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Chapitre 1

Introduction

This document presents a software toolbox. It aims to handle increasing pseudo-periodic series in se-
miring Max

in [[γ, δ]] introduced by the (max, plus) team of INRIA Rocquencourt (see [Cohen, 1993]). The
algorithms proposed in this software toolbox are initiated in 1992 in the PhD of S. Gaubert and continued
in 1994 during the master of Benoit Gruet [Gruet, 1995]. It is still in evolution in order to be improved
until today. The ancester of this software toolbox was "MAX" (voir http:\\maxplus.org), it was
developed with Maple during the PhD of S. Gaubert [Gaubert, 1992]. The present software toolbox is
developped in C++ language, it is based on an improvement of the algorithms proposed by S. Gaubert
and an extension to some other operations. The C++ library can be interfaced to Scilab and more effi-
ciently with Scicoslab. This toolbox and interfaces are downloadable in the following URL :
http://istia.univ-angers.fr/~hardouin/outils.html.
In this note we focus first on what is the objects considered, namely periodic series, then the algorithm
issues are addressed. The last part is a part dedicated on how to use the C++ library.

Let us recall that a toolbox for (max,plus) calculus developed by INRIA Rocquencourt is also avai-
lable in Scicoslab (see http://www.scilab.org/contrib/).
Contact :
ISTIA/LISA University of Angers,
62 Avenue Notre Dame du lac,
49000 Angers
bertrand.cottenceau@univ-angers.fr
laurent.hardouin@univ-angers.fr
mehdi.lhommeau@univ-angers.fr
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Chapitre 2

Dioid Max
in [[γ, δ]]

This chapter is manly based on ([Cohen et al., 1989, Baccelli et al., 1992, Gaubert, 1992, Gruet, 1995,
Cottenceau, 1999, Abeka, 2005]). Shortly the main facts about Max

in [[γ, δ]] are recalled.

2.1 Dioid B[[γ, δ]]

Set of points in Z2 and its bi-dimensional representation are considered. The idea is to code each
points by two variables γ and δ with exponents in Z. These exponents represent the co-ordinates of the
points, and the set of points is represented by a series of two variables.

Definition 1 (Dioïde B[[γ, δ]]) The dioid of formal power series with boolean coefficients and two va-
riables γ and δ with exponents in Z is denoted B[[γ, δ]]. A formal series of B[[γ, δ]] is written in an unique
manner as follows :

s =
⊕
n,t∈Z

s(n, t)γnδt, (2.1)

with s(n, t) = e ou ε where e (respectively ε) is the unit element (respectively the zero element). B[[γ, δ]]
is a complete semiring.

Definition 2 (Support of a series s) The support of series s is defiend as a part of Z2 sucht that :

Supp(s) = {(n, t) ∈ Z2 | s(n, t) ̸= ε}

2.1.1 Graphical representation of the elements of B[[γ, δ]]

A series s ∈ B[[γ, δ]] is depicted as a collection of points(n, t) in Z2 belonging to the support of
the series. Practically series s = γ2δ3 ⊕ γ3δ4 ⊕ γ5δ8 ⊕ γ6δ5 ∈ B[[γ, δ]] will be depicted by the points
(2, 3), (3, 4), (5, 8) et (6, 5) de Z2. (see Figure 2.1).

2.2 Dioid Max
in [[γ, δ]]

In order to take the non decreasing specificity of trajectory into account, are considered only series
which are invariant according to the product by γ∗ (increasing according to the event) and the product
by (δ−1)∗ (increasing according to time). Hence, only increasing series of B[[γ, δ]] are considered, it is a
subdioid denoted Max

in [[γ, δ]].
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FIGURE 2.1 – Graphical representation of a series s in B[[γ, δ]].

Theorem 1

1. Max
in [[γ, δ]] is a dioid corresponding to a quotient dioid, by considering the congruence

{X1(γ, δ)R(γ,δ)X2(γ, δ)} ⇐⇒ {γ∗(δ−1)∗X1(γ, δ) = γ∗(δ−1)∗X2(γ, δ)}

2. Each class of the quotient dioid B[[γ, δ]]/R(γ,δ)
admits a greatest element in Max

in [[γ, δ]].

Property 1 Dioid Max
in [[γ, δ]] is a complete and distributive dioid with a neutral element for the ⊕ ope-

rator, namely ε = ε(γ, δ) (the null series in B[[γ, δ]]) and a neutral element for the ⊗operator, namely
e = (γ ⊕ δ−1)∗.

Example 1 Let s1 et s2 be series in B[[γ, δ]] defined as follows

s1 = γ2δ3 ⊕ γ3δ2 ⊕ γ5δ6,

s2 = γ2δ3 ⊕ γ5δ6.

The computation of (γ∗(δ−1)∗)s1 is detailed below

(γ∗(δ−1)∗)s1 = (e⊕ γ1 ⊕ γ2 ⊕ γ3 ⊕ . . .)(e⊕ δ−1 ⊕ δ−2 ⊕ δ−3 ⊕ . . .)(γ2δ3 ⊕ γ3δ2 ⊕ γ5δ6)
= (e⊕ γ1δ−1 ⊕ γ1δ−2 ⊕ γ1δ−3 ⊕ . . .⊕ γ2δ−1 ⊕ γ2δ−2 ⊕ γ2δ−3 ⊕ . . .)(γ2δ3 ⊕ γ3δ2 ⊕ γ5δ6)
= (γ∗(δ−1)∗)(γ2δ3 ⊕ γ5δ6)
= (γ∗(δ−1)∗)s2.

