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Abstract— This paper presents a sufficient condition to solve
the observation problem in tropical linear event-invariant
dynamical systems, where a linear functional of the states can be
observed in a finite number of steps using only the information
from inputs and outputs. Using the residuation theory, this
solvability condition can be easily implemented in polynomial
time. Moreover, the main results are applied to state feedback
control using only the observed states based on the measure-
ments of the original states in the system. Furthermore, the
main results are implemented in the perturbation observation
problem for tropical linear event-invariant dynamical systems,
where the system matrices are perturbed in intervals.

I. INTRODUCTION

A. State of the art

Control theory for linear time invariant systems (time
sampled, in this case)

x[k + 1] = Ax[k] +Bu[k] (I.1)

was largely studied. Their results, based in strong and elegant
concepts of linear algebra, are ubiquitous in curricular grades
of system engineers. Its importance is undoubtable, either
being a direct application or as a basis for more general
results (non-linear theory).

Some discrete event systems, specifically Timed Event
Graphs (a subclass of Petri nets in which all places have
a single transition upstream and a single one downstream,
see [1]), TEGs henceforth, admits a representation in state
space curiously similar to the one in Equation (I.1) when
the timings are event-invariant (that is, the timing of the
transitions/places never change with each firing)

x[k + 1] = Ax[k]⊕Bu[k] (I.2)

in which xi[k], ui[k] represent the time of the kth firing of the
ith transition of state and controller, respectively. However, in
the context of Equation (I.2), the matricial sums and products
are performed in a different algebra, the so-called Tropical
Algebra 1.
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1Also known as Max-Plus Algebra. The algebra received this name in
the honor of the hungarian-born brazilian Imre Simon, who introduced it in
order to solve a problem in formal languages (see [2]).

Recently, a significative effort was put in the pursuit of
a solid theory for tropical linear event-invariant dynamical
systems as in Equation (I.2). Due to the peculiar structure
of the Tropical Algebra, few results of the well developed
conventional linear dynamical system theory can be easily
transposed for this new algebra. One important problem is
the one of observability. The observability problem arises
frequently, in particular when it is necessary to implement
a state feedback controller u[k] = Fx[k] and not all states
are measured. The alternative is to design a state feedback
control u[k] = F x̂[k] using the observation of the state x.
In the case of traditional systems, this problem is very well
understood, but in the tropical setting it is not the case.

To the authors’ knowledge, only two papers studied
problems related to observability in tropical setting. [3]
construct an observer for a descriptor system (which can
model uncertainties in the parameters). Hence, given that the
initial condition of the system x[0] is known, it is possible to
discover at a given step k all the possible values of the state
x[k] that could be reached by the system with uncertainties.
The second one, [4], used transfer series methods to construct
a Luenberger-like observer that reconstructs the greatest state
estimation x̂[k] that is less than or equal to the real state x[k].

This paper is interested, specifically, in the following
problem (it will be posed formally latter): using only the
system outputs y[k] and inputs u[k], construct a sequence
x̂[k] that converges in a finite number of steps to a linear
functional Wx[k], for a given matrix W , no matter what
the initial condition x[0] of the system is. In principle, the
approach described in [4] could be used: observing x[k] and
then computing Wx[k]. However, the conditions that ensure
strict equality can be quite restrictive. Computing the form
Wx[k] indirectly, as it will be proposed in this paper, can
be handy.

As it will be clear, using only the measurements of the
inputs and output, this formulation is crucial for solving a
class of control problems in tropical setting. For instance,
the main results are applied to state feedback control using
only the observed states based on the measurements of the
original states in the system. Furthermore, the main results
are implemented in the perturbation observation problem for
tropical linear event-invariant dynamical system, where the
system matrices are perturbed in intervals.

B. Definitions

Tropical Algebra is the idempotent semiring (or dioid)

Tmax ≡ {Z ∪ {−∞} , ⊕ ,⊗} (I.3)



in which ⊕ is the maximum and ⊗ is the traditional sum. It
is usual, as well, to denote the neutral element of the sum,
−∞, as ⊥. As in the traditional algebra, the symbol ⊗ is
usually omitted.

