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Abstract— This paper deals with the computation of a
maximal flow in single input single output (max, +) linear
systems. Assuming known a system composed of some sub-
systems - each one being described by a transfer function-
and some secondary inputs interfering with the principal flow
on consecutive sub-systems, the computation of a maximal
principal output is addressed. Transfer functions, inputs and
outputs are represented by periodical series in a semiring of
formal series, namely NminJδK. Previously, it is shown that
the Hadamard product of such series allows to compute the
addition of inputs, and that this product is both residuated
and dually residuated. These properties are used to compute
the maximal principal output. An example concludes the paper
and allows to illustrate the efficiency of the proposed approach.

Keywords: Discrete Event Systems, Timed Event Graphs,
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I. INTRODUCTION

Timed event graphs are Timed Petri Nets of which each
place has one and only one upstream transition and one and
only one downstream transition. TEGs enable to depict sys-
tems characterized by synchronization and delay phenomena
in a graphical way. These phenomena are often found in
manufacturing systems such as assembly lines, but also in
transportation networks subject to connection and in com-
puter networks. TEG behavior can be modelled by a dynamic
linear model in the (max, +) semiring, by associating for
each transition labelled xi a ”dater” function xi(k) which
represents the k-th firing date of this transition. Dually it is
possible to consider a counter function xi(t) which depicts
the number of firing occurred up to time t and then to
obtain a dynamic linear model in the (min, +) semiring. The
methodology to build these models is exhaustively proposed
in [2].

These mathematical models are used for the performance
evaluation of manufacturing systems, transportation networks
[12] and computer networks [14]. For these linear systems a
control theory has been constructed in an analogous way
to the control theory for classical linear systems. Non-
exhaustively, we can cite the identification methods [4], [21],
[17] and, among the control structures, the model predictive
control [22], the optimal control [6][19], and the closed loop
control [16], [7], [15], [11]. Some graph algorithms for both
the shortest path problem and for the maximum flow problem
can also be depicted in these particular semirings (see [9]).

This paper deals with the maximal output computation in
a system composed of some sub-systems in which secondary
inputs interfere in an additive way. These results are based
on the Hadamard product of series, which is both residuated
and dually residuated.

Section II recalls useful algebraic tools. In particular, it
gives necessary and sufficient conditions for a monotonic
mapping f to be residuated.

Section III presents some semirings of formal power series
and their Hadamard product. It is shown that this product is
residuated and dually residuated if the co-domain is restricted
to a given subset. Section IV briefly recalls how to model a
TEG in a semiring, and the set of input series which leads to
the lowest output of the system is given. This output, called
impulse response, corresponds to the maximal instantaneous
number of tokens which can be put out of the correspond-
ing TEG. A discussion about practical computation of the
residuals of the Hadamard product concludes the section.

Section V is devoted to the performance analysis of a sin-
gle input single output (SISO) system subject to interfering
inputs which act in an additive way. These inputs are not
disturbances in the sense of the one studied in [15], but
flows added to the system. This means that the system is no
longer a TEG because some places have more than one input
transition and others have more than one output transition.
Nevertheless, assuming known these additive inputs, the
lowest system output achievable and the greatest system
input leading to this output are computed. An illustrative
example concludes the paper.

II. ALGEBRAIC PRELIMINIARIES

This section aims at recalling some algebraic properties
of idempotent semirings and to present some semirings of
formal series used afterwards.

Definition 1 (Idempotent Semiring): An idempotent
semiring is a set S endowed with two inner operations
denoted ⊕ and ⊗. The sum is associative, commutative,
idempotent (i.e. ∀a ∈ S, a ⊕ a = a) and admits a neutral
element denoted ε. The product is associative, distributes
over the sum and admits a neutral element denoted e. The
element ε is absorbing for the product. When product ⊗ is
commutative, the semiring is said to be commutative. As in
the classical algebra, symbol ⊗ is often omitted.

Definition 2 (Order Relation): An order relation can be
associated with S by the following equivalence:
∀a, b ∈ S, a º b ⇐⇒ a = a⊕ b. Therefore, ε is the bottom
element of S .