Clearly, this leads to (γ∗(δ−1)∗)s1 = (γ∗(δ−1)∗)s2 = (γ∗(δ−1)∗)(γ2δ3 ⊕ γ5δ6), hence series s1
and s2 belong to the same equivalence class in B[[γ, δ]]/R(γ,δ). Furthermore (γ∗(δ−1)∗)(γ2δ3 ⊕ γ5δ6) is
the greatest element of this class in B[[γ, δ]].
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FIGURE 2.2 – Graphical representation of series • ≡ s1 ◦ ≡ (γ∗(δ−1)∗)s1

2.2.1 Graphical representation of element in Max
in [[γ, δ]]

The graphical representation of element of Max
in [[γ, δ]] is based on the one in B[[γ, δ]]. Graphically,

for monomial γnδt, it is not the point (n, t) which is considered but the "south-east" cone having (n, t)
as vertex. (see figure 2.2)

Maximal representative Dioids Max
in [[γ, δ]] and B[[γ, δ]]/R(γ)∗(δ−1)∗ are isomorphic. In other

words, ∀a ∈ Max
in [[γ, δ]] the following equality holds a = (γ∗(δ−1)∗)a and (γ∗(δ−1)∗)a is the maximal

representative of the equivalence class of a in B[[γ, δ]]. Graphically in in Z2, it corresponds to the set of
all points belonging to the south-east cone.

Example 2 (Maximal representative) Let s = γ1δ3 ⊕ γ2δ2 ⊕ γ2δ4 ⊕ γ4δ3 ⊕ γ4δ6 ⊕ γ5δ8 ⊕ γ6δ7 ⊕
γ7δ8 ⊕ γ8δ9 be a series in Max

in [[γ, δ]].
It can be check that it is equal to the following one :

γ1δ3 ⊕ γ2δ4 ⊕ γ4δ6 ⊕ γ5δ8 ⊕ γ8δ9

i.e. these both series are in the same equivalence class. The maximal representative of s is given by

(γ∗(δ−1)∗)(γ1δ3 ⊕ γ2δ4 ⊕ γ4δ6 ⊕ γ5δ8 ⊕ γ8δ9).

it is given in Figure 2.3.

Minimal Representative As seen previously all element in Max
in [[γ, δ]] admits a maximal repre-

sentative in B[[γ, δ]]. Dually a minimal representative can be associated to each element. Especially for
polynomial a minimal representative can be obtained by considering only the monomials corresponding
to the vertices of the union of cones.

Example 3 (Minimal representative) Let s = γ1δ4⊕ γ2δ2⊕ γ5δ6⊕ γ6δ3 a polynomial of Max
in [[γ, δ]],

the element γ∗(δ−1)∗(γ1δ4 ⊕ γ5δ6) is the maximal representative (graphically it corresponds to the
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FIGURE 2.3 – Maximal representative of series s = γ1δ3⊕γ2δ2⊕γ2δ4⊕γ4δ3⊕γ4δ6⊕γ5δ8⊕γ6δ7⊕
γ7δ8 ⊕ γ8δ9.

union of the two cones having the following vertices (1, 4) and (5, 6). On the other hand (γ1δ4 ⊕ γ5δ6)
is the minimal representative (only the two vertices are considered ).
The minimal representative of s is given in Figure 2.4.

2.3 Monomials in Max
in [[γ, δ]]

As said previously a monomial γnδt represents the south-east cone with vertex (n, t). (see Figure 2.2)

Remark 1 The following notation will be used for the bottom and the top element of Max
in [[γ, δ]] : ε =

γ+∞δ−∞ et ⊤ = γ−∞δ+∞.

From previous definition the operations of addition, product, infimum, can be given in Max
in [[γ, δ]].

1. The sum of two monomials γnδt and γn
′
δt

′
corresponds to the union of the "south-east" cones

having (n, t) and (n′, t′) as vertex. Hence, the sum of two monomials is a polynomial with two
monomials, except if n ≤ n′ and t ≥ t′.

2. The product of two monomials γnδt and γn
′
δt

′
corresponds to the cone having (n+ n′, t+ t′) as

vertex.

3. l’inf of two monomials γnδt and γn
′
δt

′
is represented by the intersection of the "south-east" cone

the vertices of which is max(n, n′) and min(t, t′).
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FIGURE 2.4 – The maximal representative (grey zone) and the minimal representative (vertices) (γ1δ4⊕
γ5δ6)
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FIGURE 2.5 – Graphical representation of the monomials operation in Max
in [[γ, δ]]

By recalling that a semiring is a lattice with an order relation defined as follows :

a⊕ b = a ⇔ a ≽ b ⇔ a ∧ b = b,

the following rules are easy to establish for monomials in Max
in [[γ, δ]] :

orderrelationmonomialsγnδt ≼ γn
′
δt

′ ⇔ n ≥ n′ and t ≤ t′ (2.2)
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γnδt ⊕ γn
′
δt

′
= γmin(n,n′)δt (2.3)

γnδt ⊕ γnδt′ = γnδmax(t,t′) (2.4)

γnδt ∧ γn
′
δt

′
= γmax(n,n′)δmin(t,t′) (2.5)

γnδt ⊗ γn
′
δt

′
= γn+n′

δt+t′ . (2.6)

2.4 Operations over polynomials in Max
in [[γ, δ]]

Definition 3 A polynomial in Max
in [[γ, δ]] is defined as the sum of m monomials.

p =
m⊕
i=1

γniδti

Polynomial can be given in a canonical form corresponding to its minimal representative.

p = γn1δt1 ⊕ γn2δt2 ⊕ ...⊕ γnmδtm

with n1 < n2 < ... < nm and t1 < t2 < ... < tm, i.e. only non comparable monomials are in the
polynomial.