The tropical identity matrix of appropriate order is denoted
by I . ◦\, ◦/ are used to denote the left and right residuation
of the product, respectively:

M◦\N =
⊕
{X|MX � N} and

N◦/M =
⊕
{X|XM � N} .

+ and − will have their usual meaning (traditional sum
and subtraction/opposite) while · is the traditional product.
MT is the transpose of M . For a natural number n and
a square matrix M , Mn (the nth power of M ) is defined
recursively as M0 ≡ I and Mn =MMn−1. If α is a scalar
6=⊥, α−1 ≡ −α. The Kleene Closure of a square matrix M is
defined as M∗ =

⊕∞
i=0M

i. ρ(M) is the largest eigenvalue
of M . It is also defined a matrix composed entirely of ⊥ as
⊥. If M is a matrix, the entry on the ith row and jth columns
is denoted as Mij or {M}ij , whichever is more convenient.
The dimension of the matrices will only be specified when
necessary. All vectors are column vectors and written in bold,
but the bold font is dropped when indexing (so xi is the
ith component of the vector x). Im{M} is the semimodule
generated by linear combinations of the columns of M .

II. THE PROBLEM

A. Problem Statement

Consider the system

S : x[k + 1] = Ax[k]⊕Bu[k];

y[k] = Cx[k] (II.1)

for A ∈ Tn×n
max , B ∈ Tn×m

max , C ∈ Td×n
max . For a given matrix

W ∈ Ts×n
max , using the inputs u[k] and outputs y[k], construct

a sequence s[k] such that there exists a finite l in which
s[k] =Wx[k] ∀k ≥ l.

It is worthy mentioning that the usual observation problem
takes W = I . However, the choice of another matrix can
substantially weaken the problem. As it will be shown in the
application section, sometimes it is sufficient to observe only
a linear functional of the states, not every one of them (the
aforementioned choice W = I).

B. Methodology

This problem obviously arises when one tries to implement
a feedback controller Fx[k] (set W = F ) using only
the outputs and inputs. This paper will present a sufficient
condition for solving this problem. For that, it is necessary
the following definition, borrowed from the traditional linear
system theory.

Definition 2.1: (Controllability and observability matrix)
For a given system S as in Equation (II.1) and a natural
number r, the rth controllability matrix CS[r] ∈ T(r+1)×n·m

max

is defined recursively as

CS[r] ≡
(
ACS[r − 1] B

)
(II.2)

in which CS[0] ≡ B. The rth observability matrix, OS[r] ∈
T(r+1)·d×n
max , is defined recursively as

OS[r] ≡
(

C
OS[r − 1]A

)
(II.3)

in which OS[0] ≡ C. �
Notice that the controllability matrix in Equation (II.2) is

in reverse order compared to the controllability matrix in
traditional linear time-invariant systems, purely for compu-
tational purpose in this paper. It will not affect the properties
of the controllability.

In the traditional algebra setting, if A ∈ Rn×n then
(for the analogous rth controllability matrix) Im{CS[r]} =
Im{CS[n − 1]} ∀r ≥ n. An analogous result holds for the
observability matrix. These affirmations are true because
the Cayley-Hamilton Theorem guarantees that An can be
written as a linear combination of the previous powers Ai,
i = 0, 1, 2, ..., n − 1. In the tropical setting, this is not the
case. Indeed, it can be that Im{CS[r]} ⊂ Im{CS[r+1]} (note
the strict inclusion) for all r (see [2]).

