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Abstract In this chapter, the dynamics of manufacturing systems is characterized
through the occurrence of events such as parts entering or leaving machines. Fur-
thermore, we assume that the relations between events are expressed by synchro-
nizations (i.e., conditions of the form: for all k ≥ l, occurrence k of event e2 is
at least τ units of time after occurrence k− l of event e1). Note that this assump-
tion often holds when the considered manufacturing system is functioning under a
predefined schedule. First, we discuss the modeling of such systems by linear state-
space models in the (max,+)-algebra (due to this property, such systems are often
called (max,+)-linear systems). Second, standard open-loop and closed-loop con-
trol structures for (max,+)-linear systems are recalled. These control structures lead
to a trade-off between the rapidity of systems and their internal buffer sizes. Some
techniques to influence this trade-off are presented.

1 Introduction

A discrete event system (e.g., [1]) is a dynamical system driven by the instanta-
neous occurrences of events. In a discrete event system, two basic elements are
distinguished: the event set and the rule describing the behavior of the system. By
considering events such as parts entering or leaving machines, discrete event sys-
tems offer an interesting framework to model manufacturing systems at a high level

Xavier David-Henriet and Laurent Hardouin
Université d’Angers, LARIS, ISTIA, 62 Av. Notre-Dame du Lac, 49000 Angers, France.
e-mail: laurent.hardouin@univ-angers.fr

Xavier David-Henriet and Jörg Raisch
Technische Universität Berlin, Fachgebiet Regelungssysteme, Einsteinufer 17, 10587 Berlin, Ger-
many, and Max-Planck-Institut für Dynamik komplexer technischer Systeme, Fachgruppe System-
und Regelungstheorie, Sandtorstr. 1, 39106 Magdeburg, Germany.
e-mail: david-henriet, raisch@control.tu-berlin.de

1



2 Xavier David-Henriet et al.

of abstraction. Many formal approaches such as finite-state automata (e.g., [2]) and
Petri nets (e.g., [3]) have been investigated to express the rule describing the behav-
ior of the system. In the following, we focus on discrete event systems where this
rule is only composed of synchronizations (i.e., conditions of the form: for all k≥ l,
occurrence k of event e2 is at least τ units of time after occurrence k− l of event e1
with τ ∈N0 and l ∈N0). The behavior of manufacturing systems functioning under
a predefined schedule can often be adequately modeled by synchronizations (see
Ex. 1).

Discrete event systems where the rule describing the behavior is only composed
of synchronizations are called (max,+)-linear systems. This terminology is due to
the fact that a specific behavior, namely the behavior under the earliest function-
ing rule, is described by linear equations in particular algebraic structures such as
the (max,+)-algebra. In the literature, only this specific behavior is usually consid-
ered. For (max,+)-linear systems, it is possible to partition the set of events into
input, internal, and output events and, based on this partition, to derive a (max,+)-
linear state-space model of the system. Therefore, much effort has been made during
the last decades to adapt key concepts from standard control theory to (max,+)-
linear systems. Transfer function matrices have been introduced for (max,+)-linear
systems by using formal power series [4]. Furthermore, some standard control ap-
proaches such as optimal feedforward control [5], model reference control [6, 7, 13],
and model predictive control [9] have been extended to (max,+)-linear systems.
For manufacturing systems, model reference control is particularly interesting, as it
offers techniques to both reduce the size of internal buffers and take into account
unexpected disturbances.

We emphasize that the purpose of this contribution is not to compare different
modelling and control approaches for manufacturing systems. On the contrary, we
concentrate on a specific class of manufacturing systems exclusively governed by
synchronization and delay phenomena. As pointed out above, models for this class
of systems are linear in certain algebraic structures. For this reason, many methods
for designing control can be adapted form standard linear systems theory to be ap-
plicable to the discussed class of manufacturing systems. A key advantage of this
approach is that the desired control policy, i.e., the way control reacts to external
inputs and measured outputs, can be computed analytically and offline. Hence, the
required computational online effort is negligeable.