2.4.1 Sum of two polynomials in canonical form

p⊕ p′ =

m⊕
i=1

γniδti ⊕
m′⊕
j=1

γn
′
jδt

′
j

The polynomials are assumed to be in canonical form, i.e, the monomials are sorted in each polynomial.
The result is given under the canonical form. It is obtained by merging the two polynomials according to
the order relation ??. The complexity is given by O(m+m′).

2.4.2 Product of two polynomials in canonical form

p⊗ p′ =
m⊕
i=1

m′⊕
j=1

γni+n′
jδti+t′j

The polynomials are assumed to be in canonical form, i.e, the monomials are sorted in each polynomial.
The result is given under the canonical form. This product needs (mm′) products of monomials. Then, it
is necessary to merge m polynomials composed with m′ monomials (sum of m polynomials, each being
composed with m′ monomials ), this can be done with the following complexity O(m′m/2 log(m)). It
could be judicious to permute p and p′ before to proceed to this computation.

2.4.3 Operation ∧ between two polynomials in canonical form

p ∧ p′ =

m⊕
i=1

(γniδti ∧ p′) =

m⊕
i=1

m′⊕
j=1

γmax(ni,n
′
j)δmin(ti,t

′
j)
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FIGURE 2.6 – Illustration of a practical trick to improve computation efficiency of the operation ∧ bet-
ween a monomial and a polynomial γ2δ4 ∧ (γ2δ3 ⊕ γ3δ4 ⊕ γ6δ5 ⊕ γ8δ7) = γ2δ3 ⊕ γ3δ3

The polynomials are assumed to be in canonical form, i.e, the monomials are sorted in each polyno-
mial. The result is given in canonical form. This operation needs (mm′) operation ∧ between mono-
mials. Then, it is necessary to merge m polynomials composed with m′ monomials (sum of m poly-
nomials, each being composed with m′ monomials ), this can be done with the following complexity :
O(m′m/2 log(m)). It could be judicious to permute p and p′ before to proceed to this computation.

Remark 2 Generally, by computing γniδti ∧ p′ =
m′⊕
j=1

γmax(ni,nj′ )δmin(ti,tj′ ) it is not necessary to com-

pute until j = m′. Indeed if min(ti, t
′
j) = ti it is useless to continue the computations. This trick doesn’t

modify the complexity (the worst case has to be considered) but, practically, it increases greatly the
algorithm efficiency. Figure 2.6 illustrates this trick.

2.5 Periodical series in Max
in [[γ, δ]]

Definition 4 (Periodical series) A periodical series in Max
in [[γ, δ]] can be written in the following form

s = p⊕ qr∗

where p and q are polynomials and r is a monomial. In the next the following notations are considered :

p =

m⊕
i=1

γniδti , q =

l⊕
j=1

γNjδTj and r = γνδτ .

In this work r is assumed to be causal, that is ν ≥ 0 and τ ≥ 0, or r = ε.

Definition 5 (Asymptotic slope) The asymptotic slope of series s is defined as

σ∞(s) = ν/τ.
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FIGURE 2.7 – Graphical representation of series s = p⊕ qr∗ = e⊕ γδ⊕ γ4δ3 ⊕ (γ5δ5 ⊕ γ7δ6)(γ4δ3)∗.

Definition 6 (Proper Representation) A series s is under a proper form if

(nm, tm) < (N1, T1) and (Nl, Tl)− (N1, T1) < (ν, τ).

Definition 7 A proper form s = p⊕ qr∗ is said simpler than an other proper form s = p′ ⊕ q′r′∗ if

(nm, tm) ≤ (n′
m, t′m) and (ν, τ) ≤ (ν ′, τ ′).

Theorem 2 A periodical series s admits a simpler representation. This simpler representation is the
canonical form of the series s.

2.5.1 Sum of periodic series

s⊕ s′ = (p⊕ qr∗)⊕ (p′ ⊕ q′r′∗)

The algorithms used to develop the operations over periodic series are mainly based on the handling
of simple elements which are specific series with the following form :

s = γnδt(γνδτ )∗.

Lemma 1 (Domination ) This lemma is rewritten from the Lemma 4.1.4 in [Gaubert, 1992].
Let s = γnδt(γνδτ )∗ and s′ = γn

′
δt

′
(γν

′
δτ

′
)∗ be two simple elements, the asymptotic slopes of which

are assumed not equal, i.e., ν/τ ̸= ν ′/τ ′. If σ∞(s) = ν/τ < σ∞(s′) = ν ′/τ ′ then it exists an integer
K ∈ N such that

γn
′
δt

′
γKν′δKτ ′(γν

′
δτ

′
)∗ ≼ γnδt(γνδτ )∗. (2.7)

Proof : We can write
γnδt(γνδτ )∗ =

⊕
i≥0

γn+iνδt+iτ
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and
γn

′
δt

′
γKν′δKτ ′(γν

′
δτ

′
)∗ =

⊕
j≥K

γn
′+jν′δt

′+jτ ′ .