Definition 3 (Complete Idempotent Semiring): Semiring
S is complete if it is closed for infinite sums and if the
product distributes over infinite sums too. In particular
T =

⊕
x∈S x is the greatest element of S (T is called

the top element of S). The greatest lower bound of every
subset C of a complete semiring S always exists, and a ∧ b



denotes the greatest lower bound between a and b. S is said
distributive if it is complete and if for all subset C of S ,
(
∧

x∈C x)⊕ a =
∧

x∈C(x⊕ a).
Definition 4 (Sub Semiring): A subset C of a semiring S

is called a sub semiring of S if ε ∈ C and e ∈ C and if C is
closed for ⊕ and ⊗.

Example 1 (Zmin,Nmin): Set Zmin = Z ∪ {−∞, +∞},
endowed with the min operator as sum and the classical sum
(operation +) as product, is a complete idempotent semiring,
where ε = +∞, e = 0 and T = −∞. According to definition
3, one has 5⊕3 = 3 hence 3 º 5. The order relation of Zmin

is the reversed order of Z. In this particular semiring the
product distributes over ∧, i.e. , (a∧b)⊗c = (a⊗c)∧(b⊗c).
According to definition 4, Nmin = N∪{+∞} endowed with
the same operators is a sub semiring of Zmin, which will be
also considered afterwards.

Theorem 1 ([2] 4.5.3): Over a complete idempotent
semiring S , the implicit equation x = ax⊕b admits x = a∗b
as least solution, where a∗ =

⊕
i∈N ai (Kleene star operator)

with a0 = e.
The residuation theory provides, under some assumptions,

optimal solutions to inequalities such as f(x) ¹ b (resp.
f(x) º b), where f is an order-preserving mapping defined
over ordered sets. Some theoretical results are recalled below.
Complete presentations are given in [3] [2].

Definition 5 (Isotone mapping): A mapping f defined
over ordered sets is isotone if a ¹ b ⇒ f(a) ¹ f(b).

Definition 6 (Residuated and dually residuated mappings):
Let f : E → F an isotone mapping, where (E ,¹) and
(F ,¹) are ordered sets. Mapping f is said residuated if for
all y ∈ F , the least upper bound of subset {x ∈ E|f(x) ¹ y}
exists and belongs to this subset. It is then denoted f ](y).
Mapping f ] is called the residual of f . When f is residuated,
f ] is the unique isotone mapping such that

f ◦ f ] ¹ IdF and f ] ◦ f º IdE , (1)

where IdF (respectively IdE ) is the identity mapping on F
(respectively on E). Mapping f is said dually residuated if for
all y ∈ F , the greatest lower bound of subset {x ∈ E|f(x) º
y} exists and belongs to this subset. It is then denoted f [(y).
Mapping f [ is called the dual residual of f . When f is dually
residuated, f [ is the unique isotone mapping such that

f ◦ f [ º IdF and f [ ◦ f ¹ IdE . (2)

If ∃x ∈ E such that f(x) = y, then f ](y) (respectively
f [(y)) yields the greatest solution (respectively the lowest
solution).

Theorem 2 ([2]): Let f : E → F where E and F are
complete idempotent semirings of which bottom (respec-
tively top) elements are denoted εE (respectively TE ) and εF
(respectively TF ). Mapping f is residuated iff f(εE) = εF
and ∀A ⊂ E f(

⊕
x∈A x) =

⊕
x∈A f(x). And, mapping

f is dually residuated iff f(TE) = TF and ∀A ⊂ E
f(

∧
x∈A x) =

∧
x∈A f(x).

Corollary 1: Mappings La : x 7→ ax and Ra : x 7→
xa defined over a complete idempotent semiring S are both

residuated. Their residuals are usually denoted respectively
(La)] : x 7→ a◦\x and (Ra)] : x 7→ x◦/a in (max,+) literature.

Proof: According to definition 3, if S is a complete
idempotent semiring then the product distributes over infinite
sums and ε is absorbing, therefore the requirements of
theorem 2 are satisfied.

