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Abstract— The max-plus linear systems have been studied In an idempotent semirin§, operationd induces a partial
for almost three decades, however, a well-established sgst  order relation
theory on such specific systems is still an on-going research
The geometric control theory in particular was proposed as e a>b < a=a®b, Va,beS. Q)
future direction for max-plus’linear systems by Cohen et alThis -
paper reports upon recent investigations on the disturbane  Then,q vV b = a ¢ b. We say that an idempotent semiring

decoupling problem for max-plus linear systems, which is i i it 1 i
the standar fPeometric contro Problem originated by W. M. S is completeif it is complete as an ordered set, and if for

Wonham. Different concepts of the disturbance decou.E)tIing all a € S, the left and right multiplicatiorisby a, L, :
problem are introduced, as well as the corresponding solva S-S, r—arandR,:S — S,z — xa are lower semi-
conditions and controller synthesis procedures. The mainesults  continuous. These maps are residuated, then the following
can be used in manufacturln? systems, queueing networks, notation are considered :

and power system networks for fault detection and system

breakdown prevention. L (b) = axb = @ {z|ax < b}and

R:(b) = bja = @ {x|za < b}, Va,be S.

I. INTRODUCTION
: : -+ Definition 2 (Kernel [2], [3], [5]): Let S be a complete
Max-plus linear systems have been used in communicati ('fempotent ser(niring ar[ld] Ié!f 1be[ 6]31 X p mitrix with entpries

networks [13], genetic regulatory networks [8], [10], an >
gueueing systems E]h The fundamental problems for max- Sﬁ \{\{]%%‘g n:”"elfeégﬁl,gdcazéfeihg,S‘\e/\t/é)fcgﬁ"?qeu'}f,sa?eﬁce

plus linear systems have been studied by researchers melof L. (denoted byker., C), the subset of all pairs of

the past three decades, for example, controllability [20 |
ir ements ofS” whose components are both mappedihy
observability [11], and the model reference control prob_lettg the same element if", i.e., the following definition

[19]. A new research area for max-plus linear systems is
establish the geometric control theory [21|] as predicted in , 9 ,

;4]. There are some existing research results on genamglizi ~ kereq C' := {(57 s') € (8P)” | Cs=Cs } N )
undamental concepts and problems in geometric control to

max-plus linear systems, such as computation of differe@learly ker., C, is an equivalence relation o, i.e., C's =
controlled invariant sets ([9], [12], [17]) and the distarite (s <« s = s (modker., C') and furthermore it is a
decoupling problem [14]. This paper reports upon furthegongruence and then we can define the quotidtiter C.
|nvest|?at|0ns on the disturbance decoupling problem for \otation 1: The subset of elements ¢ SP that are

max-plus linear systems. Different concepts of the distutsy,,i : :
bance decoupling problem are introduced, as well as ﬂ';eequalent tos moduloker C is denotedsc, é.e.,

corresponding solvability conditions and controller $yadis — {4 €8P | ¢ = s(modker.. C)} c SP.
procedures. The main results are illustrated by manufiactur [sle =1 | "= s Teq C)}

systems. B. (A, B)-Invariance for Max-Plus Linear Systems

Max-plus linear systems over the max-plus algeRga..,
. ”‘_ M ATHEMATICAL PR_E.L'M'NAR'ES _ in which the addition® is max and the multiplicatior® is
A. Residuation, Idempotent Semirings, and Equivalence Kef, are described by the following equations:

nel

A semiringis a setS, equipped with two operations, ®, o(k) = Ax(k—1) © Bu(k),
such that(S, @) is a commutative monoid (the zero element y(k) = Ca(k) ® Du(k), 3)
will be denotedk), (S, ®) is a monoid (the unit element will |\ here + is in the state semimodul& =~ R is in
be denotea), operation® is right and left distributive over . N = BMax: Y 0
@, ande is %bsgrbing for the %roduct.e. ERa=a®e — the output selemozguléf =~ R{;,., andu is in the input
¢, Va). A semiringS is idempotentf aGa = aforalla € S.  Semimodulel = RM%};' A: X - X,B:U— X, C:
A non empty subseB of a semiringsS is a subsemiring of X — Y andD : U —V are fourR-semimodule morphisms.