Hence, it exists a positive integer K such that inequality (2.7) holds if and only if

x ∈ N,∀x ≥ K, ∃y ∈ N such that
{

n′ + xν ′ ≥ n+ yν
t′ + xτ ′ ≤ t+ yτ

or in other way

∀x ≥ K, ∃y ∈ N such that
n′ + xν ′ − n

ν
≥ y ≥ t′ + xτ ′ − t

τ
. (2.8)

Such integer y ∈ Z exists if (
n′ + xν ′ − n

ν

)
−

(
t′ + xτ ′ − t

τ

)
≥ 1

which holds for a sufficiently large x, for example,

x ≥
⌈
ν(t′ − t) + τ(n− n′) + ντ

τν ′ − ντ ′

⌉
où ⌈a⌉ ∈ Z represents the smallest integer greater than a ∈ Q. Furthermore, y must be positive which is
ensured, according to (2.8) if

n′ + xν ′ ≥ n,

then in particular if

x ≥
⌈
n− n′

ν ′

⌉
.

To conclude, since K must be positive, it is sufficient to consider

K = max

(⌈
ν(t′ − t) + τ(n− n′) + ντ

τν ′ − ντ ′

⌉
,

⌈
n− n′

ν ′

⌉
, 0

)
(2.9)

to ensure that the domination given in Lemma 1 holds. �

This Lemma is illustrated in Figure 2.8. The computaiton of this integer K is then worth of interest since
it represents from when series s is definitively above series s′. In Figure 2.8, the smallest K respecting
Lemma 1 is K = 3.

Remark 3 It must be noticed that K given by expression (2.9)is not necessarily the smallest positive
integer achieving the domination condition given in equation (2.7).

Theorem 3 The sum of two simple elements s and s′ is a periodical series with an asymptotic slope such
that

σ∞(s⊕ s′) = min(σ∞(s), σ∞(s′)).

Proof : Two cases have to be considered.
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FIGURE 2.8 – Asymptotical domination of simple series with different slope

• if σ∞(s) = ν/τ < σ∞(s′) = ν ′/τ ′. The sum of two simple elements can then be written as

s⊕ s′ = γnδt(γνδτ )∗ ⊕ γn
′
δt

′
(γν

′
δτ

′
)∗

= γnδt(γνδτ )∗ ⊕
[
γn

′
δt

′ ⊕ γn
′+ν′δt

′+τ ′ ⊕ · · ·

· · · ⊕ γn
′+(K−1)ν′δt

′+(K−1)τ ′
]
⊕ γn

′
δt

′
γKν′δKτ ′(γν

′
δτ

′
)∗

where K is given by equation (2.9). According to Lemma 1, the last term of the right hand expres-
sion is dominated by the other element, hence it can be removed. The sum of the simple elements
can the be written

s⊕ s′ =

K−1⊕
j=0

γn
′+jν′δt

′+jτ ′ ⊕ γnδt(γνδτ )∗ = p′′ ⊕ q′′r′′
∗

which is a series with an asymptotic slope σ∞(s⊕ s′) = min(σ∞(s), σ∞(s′)). The complexity is
linked to the developing of the transient part, and is linear in K.

• if σ∞(s) = ν/τ = σ∞(s′) = ν ′/τ ′. then ∃k, k′ such that

lcm(ν, ν ′) = kν = k′ν ′ = ν ′′ and lcm(τ, τ ′) = kτ = k′τ ′ = τ ′′.

The term r∗ (resp.r′∗) can be written r∗ =
(
e⊕ r ⊕ . . .⊕ rk−1

)
(rk)∗ (resp.r′∗ =

(
e⊕ r′ ⊕ . . .⊕ r′k−1

)
(r′k

′
)∗)

i.e.

r∗ = (γνδτ )∗ =
(
e⊕ γνδτ ⊕ · · · ⊕ γ(k−1)νδ(k−1)τ

)
(γν

′′
δτ

′′
)∗

(r′)∗ = (γν
′
δτ

′
)∗ =

(
e⊕ γν

′
δτ

′ ⊕ · · · ⊕ γ(k
′−1)ν′δ(k

′−1)τ ′
)
(γν

′′
δτ

′′
)∗.

The sum of two simple elements with the same asymptotic slope can the be written

s⊕ s′ = γnδt(γνδτ )∗ ⊕ γn
′
δt

′
(γν

′
δτ

′
)∗

=
[
γnδt(e⊕ γνδτ ⊕ · · · ⊕ γ(k−1)νδ(k−1)τ )

⊕γn
′
δt

′
(e⊕ γν

′
δτ

′ ⊕ · · · ⊕ γ(k
′−1)ν′δ(k

′−1)τ ′)
]
(γν

′′
δτ

′′
)∗ = q′′r′′

∗
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which is a periodical series with the asymptotic slope σ∞(s⊕ s′) = min(σ∞(s), σ∞(s′)) = ν
τ =

ν′

τ ′ . The complexity is based on the sum of two polynomials with k and k′ monomials then it is
(O(k + k′)). It can also expressed according to ν and ν ′ by considering a upper approximation of
the lcm, which leas to k = ν ′ and k′ = ν.

�

Remark 4 The results obtained in the previous proofs are under the form of periodical series but the
resulting series are not necessarily under their canonical form. It is necessary to apply the algorithm
leading to the canonical form in the end. The same remark could be done for all the algorithms introduced
in the next.

Theorem 4 The sum of two periodical series s and s′ is a periodical series with an asymptotic slope

σ∞(s⊕ s′) = min(σ∞(s), σ∞(s′)).