Definition 7 (Restricted mapping): Let f : E → F a
mapping and A ⊆ E . We will denote f|A : A → F the
mapping defined by f|A = f◦Id|A where Id|A : A → E , x 7→
x is the canonical injection. Identically, let B ⊆ F with
Imf ⊆ B. Mapping B|f : E → B is defined by f = Id|B◦B|f ,
where Id|B : B → F , x 7→ x is the canonical injection.

III. SEMIRING OF POWER SERIES

Definition 8 (Formal power series): A formal power se-
ries in p (commutative) variables, denoted z1 to zp, with
coefficients in a semiring S, is a mapping s defined from Zp

or Np in S: ∀k = (k1, ..., kp) ∈ Np or Zp, s(k) represents
the coefficient of zk1

1 ...z
kp
p and (k1, ..., kp) are the exponents.

Another equivalent representation is

s(z1, ..., z2) =
⊕

k∈Zp

s(k)zk1
1 ...zkp

p .

Definition 9 (Support, degree, valuation): The support
supp(s) of a series s in p variables is defined as

supp(s) = {k ∈ Zp|s(k) 6= ε}.
The degree deg(s) (respectively valuation val(s)) is the
upper bound (respectively lower bound) of supp(s).

The set of formal series endowed with the following sum
and Cauchy product:

s⊕ s′ : (s⊕ s′)(k) = s(k)⊕ s′(k), (3)

s⊗ s′ : (s⊗ s′)(k) =
⊕

i+j=k

s(i)⊗ s′(j), (4)

is a semiring denoted SJz1, ..., zpK. If S is complete,
SJz1, ..., zpK is complete. A series with a finite support is
called a polynomial, and a monomial if there is only one
element.

The greatest lower bound of series is given by :

s ∧ s′ : (s ∧ s′)(t) = s(t) ∧ s′(t). (5)

A. Semirings ZminJδK and NminJδK
The particular semiring of formal power series with co-

efficients in Zmin and exponents in Z, denoted ZminJδK, is
now considered. A series s ∈ ZminJδK is defined as follows:

s =
⊕

t∈Z
s(t)δt,

where s(t) ∈ Zmin. The sequence {s(t)}∀t ∈ Z represents
a trajectory and series s is called the δ-transform of this
trajectory which is analogous to the z-transform used to
represent discrete-time trajectories in classical system theory.

Usually sequence {s(t)} represents a counter of events ,
hence number of events s(t) is greater or equal than s(t−1),
i.e. that this is a non decreasing trajectory. According to the
order in Zmin (see example 1), sequence {s(t)} satisfies the



monotonicity property : ∀t, s(t) ¹ s(t − 1) ⇔ s(t − 1) =
s(t − 1) ⊕ s(t). Hence, thanks to theorem 1, the following
equivalence holds true

s = s⊕ δ−1s ⇐⇒ s = (δ−1)∗s.

This means that the sequences belong to semiring
(δ−1)∗ZminJδK. In this complete semiring ε = (δ−1)∗ ⊗
(+∞δ−∞), e = (δ−1)∗ ⊗ (0δ0), and T = (δ−1)∗ ⊗
(−∞δ+∞). Afterwards all the series are assumed to be non
decreasing, in order to simplify notations the semiring will
be simply denoted ZminJδK ((δ−1)∗ will be omitted). Due
to the monotonicity property of trajectories, the following
calculation rules between monomials of ZminJδK come :

nδt ⊕ nδt′ = nδmax(t,t′), (6)
nδt ⊕ n′δt = min(n, n′)δt. (7)

Definition 10: The Hadamard product of series of
ZminJδK is defined as follows :

s¯ s′ : (s¯ s′)(t) = s(t)⊗ s′(t).