Sifforall a,b e Bwehavea® b e Banda®b € B. Given the max-plus linear system (3), a sub-semimodule
Definition 1: Let S be an idempotent semiring. An orderV of the state semimodul# is called
ideal set is a nonempty subs#&tof S such that . (fA, B)-invariant, or controlled invariant if and only
if, for all g € V, there exists a sequence of control
(reXandy Xz) = ye . inputs,u = {uy,uz, - - - }, such that every componentin
the state trajectory produced by this inputzo; u) =
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family of controlled invariant sub-semimodules in a subwverification of whether th¢ A & BF)-invariant semimodule
semimoduleC of the state semimodul& and it can be contains the image of. The computational methods of

computed by the following algorithm. geometric and algebraic invariant sets have been intratluce
Theorem 1:[12] Let {Vi}r>0 be the family of sub- by Katz in [12].
semimodules defined recursively by Proposition 2: Given a max-plus linear system of the
form J%), the DDP is solvable by a state feedback controller
Voo = K X u(k) = Fz(k — 1) ® v(k) for v(k) # e if and only if there
Viti = VeNAT (Ve © B), (4) exist a state feedbac mappir;;g and a control sequence
whereA='(V, © B)2 {zc X[3be B, st. Arwbe U= [ v(1) w(2) --- w(n) ] such thatthe equivalence

Vi.}, and B £ B(U). If there exists a nonemptgen Vi, relation holds

then any(A, B)-invariant sub-semimodule & is contained (A @ BF|B), v & (A® BF|S)nq =kereqc (A® BF|B), v
in Ngen Vi, Nnamely the supremal controlled invariant sub- _ N
semimoduleV* is also contained imienVy. Moreover, if for all n and any disturbance signalq =

the algorithm in Eq. (4) terminates insteps, thed* = V,. [q(1) q2) - q(n) ]T, where (A @ BF|S), =
S @ (A @ BF)S © --- @ (A & BF)"™YS and
[1l. DISTURBANCE DECOUPLING PROBLEM FOR (A®BF|B), =B®(A®BF)B®---® (A® BF)" VB,
MAX-PLUS LINEAR SYSTEMS Proof: If the DDP is solvable by a state-feedback

A max-plus linear system with disturbances is defined asontroller u(k) = Fa(k — 1) & v(k), then, for any initial
condition z(0), we require that the original output signals

z(k) = Az(k-1) ® Bu(k) & Sq(k), are the same as the output signals induced by disturbances
y(k) = Cz(k), () for all n, that is,
wherez(k) € X =Ry, u(k) e U =Ry, q(k) € Q = y(n) = yq(n) < Cz(n) = Cxq(n)
Ritax: y(k) € Y = Ry, andk € Z. z(n) = (A®BF)"z(0)® ((A® BF)|B).7v
A. Disturbance Decoupling Problem zq(n) = (A®BF)"z(0)® (A® BF|B),7
For max-plus linear systems in Eq. (5), we introduce the ®(A® BF|S)» ¢

definition of the disturbance decouPImg problem(DDP): _ ) )

Definition 3: The system (5) is calledisturbance decou- This equality has to hold for(0) = ¢, it means that the
pled by an open-loop controllex(k) = v(k)(or by a state- equivalence relation holds
feedback controllet(k) = Fxz(k —1) @ v(k)) if and only if _ R R
any disturbance signal will not affect the system outpilt) (A @ BF[B)» v ® (A® BF|S)n ¢ Skereq ¢ (A© BF|B)nv
for all k¥ € Z and for any initial conditionzg. . .