Proof :

• if σ∞(s) = σ∞(s′) then by considering

ν ′′ = ppcm(ν, ν ′), τ ′′ = ppcm(τ, τ ′), k = ppcm(ν, ν ′)/ν, and k′ = ppcm(ν, ν ′)/ν ′

the sum can be written

s⊕ s′ = p⊕ qr∗ ⊕ p′ ⊕ q′r′
∗

= [p⊕ p′]⊕
[
q(e⊕ . . .⊕ r(k−1))⊕ q′(e⊕ . . .⊕ r′

(k′−1)
)
]
(γν

′′
δτ

′′
)∗

= p′′ ⊕ q′′(r′′)∗

which is a periodical series with an asymptotic slope σ∞(s⊕ s′) = min(σ∞(s), σ∞(s′)) = ν′′

τ ′′ =
ν
τ = ν′

τ ′ . The complexity is based on the sum and the product of polynomials. Let us note that
q(e⊕ . . .⊕ r(k−1)) is compute with a complexity O(kl/2 log(l)), where k = ppcm(ν, ν ′)/ν which
can be approximated by ν ′. In the same way q′(e ⊕ . . . ⊕ r′(k

′−1)) is compute with a complexity
O(k′l′/2log(l′)), where k′ = ppcm(ν, ν ′)/ν′ which can be approximated by ν.

• if σ∞(s) < σ∞(s′) and if s and s′ are under their canonical form, it is possible to approximate qr∗ by
a smaller simple element mr∗ and to approximate q′r′∗ by a greater simple element m′r′∗. Indeed
the following inequality holds

qr∗ =

 l⊕
j=1

γNjδTj

 (γνδτ )∗ ≽ γN1δT1(γνδτ )∗

and also

q′r′
∗
=

 l′⊕
j=1

γN
′
jδT

′
j

 (γν
′
δτ

′
)∗ ≼ γN

′
1δT

′
1+τ ′(γν

′
δτ

′
)
∗

(Figure 2.9 gives a graphical interpretation of these relations).
Lemma 1showed that it exists an integer K such that

γN
′
1δT

′
1+τ ′γKν′δKτ ′(γν

′
δτ

′
)
∗
≼ γN1δT1(γνδτ )∗,
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δ

γ
(Ν0,Τ0)

ν

τ

(Ν0,Τ0+τ)

FIGURE 2.9 – Upper and lower approximation of qr∗ by two simple elements : γN1δT1(γνδτ )∗ ≼ qr∗ ≼
γN1δT1+τ (γνδτ )∗

then by considering isotony of the product law the following relations hold

γKν′δKτ ′q′(γν
′
δτ

′
)
∗
≼ γN

′
1δT

′
1+τ ′γKν′δKτ ′(γν

′
δτ

′
)
∗
≼ γN1δT1(γνδτ )∗ ≼ q(γνδτ )∗.

The sum of two periodical series with different asymptotic slope can be written as

s⊕ s′ =

[
p⊕ p′ ⊕ q′

[
K−1⊕
i=0

γiν
′
δiτ

′

]]
⊕ qr∗

= p′′ ⊕ q′′r′′
∗

where

K = max

(⌈
ν(T ′

1 + τ ′ − T1) + τ(N1 −N ′
1) + ντ

τν ′ − ντ ′

⌉
,

⌈
N1 −N ′

1

ν ′

⌉
, 0

)
.

The computation is then based on sums and products of polynomials. Let us note that the product

q′
[
K−1⊕
i=0

γiν
′
δiτ

′
]

can be compute with the following complexity O(Kl′ log(l′)). �

2.6 Product of two periodical series

Theorem 5 Let s = γnδt(γνδτ )∗ and s = γn
′
δt

′
(γν

′
δτ

′
)∗ be two simple elements. The product s ⊗ s′

is a periodical series with an asymptotic slope

σ∞(s⊗ s′) = min(σ∞(s), σ∞(s′)).

Proof :
• if σ∞(s) < σ∞(s′) then according to Lemma 1, it exists an integer K such that

r′
K
r′

∗ ≼ r∗. (2.10)

Then,by considerint the isotony of the product law, r′Kr′∗r∗ ≼ r∗r∗ = r∗. By recalling that
r∗r′∗ = r∗(e⊕r′⊕· · ·⊕r′(K−1)⊕r′Kr′∗) which, according to equtation (2.10), can be simplified
as

r∗r′
∗
= r∗(e⊕ r′ ⊕ · · · ⊕ r′

(K−1)
).
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The product of two simle elements with different asymptotic slope can then be written easily

γnδt(γνδτ )∗ ⊗ γn
′
δt

′
(γν

′
δτ

′
)∗ = γn+n′

δt+t′
(
e⊕ γν

′
δτ

′ ⊕ · · · ⊕ γ(K−1)ν′δ(K−1)τ ′
)
(γνδτ )∗

with

K = max

(⌈
ντ

τν ′ − ντ ′

⌉
, 0

)
.

The complexity of polynomial expansion is linear (O(K)).
• If σ∞(s) = σ∞(s′). By considering ν ′′ = ppcm(ν, ν ′) = kν = k′ν ′ and τ ′′ = ppcm(τ, τ ′) = kτ =

k′τ ′, the following equalities hold

r∗ = [e⊕ · · · ⊕ r(k−1)](r′′)∗

r′
∗

= [e⊕ · · · ⊕ r′
(k′−1)

](r′′)∗

The product of two simple elements with the same slope can be written

s⊗ s′ = γn+n′
δt+t′ [e⊕ · · · ⊕ r(k−1)]⊗ [e⊕ · · · ⊕ r′

(k′−1)
](r′′)∗

= q′′r′′
∗
.