Series s ¯ s′ describes the classical sum of counter since
(s ¯ s′)(t) = s(t) + s′(t). The series e¯ = 0δ+∞ is the
neutral element of this product, and ε is absorbing for this
law (s ¯ ε = ε). Afterwards the following mapping will be
also considered

Πa : ZminJδK→ ZminJδK, x 7→ a¯ x.
Proposition 1: The Hadamard product of series of

ZminJδK satisfies the following distributivity properties:

(s1 ⊕ s2)¯ s3 = (s1 ¯ s3)⊕ (s2 ¯ s3) (8)

(s1 ∧ s2)¯ s3 = (s1 ¯ s3) ∧ (s2 ¯ s3). (9)
Proof: According to definitions 3 and 10, the first

statement leads to

((s1 ⊕ s2)¯ s3)(t) = (s1 ⊕ s2)(t)⊗ s3(t)
= (s1(t)⊕ s2(t))⊗ s3(t)
= (s1(t)⊗ s3(t))⊕ (s2(t)⊗ s3(t)),

since ⊗ distributes over ⊕ in Zmin. Therefore by considering
definition 10 again, the following equalities hold true,

((s1 ⊕ s2)¯ s3)(t) = (s1 ¯ s3)(t)⊕ (s2 ¯ s3)(t)
= ((s1 ¯ s3)⊕ (s2 ¯ s3))(t).

By considering the same arguments (distributivity of ⊗ over
∧ in Zmin, see example 1) equality 9 is obtained.
This proposition (equation (8)) implies that mapping Πa is
a ⊕-morphism (i.e. Πa(s1 ⊕ s2) = Πa(s1) ⊕ Πa(s2) and
Πa(ε) = ε), then it is an isotone mapping.

Proposition 2: The mapping Πa : x 7→ a ¯ x defined
over ZminJδK is residuated. The residual will be denoted
(Πa)] : x 7→ a ¯] x. (Πa)](b) is the greatest series x of
ZminJδK such that a¯ x ¹ b.

Proof: First, series ε is absorbing for the Hadamard
product, then Πa(ε) = ε and the distributivity of ¯ over
⊕ leads to ∀C ⊆ ZminJδK, Πa(

⊕
x∈C x) =

⊕
x∈C Πa(x),

therefore theorem 2 yields the result.
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Fig. 1. A Single Input Single Output.

All the previous results stay valid in semiring NminJδK,
which is defined as the set of formal power series with
coefficient in Nmin and exponent in N. A series s ∈ NminJδK
is defined as follows :

s =
⊕

t∈N
s(t)δt,

where s(t) ∈ Nmin. Semiring NminJδK is a sub semiring of
ZminJδK and the top element is

⊕
x∈NminJδK x = TNminJδK =

0δ+∞. Just remark that the top element is then equal to the
neutral element of the Hadamard product (see definition 10).

Proposition 3: Let a be a series of NminJδK and Ca =
{y|y ¹ a} be a subset of NminJδK. The mapping Ca|Πa :
NminJδK → Ca, x 7→ a ¯ x is dually residuated. The dual
residual will be denoted (Ca|Πa)[ : x 7→ a ¯[ x. If b ∈ Ca

then (Ca|Πa)[(b) is the lowest series of NminJδK such that
a¯ x º b.

Proof: First just note that ImΠa ⊆ Ca indeed Πa is
an isotone mapping and ∀s ∈ NminJδK, s ¹ e¯ = TNminJδK,
therefore ∀s ∈ NminJδK,Πa(s) ¹ Πa(e¯) = a. Further-
more, the top element of Ca is TCa = a and Πa(TNminJδK) =
Πa(e¯) = a = TCa . According to the distributivity property
(see equation (9)) the following equality holds true, ∀A ⊆
NminJδK, Πa(

∧
x∈A x) =

∧
x∈AΠa(x). The requirements of

theorem 2 are then satisfied, and yields the result.

IV. TIMED EVENT GRAPH DESCRIPTION

Timed event graphs can be seen as linear discrete event
dynamical systems in some semirings [6] [2]. For instance,
by associating to each transition xi a “counter” function
{xi(t)}t∈N, in which xi(t) is equal to the number of firing for
transition xi to time t, it is possible to obtain a linear state
representation in Zmin. As in conventional system theory,
output {y(t)}t∈N of a SISO TEG is then expressed as a
(min, +) convolution of its input {u(t)}t∈N by its impulse
response1 {h(t)}t∈N. Counter {xi(t)}t∈N can be represented
by a formal series in ZminJδK. For instance, considering the
TEG drawn in figure 1, counters u, x1 and x2 are related as
follows over Zmin:

x1(t) = 2⊗ x1(t− 5)⊕ 1⊗ x2(t)⊕ u(t).