And then, two definitions are necessary.
Definition 2.2: (H matrix) For a given system S as in

Equation (II.1) and a natural number r, the H matrix,
HS[r] ∈ T(r+1)·d×r·m

max , is defined recursively as

HS[r] ≡
(
HS[r − 1] ⊥
CCS[r − 1]

)
(II.4)

with HS[0] = (∅). �
Definition 2.3: (Extended vector) For an integer k and

a natural number r, the vector û[r, k] ∈ Tr·m
max is defined

recursively as

û[r + 1, k] = (û[r, k]T u[k + r + 1]T )T (II.5)

with û[0, k] = u[k]. �
Then, the following lemma must be derived.
Lemma 2.1: (Iterated equation) Consider a system as in

Equation (II.1). Then, for any real r

x[k + r + 1] = Ar+1x[k]⊕ CS[r]û[r, k]. (II.6)
Proof: The lemma is verified easily by r iterations of

Equation (II.1).
Then, the principal result of this paper can be stated.
Proposition 2.1: (Steady state observer) If there is a nat-

ural number r and a matrix R = (R[0] R[1] ... R[r]) ∈
Ts×(r+1)·d
max such that the system of equations

(i) : WAr+1 = ROS[r];

(ii) : WACS[r − 1] = RHS[r] (II.7)

(with CS[−1] ≡ (∅)) has a solution, then the proposed
problem in Subsection II-A has a solution with l = r + 1
and

s[k + 1] =WBu[k]⊕
r⊕

i=0

R[i]y[k − r + i]. (II.8)

Proof:
For simplicity, the proof is split in three parts.



Part I: According to Equation (II.7)-(i)

WAr+1 =

r⊕
i=0

R[i]CAi. (II.9)

Post multiply by x[k]

WAr+1x[k] =

r⊕
i=0

R[i]CAix[k]. (II.10)

Add WCS[r]û[k, r] in both sides

WAr+1x[k]⊕WCS[r]û[k, r] =
r⊕

i=0

R[i]CAix[k]⊕WCS[r]û[k, r]. (II.11)

Factoring the matrix W at the left and using Lemma 2.1,
one can obtain

Wx[k + r + 1] =

r⊕
i=0

R[i]CAix[k]⊕WCS[r]û[k, r] =

R[0]y[k]⊕
r−1⊕
i=0

R[i+ 1]CAi+1x[k]⊕WCS[r]û[k, r]

(II.12)

in which in the right the sum from i = 0 to r is split in the
value for i = 0 and a sum from i = 1 to r, and the latter is
reposed as a sum from i = 0 to r − 1.

Part II: Now consider Equation (II.7)-(ii), which reads as

WAr−jB =

r−1⊕
i=j

R[i+ 1]CAi−jB , j = 0, 1, ..., r − 1.

(II.13)
Post multiply by u[k + j] and sum the resulting equation

for j = 0, 1, ..., r−1. Finally, add WBu[k+r] in both sides
to arrive in

r−1⊕
j=0

WAr−jBu[k + j]⊕WBu[k + r] =

WBu[k + r]⊕
r−1⊕
j=0

r−1⊕
i=j

R[i+ 1]CAi−jBu[k + j]. (II.14)

After factoring the matrix W , use Lemma 2.1 in the left
side to conclude that

WCSû[k, r] =

WBu[k + r]⊕
r−1⊕
j=0

r−1⊕
i=j

R[i+ 1]CAi−jBu[k + j]. (II.15)

Exchange the order of summation using the rule⊕r−1
j=0

⊕r−1
i=j f(i, j) =

⊕r−1
i=0

⊕i
j=0 f(i, j)

WCSû[k, r] =

WBu[k + r]⊕
r−1⊕
i=0

i⊕
j=0

R[i+ 1]CAi−jBu[k + j] =

WBu[k + r]⊕
r−1⊕
i=0

R[i+ 1]C

 i⊕
j=0

Ai−jBu[k + j]

 =

WBu[k + r]⊕
r−1⊕
i=0

R[i+ 1]CCS[i]û[i, k]. (II.16)

Part III: Using the result obtained in Equation (II.16) in
Equation (II.12)