The algorithm complexity is then based on the product of two polynomials, i.e. O(k′k log(k)),
with k = ppcm(ν, ν ′)/ν and k′ = ppcm(ν, ν ′)/ν ′.

�

Theorem 6 The product of two periodical series is a periodical series with the asymptotic slope

σ∞(s⊗ s′) = min(σ∞(s), σ∞(s′)).

Proof : The product of two periodical series can be written

s⊗ s′ = [p⊕ qr∗]⊗ [p′ ⊕ q′r′
∗
]

= pp′ ⊕ pq′r′
∗ ⊕ p′qr∗ ⊕ qq′r∗r′

∗
.

The computation of this product is based on the product and the sum of polynomials. The last term
(r∗r′∗) is the product of simple elements. �

2.6.1 Star of a polynomial

p =
m⊕
i=1

γniδti

s = p∗ = (

m⊕
i=1

γniδti)∗

Theorem 7 The star of a polynomial p is a periodical series s with an asymtotic slope

σ∞(s) = min(ni/ti) with i ∈ [1,m]

Proof : Sum of monomials is commutative, hence

s = (

m⊕
i=1

γniδti)∗ =

m⊗
i=1

(γniδti)∗

The computation of the star of a polynomial with m monomials can then be computed as the product
of m simple elements. The asymptotic slope is then given by σ∞(s) = min(ni/ti) with i ∈ [1,m]. The
computation complexity can then be bounded by considering the one of the previous theorem. �
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2.6.2 Star of periodical series

Let s be a periodical series :
s = p⊕ qr∗

s∗ is given by :
s∗ = (p⊕ qr∗)∗ = p∗(e⊕ q(q ⊕ r)∗).

Hence, this calculation can be decomposed as the computation of star of the polynomials (p∗ and
(q ⊕ r)∗), it is then sufficient to sum the two resulting series.

2.7 Software toolbox MinMaxgd

MinMaxgd is as set of C++ classes, they make it possible to handle periodical series in dioid Max
in [[γ, δ]].

Below is given the howto of this tools.

2.7.1 OPerations with monomials

The elemntary object is a monomial, they are represented by a class called gd. We recall that the sum of
monomial is not a monomial. Nevertheless the following internal operator are defined.

gd r(2,3) ; declaration and initialization of a monomial r = γ2δ3

gd r ; declaration of a monomial, default value ε
r.init(2,3) method affecting r = γ2δ3

r3= inf(r1,r2) ∧ of two monomials, r3 = r1 ∧ r2

r3= otimes(r1,r2) ; product of two monomials r3 = ⊗(r1, r2)

r3=frac(r1,r2) ; Residuation of two monomials r3 = r2◦\r1 = r1◦/r2

==,! =,<=,>= Comparing expression, it return 0 if the condition is false , 1 either.

The neutral element e is a monomial coded with the value e(0, 0), the absorbing element ε is coded
as a monomial defined as ε(2147483647,−2147483648).

Below a small example illustrates the use of these methods.

void main(void) {
gd a(2,3);
gd b,res_otimes,res_inf,res_frac;

b.init(3,6);

res_otimes = otimes(a,b);

res_inf = inf(a,b);

res_frac = frac(a,b);
cout<<"res_frac is equal to"<<res_frac<<endl; // the monomial is printed

}
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In this example a = γ2δ3 and b = γ3δ6.

the results are
• res_otimes = a⊗ b = γ5δ9

• res_inf = a ∧ b = γ3δ3

• res_frac = a◦/b = b◦\a = γ−1δ−3

2.7.2 Operations with polynomials

A polynomial is defined in class called poly. It is composed of private member : an array of monomials, n
defining the number of monomials in the array, simple an integer equal to 1 if the polynomial is under its
proper form, and nblock which corresponds to the memory size of the polynomial, a block is composed
of 64 monomials.

Below the different method available are described.

poly p ; declaration of a polynomial, it is initiated with monomial ε,
i.e., n = 1, nblock = 1, simple = 1

p.init(2,3)(4,5) ; initialization of a polynomial, it is automatically put in proper form p = γ2δ3 ⊕ γ4δ5

poly oplus(poly,poly) ; sum of two polynomials, the result is given in proper form
poly oplus(poly,gd) ; sum of a polynomial with a monomial
poly oplus(gd,poly) ; sum of a monomial with a polynomial

poly otimes(poly,poly ;) product of two polynomials
poly otimes(poly,gd) ; product of a polynomial with a monomial
poly otimes(gd,poly) ; product of a monomial with a polynomial
poly frac(poly,poly) residuationof two polynomials
poly frac(poly,gd) residuation of a polynomial with a monomial

poly frac(gd,poly) ; residuation of a monomial with a polynomial
poly inf(poly,poly) ; inf of two polynomials
poly inf(poly,gd) ; inf of a polynomial with a monomial
poly inf(gd,poly) ; inf of a monomail with a polynomial
poly prcaus(poly) ; projection of a polynomial in the causal set

Some other initialization exist, the developer can check in the header files associated to this class. Below
an example to illustrate the use of the class poly.

void main(void) {
poly p1,p2;
poly res_oplus,res_frac,res_inf,res_otimes;

p1.init(1,1)(2,3)(4,5);
p2.init(1,3)(3,3)(8,4);

res_otimes = otimes(p1,p2);
res_frac = frac(p1,p2);
res_inf = inf(p1,p2);
res_oplus = oplus(p1,p2);
cout<<"res_oplus="<<res_oplus<<endl; //result is printed