Their respective δ-transforms, expressed over ZminJδK, are
then related as:

x1 = 2δ5x1 ⊕ 1x2 ⊕ u.

1which is the output due to an infinity of input firings at date zero [18].



Consequently, by considering state vector x =
(

x1

x2

)
, the

following representation over ZminJδK can be obtained :

x =
(

2δ5 1
δ 1δ2

)
x⊕

(
e
e

)
u

y =
(
ε e

)
x.

In a general way, TEG model can be expressed as:

x = Ax⊕Bu

y = Cx,

where x ∈ ZminJδKn with n the number of internal transi-
tions, u ∈ ZminJδKp with p the number of input transitions
and y ∈ ZminJδKq with q the number of output transitions.
Matrices A, B and C are of appropriate size with their entries
in ZminJδK. According to theorem 1, this state system leads
to a transfer relation y = CA∗Bu, then in ZminJδK semiring
the transfer matrix of the TEG depicted in figure 1, is given
by :

CA∗B = (δ ⊕ 1δ3)(2δ5)∗. (10)

Entries of the transfer matrix are periodic series [1] which
are usually represented by2 p ⊕ q(νδτ )∗. The asymptotic
slope3 of a periodic series s = p⊕ q(νδτ )∗ denoted σ∞(s)
is defined as the ratio σ∞(s) = ν

τ .
For a SISO system, input4 u = e yields output y =

(CA∗B)e = CA∗B which is called the impulse response of
the system. This output is the lowest which can be achieved,
i.e. the maximal number of tokens which can come out of
the system at each time t. Thanks to corollary 1, it is possible
to compute the greatest input u which leads to this lowest
output. This greatest input is given by :

u =
⊕

{x|(CA∗B)u¹(CA∗Be)}
x = (CA∗B)◦\(CA∗Be). (11)

This input represents the minimal number of tokens which
are necessary to achieve the lowest output.

Algorithms and software tools5 are available in order to
handle such periodic series (see [10] and [8] for algorithms).
In particular, the last version allows to compute Hadamard
product and its residuals (see propositions 2 and 3). Practical
computations can be obtained by considering the following
remark.

Remark 1: Let s and s′ be two series of NminJδK, let s”
be a series defined as follows :

s” : s”(t) = s(t)− s′(t).

Series s” is not necessarily a monotonic series. Series
s¯] s′ can be obtained from s” by considering the greatest

2p is a polynomial that represents the transient and q is a polynomial that
represents a pattern which is repeated each τ time units and each ν firings
of the transition

3Asymptotic slope in a manufacturing context can be viewed as the
production rate of the system.

4series e = 0δ0⊕1δ0⊕ ... represents an infinity of tokens at time t = 0.
5Note that another library which handle ultimately pseudo periodic

functions is under development, see [5].
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Fig. 2. Series s, s′, s¯] s′ and s¯[ s′.

monotonic series lower than or equal to s”, and dually s¯[s′

can be obtained by considering the lowest monotonic series
greater than or equal to s”.

Hereafter asymptotic slope resulting from operations be-
tween series is given. If ν, ν′ 6= 0 and τ, τ ′ 6= 0, then

σ∞(s⊕ s′) = min(σ∞(s), σ∞(s′)),
σ∞(s⊗ s′) = min(σ∞(s), σ∞(s′)),
σ∞(s¯ s′) = σ∞(s) + σ∞(s′),

if s′ ¹ s then σ∞(s¯[ s′) = σ∞(s)− σ∞(s′),
if σ∞(s) ≤ σ∞(s′) then σ∞(s¯] s′) = σ∞(s)− σ∞(s′),
if σ∞(s) ≤ σ∞(s′) then σ∞(s′◦\s) = σ∞(s), else s′◦\s = ε.