Wx[k + r + 1] =

R[0]y[k]⊕
r−1⊕
i=0

R[i+ 1]CAi+1x[k]⊕WCS[r]û[k, r] =

WBu[k + r]⊕R[0]y[k]⊕
r−1⊕
i=0

R[i+ 1]CAi+1x[k]⊕
r−1⊕
i=0

R[i+ 1]CCS[i]û[i, k] =

WBu[k + r]⊕
r⊕

i=0

R[i]C(Ai+1x[k]⊕ CS[i]û[i, k]) =

WBu[k + r]⊕
r⊕

i=0

R[i]y[k + i] (II.17)

in which Lemma 2.1 was used.
Based on the iterations of s[k + 1] in Equation (II.8), if

one replaces the (k+1)th by the (k+r+1)th iteration, then
one obtains the following equality:

s[k + r + 1] = WBu[k + r]⊕
r⊕

i=0

R[i]y[k + i]

= Wx[k + r + 1], due to (II.17).

This means for any k ≥ r+1, the equality between s[k] and
Wx[k] holds. And the proposition is proved.

It is important to stress that Equation (II.7) can be written
in matricial form as

W
(
Ar+1 ACS[r − 1]

)︸ ︷︷ ︸
U

= R
(
OS[r] HS[r]

)︸ ︷︷ ︸
V

(II.18)

which is an equation of the form WU = RV , with U, V,W
known and R unknown. It is a well known fact that this kind
of equation has solution if and only if ((WU)◦/V )V =WU
and that in this case R = (WU)◦/V is the greatest solution
(see [1]). Thus, the sufficient condition can be checked (and
the parameters R computed) very easily in polynomial time.
The observer will need initial conditions y[−1],...,y[−(r +
1)] and u[−1]. These initial conditions can be any vectors,
because in at most r steps the correct value of Wx[k] is
recovered.



III. APPLICATION: FEEDBACK CONTROL

A. Methodology

As mentioned, one of the possible (and perhaps the
main) applications of the proposed methodology is in the
implementation of a state feedback control law of the form
u[k] = Fx[k] in situations in which the matrix controller
F is known (previously designed) but the state x[k] is not.
In this case, the problem can be overcome by estimating
the amount Fx[k]. So this problem can be easily recast as
the (generalized) observation problem presented by choosing
W = F . However, the observer takes some iterations to
achieve the correct value and this implies perturbations in
the system. Hence, in order to the proposed methodology
to be useful, the feedback controller must be robust in the
sense that it can reject any kind of eventual perturbations. In
principle, the implementation of the observer could degrade
the controller performance, and this is much as true as larger
is the value of r in Equation (II.7). This will be, indeed,
observed in simulations.

In order to illustrate the methodology, consider the prob-
lem considered in [5] which models a small traffic light. The
matrices A and B are (see Figure 1, refer to [1] to see how to
write the dynamics of a TEG as a tropical linear dynamical
system)

x1 x2

x3 x4

u1 u2

u3 u4

y10

0

0 0

0

4 545 7

0

20

28

20

28

20 20

28

22

Fig. 1. The TEG for a small traffic light. In green, the implementation of
the output feedback controller.

A =


0 ⊥ 5 ⊥
10 0 15 7
4 ⊥ 9 ⊥
15 5 20 12

 , B =


0 ⊥ ⊥ ⊥
10 0 ⊥ ⊥
4 ⊥ 0 ⊥
15 5 ⊥ 0

 .

(III.1)
The constraint is

x[k] =


0 −15 −15 −30
10 0 −5 −15
6 −11 0 −26
15 5 0 0


︸ ︷︷ ︸

D

x[k]. (III.2)

Using the methodology proposed in [5], it can be shown
that the controller u[k] = Fx[k] = µζTx[k] with

µ = (5 11 11 11)T ;

ζ = (0 0 0 0)T (III.3)

solves the problem robustly: for any initial condition x[0],
in at most one step the system complies with the desired
constraints. Even if there is an arbitrary perturbation in the
state (eventually driving x[k] out of the constraint semimod-
ule), the controller will eventually drive the system back
again to the required specifications. This happens because,
due to the fact that the matrices A,B do not depend on k
(event invariance), one can consider the evolution from the
perturbed state as a new evolution, of the same system, but
with a new initial condition which is exactly this perturbed
state. Since the convergence is guaranteed for any initial
condition, eventually the system will converge again to the
desired set.