Theorem 2:[21] The DDP is solvable by a state feedbackor all n and any disturbance signaf. On the other hand,
controller for linear systems over a field if and only if thelf the equation holds for alh, we havey(n) = y,(n) for
supremal controlled invariant subpace of feedback typf in any initial conditions. _ u
contains7, wherek is the null kernel ofC and7 = Im S. Proposition 3: Given a max-plus linear system of the

form ?5), the DDP is solvable by an open-loop controller

The following proposition shows that the solvability con-u(k) = v(k) if and only if there exists an open-loop control
dition for the DDP by a state-feedback controliefk) =  sequencev’ = [ v(1) v(2) --- wv(n) ]T such that the
Fx(k — 1) © v(k), wherev(k) = ¢, of a max-plus linear equivalence relation holds
system described in Eg. (5) is the same as the traditional
linear systems over fields.

Proposition 1: The DDP is solvable by a state-feedback
controlleru(k) = Fa(k — 1) @ vék), wherev(k) =¢,fora for all n and any disturbance signaly =
max-plus linear system of the form (5), if and only if [q) q2) - qn) ]T' where (A[S), = S @ AS @

(A® BF|Im S) :=Tm (A® BF)"S C ker C, © @AV and(A|B), =B®AB®--- @ AR,

: fefi - Proof: If the DDP is solvable by an open-loop con-
is satisfied, wherém (A® BF)*S =Im S®Im (A® BF)S® _ initi it
o BIm (A® BF)"L 0 - troller u(k) = v(k), then, for any initial conditionz(0), we

. L equire that the original output signals are the same as the
c ontrl:())rl?eorf& ( kl)f :thgxl(j/?_P 1'? @SSI(\//Sbl\;e\,hg)r/eg( lf)ta:te;fetﬁgga(:l{)u?put signals induged by dlpsturbgnces formglithat is,

(AIB)n ¥ @ (A|S)n T Skereq ¢ (AlB)n T ®)

gﬁ%}%g'ﬁ' e Oiput Senals nduced by istarbances for kA
y(n) = yq(n) < Cz(n) = Cxy(n) zq(n) = A"m(O) 2] <A|B>n7 & <A|S>n7 9)
z(n) = (A BF)"z(0) This equality has to hold for(0) = ¢, it means that the
z4(n) = (A®BF)"2(0)® (A® BF|Im S),, (7) equivalence relation holds

where(A® BF|Im S),, = Im S&Im (A& BF)S&---@Im (A& (A|BYnT @ (A|S)nT Zxereq o (A|B)nT (10)

BF)"~'s, this equality has to hold far(0) = ¢, so it means

(A® BF|Im S),, is contained in the null kernel @, ker C,  for all n and any disturbance signa. On the other hand,

for all n. Hence, we havéA @ BF|Im S) C Ker C. On the if the equation holds for alh, we havey(n) = y,(n) for

other hand, if(A ® BF|Im S) C Ker C is satisfied, then any initial conditions.

Eq. (7) holds for anyn and any initial conditions. Hence, - N [ ]

the DDP is solvable by a state-feedback controller. Therefore, the solvability condition of the DDP by an

B open-loop controller needs an infinite checking of the equiv

If the null kernel ofC' is nontrivial, i.e not the same a&s alence relations induced by the output mappifig An

this result will evolve with the calculation ofA @ BF)-  alternative method will be presented in the next sectiongisi

invariant semimodule in the null kernel af', and then frequency domain representations.



DDP is very restrictive for max-plus linear systems, a mod-
ified DDP with better practical meanings will be introduced
in the following section.

IV. MoDIFIED DDP FORMAX-PLUSLINEAR SYSTEMS

In the max-plus linear system described in Eq. (5?, the
traditional null kernel of a nontrivial matrixC is trivial.
This will conclude thatlm S is e. This argument means
that for a nontrivial disturbance matri%, one cannot find

a state-feedback controller such that the output will not be
affected by the disturbance. From the practical point ofwie

a modified DDP for max-plus linear systems is defined as
follows:

Definition 4: The max-plus linear system described in Eq.
(5) is calledmodified disturbance decoupledby an open-
loop controlleru(k) = v(k) (or by a closed-loop controller
u(k) = Fz(k —1)® v(kp if and only if the system output
signals will not be disturbed more than the disturbances hav

Fig. 1: The timed Petri net for a queueing system.