Example 2: Let s′ = δ3⊕4δ8⊕8δ+∞ and s = e⊕2δ2⊕
7δ5 ⊕ 13δ+∞ be two series representing counters of events.
Series s′ can be read as no event has occurred until time
t = 3, 4 events have occurred until time t = 8, and 8 events
until time t = +∞, that means that the following events have
never occurred. Figure 2 proposes a graphical representation
of s, s′, s ¯] s′ = e ⊕ 2δ2 ⊕ 7δ5 ⊕ 9δ+∞ and s ¯[ s′ =
e⊕ 2δ2 ⊕ 3δ5 ⊕ 5δ+∞. Furthermore, it can be checked that
(s ¯] s′) ¯ s′ = e ⊕ 2δ2 ⊕ 7δ3 ⊕ 11δ5 ⊕ 13δ8 ⊕ 17δ+∞ is
lower than s and dually that (s¯[ s′)¯s′ = e⊕2δ2⊕3δ3⊕
7δ5 ⊕ 9δ8 ⊕ 13δ+∞ is greater than s.

V. MAXIMAL FLOW FOR LINEAR SYSTEMS

The problem addressed now is to compute the lowest
output of a system made up of several SISO sub-systems, in
the presence of cross-inputs, and the greatest input allowing
to achieve this lowest output. First, the case of one interfering
input is considered and algorithms, which generalize the
approach, are given in a second step.

A. One interfering input on a SISO system

Figure 3 depicts the system studied. Two inputs α1 and α2

put tokens in a system which is characterized by a transfer
relation denoted β, then the system output is given by :

y = β ⊗ (α1 ¯ α2).
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Fig. 3. A system with two convergent inputs.

Trajectories α1, α2, u and y are depicted by series of
NminJδK. Input α2 and output y = βu are assumed to be
known. The problem considered is to compute the greatest
input α1 which must be added to α2 in order to achieve
output y. Furthermore the flows are assumed to be blindly
multiplexing, roughly speaking this means that the worst case
must be considered for input α1 (see [20] for a discussion
in the network calculus context).

Then, this problem consists in computing the greatest
α1 such that β(α1 ¯ α2) ¹ y. Thanks to corollary 1 and
proposition 2, this input is given by :

α1 =
⊕

{x|β(x¯α2)¹y}
x = (β◦\y)¯] α2. (12)

As said previously, for a SISO system, the best output (the
lowest series) is given by the impulse response y = β, and
the greatest input allowing to achieve this output is given by :
β◦\β (see equation (11)). Therefore, by considering equation
(12), the greatest series α1 which leads to the lowest output
y = β is given by :

α1 = (β◦\β)¯] α2. (13)

This bound characterizes the minimal number of tokens
which must be added to α2 to obtain output y = β, it is
not necessary to introduce more tokens, they would not be
processed by the system, in other words α1 is the maximal
flow which can be added to this system.

b
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Fig. 4. A system with two divergent outputs.

Figure 4 presents a dual problem to the previous one. The
output of a system y = βu is assumed to be known, a part
of the output flow is devoted to output α2. This output is
assumed to be known and satisfying condition α2 º y. The
problem arising is to know what maximal flow α1 can be
achieved. This problem can be expressed as the computation
of the lowest series α1 which is such that (α1 ¯ α2) º y,
formally:

α1 =
∧

{x|(α2¯x)ºy}
x.

Conditions about dual residuation of the Hadamard product
being fulfilled (see proposition 3), the lowest series is given
by :

α1 = y ¯[ α2. (14)

It characterizes the maximal flow which can go towards
output α1 while preserving output α2.

B. Several interfering inputs on several SISO sub-systems

Now, let us consider a principal flow α
(s1,en)
1 , crossing

sub-systems β1, ..., βn in that order. Let α(sd,.) be the input
interfering with α

(s1,en)
1 , in the front of sub-system βd with

d ∈ {1, .., n} and let α(.,eq) be the output leaving the system
after sub-system βq with q ∈ {1, .., n}.