}
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In this example p1 = γ1δ1 ⊕ γ2δ3 ⊕ γ4δ5 and p2 = γ1δ3 ⊕ γ3δ3 ⊕ γ8δ4

the following results is obtained

• res_otimes = p1⊗ p2 = γ2δ4 ⊕ γ3δ6 ⊕ γ5δ8 ⊕ γ12δ9

• res_frac = p2◦\p1 = γ0δ−2 ⊕ γ1δ0 ⊕ γ3δ1

• res_inf = p1 ∧ p2 = γ1δ1 ⊕ γ2δ3 ⊕ γ8δ4

• res_oplus = p1⊕ p2 = γ1δ3 ⊕ γ4δ5

2.7.3 OPeration between periodical series

The periodical series (see definition 4) is defined in the class serie The member are two polynomials,
p (the polynomial depicting the transient part of the series) and q (the polynomial depcting the pattern
repeated periodically), the slope si represented by a monomial r.

serie s ; declaration of a series s, it is equal to ε
s.init(p,q,r) ; initialization of a series s thanks to polynomials p,q, and a monomial r

serie oplus(serie,serie) ; sum of two series
serie oplus(serie,poly) ; sum of series with a polynomial
serie oplus(poly,serie) ; sum of a polynomial with a series
serie oplus(serie,gd) ; sum of a series with a monomial
serie oplus(gd,serie) ; sum of a monomialwith a series

serie otimes(serie,serie ; prouct of two series
serie otimes(serie,poly) ; product of a series with a polynomial
serie otimes(poly,serie) ; product of a polynomial with a series
serie otimes(serie,gd) ; product of a series with a monomial
serie otimes(gd,serie) ; product of a monomial with a series
serie frac(serie,serie) ; residutation of two series
serie frac(serie,poly) ; residuation of a series with a polynomial
serie frac(poly,serie) ; residuation of a polynomial with a series
serie frac(serie,gd) ; residuation of a series with a monomial
serie frac(gd,serie) ; residuation of a monomialwith a series
serie inf(serie,serie), inf of two series
serie inf(serie,poly) ; inf of a series with a polynomial
serie int(poly,serie) ; inf of a polynomial with a series
serie int(serie,gd ;) inf of a series with a monomial
serie int(gd,serie) ; inf of a monomial with a series
serie star(serie) ; star of a series
serie star(poly) ; star of a polynomial
serie star(gd) ; star of a monomial

serie prcaus(serie) ; projection in causl set of a series
void canon() ; put the series in its canonical form

Illustration for operations between series operations

void main(void) {
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serie s1,s2,s_otimes,s_frac,s_oplus,s_inf,s_star;
poly p1,q1,p2,q2;
gd r1,r2;

p1.init(1,1)(2,3)(4,5);
q1.init(10,11)(12,15);
r1.init(2,3);

p2.init(1,3)(3,3)(8,4);
q2.init(10,5)(12,7)(13,9);
r2.init(4,4);

s1.init(p1,q1,r1);
s2.init(p2,q2,r2);

s_otimes = s_otimes(s1,s2);
s_frac = frac(s1,s2);
s_oplus = oplus(s1,s2);
s_inf = inf(s1,s2);
s_star = star(s1);
cout<<"s_star ="<<s_star<<endl;

}

In this example s1 = γ1δ1 ⊕ γ2δ3 ⊕ γ4δ5 ⊕ (γ10δ11 ⊕ γ12δ15)(γ2δ3)∗ and s2 = γ1δ3 ⊕ γ3δ3 ⊕ γ8δ4 ⊕
(γ10δ5 ⊕ γ12δ7 ⊕ γ13δ9)(γ4δ4)∗

The following results are obtained

s_otimes = s1⊗ s2 = γ2δ4 ⊕ γ3δ6 ⊕ γ5δ8 ⊕ γ11δ14 ⊕ (γ13δ18)(γ2δ3)∗

s_frac = s1◦\s2 = γ0δ−2 ⊕ γ1δ0 ⊕ γ3δ2 ⊕ γ9δ8 ⊕ (γ11δ12)(γ2δ3)∗

s_oplus = s1⊕ s2 = γ1δ3 ⊕ γ4δ5 ⊕ γ10δ11 ⊕ (γ12δ15)(γ2δ3)∗

s_inf = s1 ∧ s2 = γ1δ1 ⊕ γ2δ3 ⊕ γ8δ4 ⊕ γ10δ5 ⊕ (γ12δ7 ⊕ γ13δ9)(γ4δ4)∗

s_star = s1∗ = (γ0δ0 ⊕ γ1δ1)(γ2δ3)∗

2.7.4 Operations between matrices of periodical series

The last class proposed in this software tools is the class matrix which make it possible to handle
matrices of periodic series.

smatrix sm(4,4) ; declarationof a matrix of size (4× 4), each entry is initalized with ε

smatrix oplus(smatrix,smatrix) ; sum of two matrices
smatrix otimes(smatrix,smatrix) product of two matrices
smatrix lfrac(smatrix,smatrix) ; left residaution of two matrices
smatrix rfrac(smatrix,smatrix) ; right residuation of two matrices
smatrix inf(smatrix,smatrix) ; inf of two matrices

Example illustrating the use of the Software toolbox
To illustrate the use of the class matrix we propose a methodolgy to model a timed event graph. The one
of Figure 2.10 is considered. Below the correposnding C++ file making the correposnding computation.
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FIGURE 2.10 – A Timed event graph , with 2 inputs and two outputs .

void main(void) {
// Declaration of matrices

gd m;
smatrix A(4,4),B(4,2),C(2,4);