B. Example A. Solving Modified DDP using Frequency Domain Repre-
Given a simple queueing system modelled by a timedentation

Petri net as shown in Fig. 1. If we assume the output is A trajectory of a timed event graph transitiaris a firing

the customer arrival time of the second server, then we capte sequencéz(k)} € Z. For each increasing sequence

write the system equation as a max-plus linear system in E&(k)}, it is possible to define the transformation(y) —

(5) with the system matrices as @ x(k)y* where~ is a backward shift operator in event

2 € € € ¢ € €

el 6 ¢ | and domain (e, Y(7) = 1X(1) <> {y(k)} = {a(k — 1)
A = € € € , B = € S = € an omain (.e., Y) = X(Y) = 1yl = 1Tk — ,

e 7T € € « 3 € (see ;1], p. 228). This transformation is analogous tof}ne

e € 6 € ¢ € € transtorm used in discrete-time classical control thearg a

€ €

=1¢ ¢ e ]. The null kernel ofC' is generated the formal seriesX () is a synthetic representation of the
by the fouTr basis vectore, €2, €3, andes, Wher%el = trajectoryz(k). The set of the formal power series inis
[e;eve €, e], €2 = [ee,¢,6,¢]", es = [e;¢,e,¢,¢]", and  gopqteq bYZmax[7] @and constitutes an idempotent semiring.
es = [e,€,¢,¢,¢]" . Inorder to calculate the suprenial, B)-  Therefore, the state equation in Eq. (5) becomes a polyiomia

invariant sub-semimodulg* in the null kernel ofC, we can equation or a frequency domain representation
either use the algorithm in Eq. (4) to obtain that q q y P '

X(y) = ~yAX(y) @ x0o® BU(v) ®5SQ(y)
Vo = K:K(irlc’ Yy = OX() )
Vi = VonA (Vo © B) =Span [e1, ez, e4] o _
Vs = VinA (V1 © B) = Span | es,e4] for any initial statexz,, assumingu(0) = ¢(0) = ¢, the

state X(7) € X = (Zmax[7])"", the outputy(y) € ¥ =
: (Zumax[7]) ", the inputtU(y) € U = (Zmax[1])”™", and the
Vi = Span [ez e =V". disturbanceQ(7) € Q = (Zumax[1])" ™"

. . . . . . If we assume the initial state i then the model equation
Because the(A, B)-invariant semimodule is not identical is given by ® g

with (A @ BF)-invariant semimodule, we need to verify for

any pointz in V*, whether there exists a state feedback X(y) = AX(y)® BU(y) ® SQ(y), where A = vA,

F : X — U such thatV* is (A ® BF)-invariant. If assume Y(y) = CX(). (12)
F = [.fla f27 f37 f4a .f5 for any fl € RMa_x and o )

any z = [e, x2, € x4, € ] in V", one can pick any Matrices 4 € (Zmax[y])" ", B € (Zmax])"".C €

values forF' such thatV* is (4 @ BF)-invariant. We chose T )" and 5 € (Zamaxln]) ™"