For each stage i, the system input is denoted ui and the
system output is denoted yi = βiui. Secondary inputs α(si,.)

and outputs α(.,ei) are assumed to be known.
On each node, the flows are linked by a kind of monotonic

version of the Kirchhoff law, which can be expressed as
follows:

yi ¯ α(si+1,.) = ui+1 ¯ α(.,ei). (15)

The following condition is assumed to be fulfilled
α(.,ei) º (yi ¯ α(si+1,.)), it means that the flow leaving the
node is lower than or equal to the flow coming in the node.
Therefore the lowest input ui+1 satisfying equality (15) is
given by (see equation (14)):

ui+1 = (yi ¯ α(si+1,.))¯[ α(.,ei). (16)

This signal represents, at each time t, the maximal number
of tokens which can go towards ui+1, while preserving
output α(.,ei).

Dually, the greatest output yi satisfying equation (15) is
given by :

yi = (ui+1 ¯ α(.,ei))¯] α(si+1,.). (17)

This signal represents, at each time t, the minimal number
of tokens which are necessary to satisfy equality (15).

The signal due to the principal flow in the front of
system βi is denoted α1i. By considering, in a first step,
that the principal flow is characterized by an impulse input,
i.e. α11 = e, it is possible to compute recursively system
inputs ui, system outputs yi and to obtain the lowest signal
α1(n+1) characterizing the maximal instantaneous flow
which can go towards this output (see forward algorithm 1
based on equation (14)).

Algorithm 1: Forward computation of the lowest princi-
pal output α1(n+1)

Data: Series βi, α(si,.), α(.,ei).
Result: Series ui, yi, α1(n+1).
begin

u1 = α(s1,.) ¯ e;
y1 = β1u1;
for i = 2 to i = n do

ui = (yi−1 ¯ α(si,.))¯[ α(.,ei−1);
yi = βiui;

α1(n+1) = yn ¯[ α(.,en).
end

Conversely, by considering the backward algorithm 2,
based on equation (12), it is possible to compute the greatest
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Fig. 5. A system with two interfering inputs.

input α11 allowing to satisfy the lowest output α1(n+1). This
signal characterizes the minimal number of tokens which
must be introduced in the system to obtain output α1(n+1),
it is not necessary to introduce more tokens, they would not
be processed by the system.

Algorithm 2: Backward computation of the greatest
principal input α11.

Data: Series βi, ui, α(si,.), α(.,ei), α1(n+1).
Result: Series α11.
begin

yn = α1(n+1) ¯ α(.,en);
un = βn◦\yn ;
for i = n− 1 to i = 1 do

yi = (ui+1 ¯ α(.,ei))¯] α(si+1,.) ;
ui = βi◦\yi ;

α11 = u1 ¯] α(s1,.).
end

Figure 5 depicts the system studied to illustrate the results.
The system is composed of three sub-systems of which
transfer are assumed to be given by :
β1 = (δ ⊕ 1δ3)(2δ5)∗, β2 = δ5(2δ6)∗, β3 = δ7(8δ5)∗.
Secondary inputs and outputs trajectories are assumed to
be known. The upstream input of system 1 is given by
α(s1,.) = e ⊕ 2δ10 ⊕ 4δ19 ⊕ 5δ+∞, the upstream input of
system 2 is given by α(s2,.) = e ⊕ 1δ9 ⊕ 2δ15 ⊕ 3δ+∞,
the downstream output of system 2 is given by α(.,e2) =
δ6⊕2δ18⊕4δ26⊕5δ+∞ and the downstream output of system
3 is given by α(.,e3) = δ30⊕1δ33⊕2δ39⊕3δ+∞. Algorithm
1 allows to compute the lowest series for the principal flow:
α14 = (δ36 ⊕ 1δ37)(2δ6)∗.
Algorithm 2 yields the greatest series allowing to achieve
α14 while preserving secondary outputs:
α11 = δ6 ⊕ (1δ24 ⊕ 2δ28)(2δ6)∗.

VI. CONCLUSION

In this paper is computed the maximal flow which can
be added to a system composed of many (max,+) linear
subsystems with exogenous inputs interfering in additive
way. The next step will be to compute the maximal flow
in a network of (max,+) systems. Usually the networks
considered are with constant capacity. Therefore this results
would be a generalization of the classical case (see [9]).
An avenue is to formalize this problem such as a constraint
satisfaction problem (see [13]).
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