The rule describing the behavior of (max,+)-linear systems can also be ex-
pressed by specific timed Petri nets called timed event graphs (TEGs). A TEG is
a directed bipartite graph, where the set of nodes is partitioned into a set of places
and a set of transitions, and arcs are either from places to transitions or from tran-
sitions to places. Moreover, in a TEG, each place has precisely one incoming and
one outgoing arc. Each place is equipped with a holding time. Places may contain
tokens, and transitions are associated with events. A transition can “fire” (i.e., the
associated event can occur) if and only if each place from which an arc leads to
the transition (“upstream place”) has at least one token residing in the respective
place for at least the corresponding holding time. If the transition “fires” (i.e., the
associated event occurs), all upstream places lose one token and all downstream
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places (places to which there is an arc from the considered transition) gain one to-
ken. Places and transitions are graphically represented by circles and bars, and the
holding times, if nonzero, are indicated by adding numbers to places. In the follow-
ing, we focus on (max,+)-linear representations to formally manipulate systems,
but use timed event graphs to graphically represent systems.

This chapter is structured as follows. In the next section, necessary mathematical
tools are recalled. The modeling of the considered class of discrete event systems
in the (max,+)-algebra and in the dioid M ax

in Jγ,δ K is presented in § 3. Finally,
§ 4 focuses on control for (max,+)-linear systems. Throughout this chapter, the
simple manufacturing system introduced in Ex. 1 is used to illustrate and clarify
the presented concepts. We emphasize that illustration and clarification is the sole
purpose of this example. However, methods based on (max,+)-linear systems are
also suitable for industrially relevant systems: for example, in [10], this approach
is used to model and control high-throughput screening systems (i.e., systems to
rapidly test thousands of biochemical substances) with over one hundred events and
dozens of activities and resources.

Example 1. A simple manufacturing system composed of three machines, denoted
M1, M2, and M3, is considered. Machine M1 consumes workpieces of type 1 and
releases workpieces of type 3. Machine M2 consumes workpieces of type 2 and re-
leases workpieces of type 4. Machine M3 pairwise assembles workpieces of type
3 and 4 and delivers workpieces of type 5. The production of a new workpiece of
type 5 from workpieces of type 1 and 2 starts after the receiving of an order from
a customer. Orders and workpieces of type 1 and 2 correspond to the inputs of the
manufacturing system (i.e., external influences either from suppliers or from cus-
tomers) and workpieces of type 5 correspond to the output of the manufacturing
system. Each machine has a capacity of one. The processing time associated with
machine M1, denoted τ1, is four units of time and the processing time associated
with machine M2 (resp. M3), denoted τ2 (resp. τ3), is two units of time. Further-
more, a machine Mi with 1≤ i≤ 3 can start processing the next workpiece as soon
as it finishes processing the current workpiece. The buffers have an infinite capac-
ity. To formally describe the dynamics of this manufacturing system, we define the
following events:

event ui (with i = 1,2) a workpiece of type i enters the system
event si (with 1≤ i≤ 3) machine Mi starts to process a (pair of) workpiece(s)
event fi (with 1≤ i≤ 3) machine Mi delivers a processed workpiece
event o an order is received
event y a workpiece of type 5 leaves the system

The behavior of the considered manufacturing system is completely expressed by
synchronizations of the events defined above. Two synchronizations are needed to
express the dynamics of each machine Mi with 1≤ i≤ 3. The first synchronization
models the process associated with machine Mi: for all k ≥ 0, occurrence k of event
fi is at least τi units of time after occurrence k of event si. The second synchroniza-
tion models the capacity constraint: for all k ≥ 1, occurrence k of event si is at least
zero units of time after occurrence k−1 of event fi. Furthermore, to model the flow



4 Xavier David-Henriet et al.

of workpieces outside the machines some additional synchronizations are needed.
The supply of workpieces of type i with i = 1,2 is modeled by “for all k ≥ 0, oc-
currence k of event si is at least zero units of time after occurrence k of event ui”
with i = 1,2. The supply for machine M3 of workpieces processed by machine Mi
with i = 1,2 is expressed by “for all k ≥ 0, occurrence k of event s3 is at least zero
units of time after occurrence k of event fi” with i = 1,2. The release of workpieces
of type 5 is modeled “for all k ≥ 0, occurrence k of event y is at least zero units of
time after occurrence k of event f3”. Finally, orders are taken into account by “for
all k ≥ 0, occurrence k of event si is at least zero units of time after occurrence k of
event o” with i = 1,2.

The timed event graph associated with this manufacturing system is shown in
Fig. 1, where holding times (if nonzero) are indicated by numbers attached to places.

s1 f14

o

u2

2

s3 2 f3

u1

Machine M1

s2 f2

Machine M2

Machine M3

y

Fig. 1: A simple manufacturing system

2 Mathematical Preliminaries

In this section, necessary elements of dioid theory and residuation theory are re-
called. A complete survey on these topics is available in [4] and [11], respectively.