7 represent the link
F =1le 2, ¢, 1, € | and the state feedback controller " : ;
is shown in the 'shaded box shown in Fig. 1, theh between transitions. The trajectorig4y) andY () can be

processing time ofi(k) is the maximum o2 +z,(k—1) and related ([1], p. 2_‘13) by the equ%ti?)ﬁ(y) = HU (),
1+ 24(k — 1). The image ofS is contained in the supremal whereH (y) = CA B € (Zmax[y])" " is called the transfer
(A® BF)-invariant sub-semimodule of the null kernel@f matrix of the TEG. Entries of matriX/ are periodic series
therefore, the DDP is solvable by a state-feedback coetroll([1], p. 260) in the idempotent semiring, usually repre-
u(k) = Fx(k — 1) ® v(k), with v(k) = e. sented byp(y) @ q(v)(t7")*, wherep(y) is a polynomial
Remark 1:We need to notice that the output signal isrepresenting the transient behavigf;y) is a polynomial
completely decoupled from the disturbance signal in thisorresponding to a pattern which is repeated periodically,
example, therefore, the DDP is solvable with or withouthe period being given by the monomiah”).
controller. If the output signals include, and x5, then the . )
solvability condition for the DDP for a state-space conol B. Modified DDP with an Open-Loop Controller
u(k) = Fx(k — 1) © v(k), with v(k) = ¢, is not satisfied.  The control of a transition means that the firing may
In other word, if a delay or breakdown has alreadK occurrelde enable or disable, that means, the input date is con-
in a discrete-event system, one cannot remove the delay taslled. Therefore, a control law aims to control the input
breakdown using any controller. Even when we consider thgate of tokens in order to achieve some specifications. A
state feedback controller(k) = Fa(k — 1) © v(k) with  classical specification is to track a trajectory (a refeeenc
v(k) # €, Proposition 2 implies that we have to delay theoutput sequence) while delaying as much as possible the
process same as the disturbance has placed on the systeken input, this strate%y consists in computing the optima
or even more than that. Therefore, the traditional definitiocontrol with regard to the well-known just-in-time criteni.



Fhormall ] letZ(y) € Zmax[7]? br(]e a given referenceI O(ljjtput, % Modified DDP with a Closed-Loop Controller
the problem is to_compute the greatest control, denoted . . - :
= paper a specific design goal is to compute a closed-
Uopt(7) € Zmax[y]? such thatY(y) < Z(3). Among |o0p controller® (i.e., u(k) = Fx(k — 1) & v(k)) in order
the controls which respect the constrairity) < Z(v), to take into account the influence of thé uncontrollable inpu
Uopt () is the greatest,e., the one which delays as much as;. An uncontrollable inpuy; may disable the firing of the
possible the input of the tokens in the graph, this control internal transitions bind t@, through matrixS. Therefore,
minimizes in an optimal manner the sojourn time of tlené‘iFis uncontrollable inpug; may decreased the performance
To formalize the preceding arlguments, the objective Qif the systemj.e., the token output may be delayed, and
the modified DDP using an open-loop controller is to find agome tokens may needlessly wait in the graph since the
open-loop controllet/ () such that, for any initial condition system is blocked. Therefore, the controller design aims to
zp in the state space, the system output will not be disturbeshtain the greatest which avoid the input of useless tokens.
more than the disturbance signal has, i.e. the followinghis means that controllef must be the greatest such that
equation holds for any initial condition: the outputy, (i.e., with the controlu(k) = Fa(k—1)®v(k))
_ 7 7 e be equal to the output without controllere(, with u(k) =
X A BUM @A SQ) © A o v(k%), in other words the control must be neutral with regard
— A'IB (UEV)) Az to the outputj.e,, it must not disturb the system more than
(B | 5] A 2o . . sturb the : e th:
Q) disturbancey does it. From the just-in-time point of view it

N is the best that we can do. o
= AB (QEV ) @A (13) In [7], [18] closed-loop controllers synthesis, in order
_ 7) _ _ to achieve the model matching problem, is addressed. The
V() = CABU(M)®CA'SQMH) ® Cx 0 objective |s(_to com;ayxtg the greatest closed-loop controlle
— = (U - F =~F € (Zmax["] (with U(y) = vFX(v) & V(v)),
= CAB (Q”) ©CA wo. (14 which ensures that outplit(y) < GrofV (v), WhereG,..; €

