultimately obtained inputs lead to tracking
them as closely as possible. The results are illustrated
through simple examples; exploiting the generality of the
method and applying it to a larger, more practically-
motivated case study is a subject for future work.
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