// INitialization of the entries
A(0,0).init(epsilon,m.init(2,7),e);
A(0,1).init(epsilon,epsilon,e);
A(0,2).init(epsilon,epsilon,e);
A(0,3).init(epsilon,epsilon,e);

A(1,0).init(epsilon,m.init(0,4),e);
A(1,1).init(epsilon,m.init(1,6),e);
A(1,2).init(epsilon,epsilon,e);
A(1,3).init(epsilon,epsilon,e);

A(2,0).init(epsilon,epsilon,e);
A(2,1).init(epsilon,epsilon,e);
A(2,2).init(epsilon,m.init(3,2),e);
A(2,3).init(epsilon,epsilon,e);

A(3,0).init(epsilon,m.init(0,1),e);
A(3,1).init(epsilon,epsilon,e);
A(3,2).init(epsilon,m.init(0,2),e);
A(3,3).init(epsilon,m.init(4,9),e);

The following matrix is obtained A =


γ2δ7 ε ε ε
δ4 γδ6 ε ε
ε ε γ3δ2 ε
δ ε δ2 γ4δ9


The same for matrix B

B(0,0).init(epsilon,m.init(0,5),e);
B(0,1).init(epsilon,epsilon,e);
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B(1,0).init(epsilon,epsilon,e);
B(1,1).init(epsilon,epsilon,e);

B(2,0).init(epsilon,epsilon,e);
B(2,1).init(epsilon,m.init(0,3),e);

B(3,0).init(epsilon,epsilon,e);
B(3,1).init(epsilon,epsilon,e);

the following matrix is obtained B =


δ5 ε
ε ε
ε δ3

ε ε


the same for C

C(0,0).init(epsilon,epsilon,e);
C(0,1).init(epsilon,m.init(0,3),e);
C(0,2).init(epsilon,epsilon,e);
C(0,3).init(epsilon,epsilon,e);

C(1,0).init(epsilon,epsilon,e);
C(1,2).init(epsilon,epsilon,e);
C(1,0).init(epsilon,epsilon,e);
C(1,3).init(epsilon,m.init(0,1),e);

this yields the following matrix C =

(
ε δ3 ε ε
ε ε ε δ

)
The three matrices being initialized, it is possible to compute the transfer matrix of the timed event graph,
it is obtained by computing H = CA∗B.

First the computation of A∗ is done

smatrix H(4,4);

H=star(A);

the the computation of CA∗

H=otimes(C,H);

to conclude the transfer function is computed CA∗B

H=otimes(H,B);
cout<<"transfer function H "<<H<<endl;

The computation of H yiels H =

(
δ12(γδ6)∗ ε
δ7(γ2δ7)∗ (δ6 ⊕ γ3δ8)(γ4δ9)∗

)
Classicaly, a feedback controller is searched, il allows to the system to behave as a reference model (see
[Cottenceau et al., 1999, Lhommeau et al., 2004, Cottenceau et al., 2001] for the theoretical details).

Below the following reference model is considered Gref = (HF0)
∗H with F0 =

(
γ3 γ3

γ3 γ3

)
.
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smatrix F_0(2,2),G_ref(2,2);
F_0(0,0).init(epsilon,m.init(3,0),e);
F_0(0,1).init(epsilon,m.init(3,0),e);
F_0(1,0).init(epsilon,m.init(3,0),e);
F_0(1,1).init(epsilon,m.init(3,0),e);

/* modèle de référence */
G_ref=otimes(H,F_0);
G_ref=star(G_ref);
G_ref=otimes(G_ref,H);

Hence it is possible to compute an optimal feedback controller. This computaion needs the operation of
residuations ans of the projection in the causal set. This latest projection ensure the realization of the
control law, formally the controller is given by : F = Pr+(H◦\Gref ◦/H). In the program the optimal
feedbakc is denoted F_opt.

First we compute H◦\Gref

smatrix F_opt(2,2);

F_opt=lfrac(G_ref,H);

then H◦\Gref ◦/H

F_opt=rfrac(F_opt,H);

The last step is the causal projection of F_opt in the set of causal matrices.

F_opt=prcaus(F_opt);
}

Then the following feedback is obtained F =

(
γ3(γ1δ6)∗ γ3 ⊕ γ4δ2 ⊕ γ5δ7 ⊕ (γ6δ12)(γ1δ6)∗

γ3δ(γ1δ6)∗ γ3δ1 ⊕ γ4δ3 ⊕ γ5δ8 ⊕ (γ6δ13)(γ1δ6)∗

)
A realization of this controller is given in dotted lined in Figure 2.11.

2.8 Conclusion

This document is not exhaustive. Some other examples can be found in the joint works with my
colleague Ying Shang from Edwardsville [Hardouin et al., 2011, Shang et al., 2013] university. It was
useful to solve disturbance decoupling problems for max-plus linear systems.

This library was also used to synthesis observer for (max,plus) linear systems
(see http://perso-laris.univ-angers.fr/~hardouin/Observer.html,
[Hardouin et al., 2010b, Hardouin et al., 2010a]).

More recently, it was useful in the PhD of Thomas Brunsch from the group of Jörg Raisch in TU
Berlin. It was used to simulate real system from an industrial partner building High-Throughput scree-
ning systems (see the related papers [Brunsch et al., 2010, Brunsch et al., 2012] and the book chapters
[Hardouin et al., 2013, Brunsch et al., 2013]).
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FIGURE 2.11 – Example of TEG with an output feedback.
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