All the controllers presented in [5] can be factored in
the form F = µζT for vectors µ and ζ. This factorization
is highly proficuous for the proposed methodology. Indeed,
using this feedback

x[k + 1] = Ax[k]⊕ (Bµ)(ζTx[k]) (III.4)

Let b ≡ Bµ then

x[k + 1] = Ax[k]⊕ b(ζTx[k]). (III.5)

This implies that in order to implement this controller one
can consider a new system with the same matrix A and the
matrix B replaced by the vector b. In this new system the
control input v[k] is scalar, and the original controller can
be recovered if v[k] = ζTx[k]. This implies that it is only
necessary to observe a scalar functional ζTx[k] in this new
system.

Suppose one only observes x2[k], that is C = (⊥ 0 ⊥
⊥) and y[k] = x2[k] (see Figure 1). Then, the task is
to implement the state feedback controller using only the
outputs and the inputs. To this end, it is possible to solve
Equation (II.7) (or equivalently Equation (II.18)), for the
reduced system (with A and b) for r = 1, and obtain
(R[0] R[1]) = (17 17). Hence ζTx[k] can be observed as

s[k + 1] = 20v[k]⊕ 17y[k]⊕ 17y[k − 1] = 20v[k]⊕ 17y[k]
(III.6)

since y[k] � y[k − 1]. As the control input will be chosen
as ζTx[k], v[k] = s[k] and hence one has the dynamical
equation for the control action of the reduced system



v[k + 1] = 20v[k]⊕ 17y[k] (III.7)

in which the initial conditions v[−1] and y[−1] can be
chosen in an arbitrary manner. Therefore, post-multiplying
both sides of Equation (III.7) by µ, it is easy to see that the
control input u[k] = µv[k] of the original system can be
computed according to the dynamical equation

u[k + 1] = 20u[k]⊕


22
28
28
28

 y[k] (III.8)

in which the initial conditions u[−1] and y[−1] can be
chosen in an arbitrary manner. See Figure 1 for the imple-
mentation.

B. Simulation

The performance of both the state feedback controller
and output controller will now be tested and compared.
For fairness, in both cases the same initial condition was
considered and the same perturbations were inflicted in them.
21 steps were simulated (from k = 0 to k = 20).

The perturbations are
• At k = 4, a delay of 20 time units was added at x1 and

15 time units at x3;
• At k = 9, a delay of 12 time units was added at x2 and

20 time units at x4;
• At k = 14, a delay of 8 time units was added at x1 and

30 time units at x2.
Consider the initial condition

x[0] = (11 27 15 32)T (III.9)

chosen at random in Im{A} (so it is feasible). The initial
conditions u[−1], y[−1] were chosen as ⊥. In Figure 2,
it is possible to see the average error from the constraint
set (ê[k] = 1

4

∑4
i=1 ei[k] in which e[k] = Dx[k] − x[k]).

One can see that, clearly, the insertion of the observer
degrades slightly the performance of the controller, since
instead of only one step it takes two steps to totally reject
the perturbation.

IV. APPLICATION: PERTURBATION OBSERVATION
PROBLEM

A. Methodology

Now, a problem of observation discussed in [3] and in
[6] (the latter using the methodology proposed in [4]) will
be discussed. It concerns a flowshop system for which the
dynamics are modeled in the form x[k + 1] = Ax[k] (no
control inputs) and an output y[k] = Cx[k] is observed.
Some timings of the system lie in an interval, and the
challenge is to develop an observer with the outputs that
is able to retrieve the perturbed states.

The matrices are (see Figure 3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−2

0

2

4

6

8
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Fig. 2. Average error at each step. Yellow for the state feedback and green
for the output feedback.