= qgxp . .
In order to solve for the modified DDP using an op.en-(Zmax[[V]]) is a model to track. This controller leads to
loop controler, then according to Definition 4, the follogin an exact model matching if possible and delays as much

equality has to hold for any initial condition: as possible the input of token while ensuring the constraint
Y () 2 GrefV(y)). I Uly) = 7FX(7) & V(y) =
CA'B (gm) GCAxy = CASQ(y)®CA zy = FX(v)®V (7), then the system equation in Eq. (11) becomes
L N — X() = (A BPIX() @0 BV()®5Q()
ca B (Q(v)) = CASQO) Yoo (19) — (Ao BF)X(y) &0 ® BV(y)® SQ(7)
In other words, the objective of open-loop controller DDP = (AeBF)[B]S] (g@;) @ (A® BF) o
is to characterize the greatest statgy) € ImA B = v

(Ao BF)*B (58;) ®@A®BF) w0 (19)

{Z*E (gg%) | (U(),Q(y)) €U x Q} such that

CX(y) = CA"SQ(7),¥Q(7) € Q = Y(y) = CX(y)=C@A®BF) B (ggg)

— (16)

X A S kereq C, V — —

(X().2"5Q()) € kereq C.¥Q() € © $C(16 B e, 20

This is the greatest stat&(v) € ImA" B ensuring that the ~ o .

output Y'(~) is equal to the one due to the disturbancegvhere B = [B | S]. The objective of the modified DDP

Because we modified the DDP, the solvability of the DDRising a state feedback controller is to fitidy) = FX (v) @

is not an issue anymore because there is always a minima(~) such that the output signals are the same as the output

solutionU () = ¢ to the equality. Moreover, the equation insignals due to the open-loop controlEry) = V(v), and

(16) is also equivalent as the same as the output signals only due to disturbances as
CA BU(y) < CA"SQ(y) <= well. In summary, that is, the following equality holds

U(y) = (CA BACA SQO) = Uaps. )
ThereforeU ().t is the optimal solution to solve the mod- C(A® BF)'B (gg%) ®C(A® B F)*xo
ified DDP for max-plus linear systems. We need to notice
that if the conditionlm CA"S ¢ Im CA"B holds, i.e., if _OA'B (V(w)) © T 20
3L such thatCA"S = CA"BL then the optimal solution QM)
solutionU ()., becomes the solution to the equality = CA"BV () ® CA"SQ(vy) & CA 0, (21)

CA"BU(y)opt = CA B((CA” B)}(CA"BLQ(7)) which can be written as :
=CA BLQ(7) = CA SQ(y) = 18 v ,
CA BU(%)o CA' S =CA BU#)opt- _ — = N
/(o & CA 5Q1) owt- cie BT E(00) =B (00 22)
The equality in (18) means that the same optimal controller o xo,
U(7)opt Can also solve the DDP in Definition 3 with an open-

loop controller, which means finding an open-loop controlleyhere 5 = [B | S | 1d], andId denotes the identity matrix.
such that the disturbance will not affect the system outpUgpig equality has to hold for any initial conditian € X (),

Moreover, the infinite checking of the equivalence relatio - . !
in Eq. (8) is reduced to one checking for the polynomiajj‘i;nqudis\}gg’r%”t%e inpup () and any control/(v). Hence it

equation. Even if the equality is not achieved by the contr
signal U (y)opt, the solution still has sense because it is the —
greatest one which ensures to be as close as the possible the C;(A ©
solution such that outpuit' () is unchanged. (Ao B

F)YB=CA'B «—

B
F)*B,A"B) € kereq C. (23)



The right side of the equivalence shows thatmust be the sgstem equation into the max-plus linear system in
such that the transfer between staf¢y) and control input Eq. (5) where the system matrices are = AfA; =
€