2.1 Dioid Theory

Dioids (or idempotent semirings) are algebraic structures which play a major role in
the modeling of (max,+)-linear systems.

Definition 1 (Dioid). A dioid is a set D endowed with two binary operations, de-
noted ⊕ and ⊗, such that:
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• ⊕ is associative, commutative, idempotent (∀a ∈ D ,a⊕ a = a), and admits a
neutral element ε .

• ⊗ is associative and admits a neutral element e.
• ⊗ is distributive with respect to ⊕ from both sides:

∀a,b,c ∈D ,

{
a⊗ (b⊕ c) = (a⊗b)⊕ (a⊗ c)
(a⊕b)⊗ c = (a⊗ c)⊕ (b⊗ c)

• ε is absorbing for ⊗, i.e., ∀a ∈D , a⊗ ε = ε⊗a = ε .

If D is closed for infinite sums and distributivity is extended to infinite sums, then
dioid D is said to be complete.

Formally, the operations ⊕ and ⊗ are very similar to the standard operations +
and ×. Therefore, these operations are respectively called addition and multiplica-
tion. Then, ε is called the zero element of the dioid D and e is its unit element.
As in classical algebra, ⊗ is often omitted and the product is simply denoted by
juxtaposition (i.e., ab corresponds to a⊗b). As ⊕ is associative, commutative, and
idempotent, it induces a partial order � on D defined by a� b⇔ a⊕b = b. Hence,
a dioid is a partially ordered set.

By analogy with standard linear algebra, the operations ⊕ and ⊗ are extended to
matrices with entries in a dioid D .

∀A,B ∈Dn×p, (A⊕B)i j = Ai j⊕Bi j

∀A ∈Dn×p,∀B ∈D p×q, (A⊗B)i j =
p⊕

k=1

AikBk j

The operation ⊕ also provides a partial order � over Dn×p. Formally, for A,B ∈
Dn×p, A� B⇔ A = A⊕B. The next proposition gives the algebraic structure of the
set of square matrices with entries in a dioid endowed with the operations ⊕ and ⊗
defined above.

Proposition 1 ([4]). Let D be a dioid. The set Dn×n endowed with the operations⊕
and ⊗ defined above is a dioid. Besides, if D is complete, then Dn×n is complete.

The next theorem plays an essential role in the following to solve implicit in-
equalities of the form X � AX ⊕B where A, X , and B are matrices with entries in a
complete dioid.

Theorem 1 (Kleene star theorem, [4]). Let D be a complete dioid and A ∈
Dn×n,B ∈ Dn×p. Denote the unit element of Dn×n by e. Then, the inequality
X � AX ⊕B admits A∗B as least solution, where the Kleene star of A, denoted A∗,
is defined by

A∗ =
+∞⊕
k=0

Ak with Ak =

{
e if k = 0
A⊗Ak−1 otherwise

In § 3, modeling of (max,+)-linear systems in the (max,+)-algebra and in the
dioid M ax

in Jγ,δ K will be discussed. Next we briefly describe these two dioids.
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2.1.1 The (max,+)-algebra

The (max,+)-algebra, denoted Nmax, is defined as the set N0∪{−∞,+∞} endowed
with the operations max and +. This corresponds to a complete dioid with max as
addition ⊕ and + as multiplication ⊗. The zero element ε is equal to −∞ and the
unit element e is equal to 0. The order � induced by the operation ⊕ corresponds to
the standard order, as

a� b⇔ a⊕b = b⇔ b = max(a,b)⇔ a≤ b

Example 2. In the following, some simple calculations in Nmax are described. In the
scalar case,

5⊕3 = max(5,3) = 5 and 5⊗3 = 5+3 = 8

In the matrix case, 5 3 +∞

ε 4 ε

e ε ε

⊕
 2 ε 2

3 e 4
e ε +∞

=

5 3 +∞

3 4 4
e ε +∞


 5 3 +∞

ε 4 ε

e ε ε

⊗
 2 ε 2

3 e 4
e ε +∞

=

+∞ 3 +∞

7 4 8
2 ε 2



2.1.2 The Dioid M ax
in Jγ,δ K

In the following, a brief introduction to the dioid M ax
in Jγ,δ K is given. This dioid is

especially convenient for modeling and control of (max,+)-linear systems. For a
formal definition of this dioid, the reader is invited to consult [4]. A C++-library
dedicated to computation in the dioid M ax

in Jγ,δ K is described in [12]. First, the con-
cepts of daters and operators are recalled.