A =



⊥ ⊥ 4 ⊥ ⊥ ⊥ 2 ⊥ ⊥
[1 7] ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 3 ⊥
⊥ 5 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 1
4 ⊥ ⊥ ⊥ ⊥ 3 ⊥ ⊥ ⊥
⊥ [3 5] ⊥ [1 3] ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ 5 ⊥ 4 ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ 4 ⊥ ⊥ ⊥ ⊥ 3
⊥ ⊥ ⊥ ⊥ 3 ⊥ 5 ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ 2 ⊥ 4 ⊥


;

(IV.1)

C =

 ⊥ ⊥ 0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ 0 ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 0 ⊥

 (IV.2)

with the intervals, so for instance the entry A21 can be any
number between 1 and 7. As pointed by [6], perturbations
in the matrix entries can be interpreted as (tropical) additive
entries in a system in which a matrix is unperturbed. So,
for instance, the system modeled by x[k] = Ax[k], in which
some entries are in an interval, can be written as

x[k + 1] = Ax[k]⊕ Pp[k];
y[k] = Cx[k]. (IV.3)

In which

A =



⊥ ⊥ 4 ⊥ ⊥ ⊥ 2 ⊥ ⊥
1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 3 ⊥
⊥ 5 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 1
4 ⊥ ⊥ ⊥ ⊥ 3 ⊥ ⊥ ⊥
⊥ 3 ⊥ 1 ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ 5 ⊥ 4 ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ 4 ⊥ ⊥ ⊥ ⊥ 3
⊥ ⊥ ⊥ ⊥ 3 ⊥ 5 ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ 2 ⊥ 4 ⊥


; (IV.4)
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Fig. 3. The TEG for the flowshop. In green, the implementation of the
observer for x7[k].

PT =

(
⊥ 0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ 0 ⊥ ⊥ ⊥ ⊥

)
. (IV.5)

The vector p[k] ∈ T2
max can be chosen to achieve per-

turbations in the entry of the matrix (see [6] for details).
Both papers [3], [6] focus in the transition x7[k] so, for
comparison, the problem of observing this transition will
be handled using the proposed methodology. Note that the
system in Equation (IV.3) fits the one considered in Equation
(II.1), with the matrix P playing the role of B and p[k]
of u[k]. The only difference is that, as opposed to u[k],
the perturbation p[k] cannot be measured. However, if one
chooses W = (⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 0 ⊥ ⊥) (it is desirable
to observe only x7[k]) then WP =⊥, and the observer
presented in Equation (II.8) will not require the measure of
p[k].

Solving Equation (II.7) for r = 4, one can obtain R[0] =
(12 19 20), R[1] = (12 7 7), R[2] = (12 7 7), R[3] = (⊥
7 7) and R[4] = (⊥ ⊥ ⊥). Hence

s[k + 1] =12y1[k − 4]⊕ 19y2[k − 4]⊕ 20y3[k − 4]⊕
12y1[k − 3]⊕ 7y2[k − 3]⊕ 7y3[k − 3]⊕
12y1[k − 2]⊕ 7y2[k − 2]⊕ 7y3[k − 2]⊕
7y2[k − 1]⊕ 7y3[k − 1]. (IV.6)

Using the fact that the sequence y[k] is non-decreasing,
some simplifications can be made in Equation (IV.6)

s[k + 1] =19y2[k − 4]⊕ 20y3[k − 4]⊕ 12y1[k − 2]⊕
7y2[k − 1]⊕ 7y3[k − 1] (IV.7)

(see Figure 3 for the implementation) and s[k] = x7[k] for
k ≥ 4 + 1 = 5, regardless which initial conditions y[−5],
y[−4], y[−3], y[−2], y[−1] are chosen for the observer.

V. CONCLUSION

In this paper, a sufficient condition for solving a specific
observation problem is presented. Using the residuation
theory, the observer can be derived very easily in polynomial
time. Applications of the methodology in a feedback control
implementation and observation in perturbed systems are
considered. The authors believe that the conditions presented
in Proposition 2.1 can be weakened, and are working in that
direction.
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