. e 4 6
V(1) QW) o) be equivalent ted” B modulokereq C. cf S 6 e 9
Proposition 4: ([15], [16]) The greatest controllegr such e € 6 13 11 |, B = A{By = 13 16 |, and
that,(Ae BF) " Be |[A'B  is given by e e e ¢ ¢
e € €
F = CA BXCA"B§JA'B. (24) . c e ¢
L = =7 7
Remark 2:Controller F' is the greatest such that §= 455 € € i
€ € €
(A@BF)" BelmA'Bn [Z*E} , The frequency domain representation in (12) has matrix
. _

A = ~A for any initial conditionz,. The transfer function
where ImA'B = {TB V() Q@) xo]t} where V(y) € between the outpudt () and disturbancé)(v) and the input

_ — L o U(~), respectively, are
Zmax[Y]? @nd Q(y) € Zmax[7]"- Indeed, it is sufficient

—

to*note thf\t,*ugng the pi perties of ftar operatiqasp (;gis — (8(6v)" 8(6v)" 1(69)7),
b)* = (a*b)*a” and (ab)*a = a(ba)*, we have (A & CA' B = (14(67)"  17(67)"),
xS ——= (€ = — k= — k= €\ — ——
B F)'B = (A B (g) F) AB =AB ((g) FA B) +in which heach corr}por?entbof these matréc%s is a periolgic
S e series. The example has been computed by using toolbox
clearly (A® B F) B € ImA'B. MinMaxGD, a C++ library allowing to handle periodic series
D. Application to a Manufacturing System as introduced in section IV.A, it can be noted that this lifgra

is also interfaced with Scilab and MATLAB([6]).
According to Proposition 4 and solution (24), the con-

troller is obtained by computing 4" BXxC'A"B#A" B, where
B = B. Therefore, we obtaii’ = CA"BNCA BfA'B =

( —29%(67)" 7*(67)" —13(67)" 7(67)" —2v(67)" )
—=572(67)" —39°(67)" —16(67)" —37(67)* — 5v(67)"

This feedback is not causal because there are negative
coefficients in the matrix, The canonical injection from the
causal elements &,,.x[7] (denoted,ax [Y] ) iN Zmax[7] |

is also residuated (see [7] for details). Its residual isgiv

by Pr (D7 s(k)7v*) = Pjez 5+ (k)" where

sy (k) = { g(kgthiérv\(/ilg;(k)) > (0,0),

Therefore, the greatest causal feedbacKis= Pr(F) =

12(67)" 3% (67)* 29°(67)" 39%(67)" 147(67)"

Fig. 2. System in bold line and controller in dotted line, Figure 2 shows a realization of the controller (bold dotted

(sﬂaded boxes). Ilnes%._ The greatest causal feedback controller can sblkve t
modified DDP for any initial conditions. In order to simulate
the system, we assume for an initial condition = ¢ and

A manufacturing system is illustrated in Fig. 2. Transition the following inputV'(7) is considered

q1,q2 andgs are uncontrollable inputs (distur ances%, which .

delay the parts output of machines. In a manufacturing Viy) = 20 @ +ooy

context, inputsg may represent machine breakdowns, un- v 20 ® +ooy® )

controllable supplies of raw materials. The system eqnatio

can be written as an implicit max-plus linear’equation: It means that6 tokens are avajlable at time¢ =
0. First the system Is assumed to be not disturbed,

(47?(6W)* P(67)7 577(67)" y(67)° 472(6W)*)_

z(k) = Aox(k) ® Aiz(k—1) & Bou(k) & Soq(k), ie, Q(y) = ¢ The system trajectories without con-
y(k) = Cua(k), troller (F = ¢, then U(y) = V(W%} i.e, the open-
e e € € ¢ loop behavior), denoted/,;, X,; and Y,;, are given by
€ € € € € ol = K,*
where the system matrices are = | 7 7 € € € |, X, = A BV
€ € € € € 26 @ 3072 @ 34y* @ +00n®
e e e 4 - & €€ €€ 29 @ 357> @ 41y* © +o007°
c € € 6 ¢ c 9 _ | 36 @42y @ 48y @ 549° & 607" @ 667°
A = e € 6 € €|, Bp = e €|, S = (cont’d.) ® +00v°
coeococ e € ¢ 297@35w2 @ 414° @-i—oo*y;
e € € B 26y @ 30v° @ 34v° P 4ooy
€ e €
e € e|,andC =€ € 1 € €].Wecanrewrite Y, = CA BV
€ ¢ ¢ = 37® 43y ®497% @557 @ 614" ® 671° @ +00r°.



With controllerF, (i.e.U = F X&V) these trajectories,
denotedU.;, X, andY,;, become
Ucl F+Xcl ©® 1%
_ (20® 2992 @ 4172 @ 47v* @ 537° ® +007°
- 20 @ 38+® @ 44+* @ 507° @ +ooy®
(A® BF{)*BV
26 @ 357> @ 47v% @ 53+* @ 59+°
(cont’d.) ® 4008
29 @ 357 @ 47v% @ 537* @ 594°
(cont’d.) ® +o0v®
36 @ 42 @ 48y% @ 547> @ 60v* @ 66+°
(cont’d.) ® +007°
29+ @ 357% @ 477* @ 53+° @ 594°
(cont’d.) ® 400"
26y @ 357% @ 477* @ 53+° @ 594°
(cont’d.) ® +o00y”

Xcl

Ycl

CXcl
37 @® 43y ® 4972 & 5572 @ 619* @ 674° @ +00r®

Clearly, the output trajectories are equa} = Y,; and
Ua = Uy, Xa = X, 1., controller F is neutral in

regards to the output, but delay as much as possible th[%]

tokens input.

In a second step, the system is assumed to be disturbed,

with Q = gg 8573 g)t. Entry Q> = 853 means that
the fourth

processed and this breakdown lasts until tBheThe system
trajectories without controller{ = V), denotedU,;q, Xoiq
andY,,,, become

Ustg 1%
Xoig A'BV @ A°SQ
26 @ 302 @ 347" ® +oor’
29 @ 357 ® 857% @ 919° ® +009°
36 @ 42 @ 4872 © 927 @ 98y @ 104~
(cont’d.) @ 40078
297 @ 35v% @ 857* @ 917° @ +00n”
267 @ 307° @ 3475 ® coy”

and Yolq CXolq
37 @ 437 @ 492 @ 937> @ 99v* @ 105+°

@+00fy6.

Obviously, this machine breakdown delays the firing of

transitionsz, and z3, indeed Xy, = X, and Yy, = Y.

With controller 'y, these trajectories, denotéd.,, X,
andY,, become
Uclq - F+Xclq b v
_ (209299 @ 419° @ 479" © 857° @ +o00r®
- 20 @ 38* @ 444" ® 507 ® +ooy° '
(A® BF{)*BV ® (A® BF1)*SQ
26 @ 3572 ® 477 @ 53¢* @ 914°
(cont’d.) @ +o00y®
29 @ 3572 @ 857° @ 917° ® +007°
36 @ 427 @ 4872 © 927 @ 98y @ 104~
(cont’d.) @ +oov® ’
29y @ 35v% @ 857* ® 91+° @ +-007°
26y @ 357° @ 477" @ 53+° @ 914°
(cont'd.) ® +ooy”

Xclq

and Yclq CXClq )
37 @ 43y ® 497 @ 937 @ 999! @ 105+°

@ + ocon’.

The outputY,, = Y4, i.e, the controller £, does not
disturb the system, nevertheless;, ~ X, and Uy, >

th firing occurs at time35. This may represents
a machine breakdown occurring after the third part be

V. CONCLUSION

This paper reports upon recent investiPations on the dis-
turbance decoupling problem for max-plus linear systems
as well as the corresponding solvability conditions and
controller synthesis procedures. Future research diresti
along the geometric control of max-plus linear systems are
block decoupling problem and model matching problem.
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Uqiq this means that the tokens input is delayed. Furthermore
this is done in an optimal manner, then the input of useless
tokens is avoid.