Definition 2 (Dater). A dater is a non-decreasing mapping from Z to Nmax equal to
ε over {n ∈ Z|n < 0}. The set of daters is denoted D.

In the following sections, daters will be used to describe the occurrence times of
events. Then, for a dater d associated with a particular event, d(k),k≥ 0, will denote
the time when the event occurs for the kth time. Note that it is customary to start
enumeration of event occurrences by 0 (instead of 1).

Of particular interest are the daters εD and eD defined by

∀k ∈ Z, εD (k) = ε and eD (k) =
{

ε if k < 0
e if k ≥ 0

The set of daters is endowed with an operation, denoted ⊕, derived from the opera-
tion ⊕ over Nmax. Formally,

∀d1,d2 ∈ D,∀k ∈ Z, (d1⊕d2)(k) = d1 (k)⊕d2 (k)
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Definition 3 (Operator). An operator is a mapping from D to D. The set of opera-
tors is denoted O .

Using the operation ⊕ over D, a matrix of operators is defined as a mapping
between vectors of daters. Matrix O ∈ On×p corresponds to the mapping from Dp

to Dn defined by

∀d ∈ Dp, O(d)i =
p⊕

j=1

Oi j (d j)

Of particular interest are the operators εO , eO , γ , and δ defined by

∀d ∈ D, εO (d) = εD and eO (d) = d

∀d ∈ D,∀k ∈ Z, γ (d)(k) = d (k−1) and δ (d)(k) = 1d (k)

The set of operators is endowed with an operation, denoted ⊕, derived from the
operation ⊕ defined over D. Formally,

∀o1,o2 ∈ O,∀d ∈ D (o1⊕o2)(d) = o1 (d)⊕o2 (d)

Furthermore, an operation ⊗ over O is defined as the composition of mappings:
for all o1,o2 ∈ O , o1⊗o2 = o1 ◦o2. Under some conditions, the set of operators O
endowed with the operations ⊕ and ⊗ defined above is a complete dioid. Then, the
dioid M ax

in Jγ,δ K is defined to be the complete dioid spanned by {εO ,eO ,γ,δ}. Let
ν ∈ N0 and τ ∈ N0. The operator γν δ τ belongs to M ax

in Jγ,δ K and corresponds to

∀d ∈ D,∀k ∈ Z, (γν
δ

τ)(d)(k) = τd (k−ν)

By construction, calculation rules are available to simplify expressions in M ax
in Jγ,δ K.

Operators γ and δ commute:

∀d ∈ D,∀k ∈ Z, (γδ )(d)(k) = δ (d)(k−1)
= 1d (k−1)
= 1γ (d)(k)

= (δγ)(d)(k)

Furthermore, let l1, l2 in N0. For all d ∈ D and k ∈ Z,
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δ

l1 ⊕δ
l2
)
(d)(k) = l1d (k)⊕ l2d (k)

= (l1⊕ l2)d (k)

= δ
max(l1,l2) (d)(k)(

γ
l1 ⊕ γ

l2
)
(d)(k) = d (k− l1)⊕d (k− l2)

= d (k−min(l1, l2)) as dater d is non-decreasing

= γ
min(l1,l2) (d)(k)

Hence, δ l1 ⊕δ l2 = δ max(l1,l2) and γ l1 ⊕ γ l2 = γmin(l1,l2).

Representing Daters in the Dioid M ax
in Jγ,δ K

The dioid M ax
in Jγ,δ K offers a method to elegantly manipulate daters: a dater d

is associated with the operator
⊕+∞

k=0 γkδ d(k) where δ−∞ (resp. δ+∞) stands for ε

(resp. δ ∗). Then, the operator o in M ax
in Jγ,δ K associated with a dater d is the sin-

gle operator in M ax
in Jγ,δ K satisfying o(eD) = d. Using calculation rules specific to

M ax
in Jγ,δ K, the expression of the operator associated with a dater is often much sim-

pler than the expression of the dater itself. In the following, we do not distinguish
between a dater and the associated operator in M ax

in Jγ,δ K.

Example 3. Let us consider the dater d defined by

d (k) =


ε if k < 0
3 if k = 0,1
5 if k = 2
6+4 j if k = 3+3 j with j ∈ N0
8+4 j if k = 4+3 j,5+3 j with j ∈ N0

The dater d is pictured in Fig. 2. In M ax
in Jγ,δ K,

d =
+∞⊕
k=0

γ
k
δ

d(k) = δ
3⊕ γδ

3⊕ γ
2
δ

5⊕
(

γ
3
δ

6⊕ γ
4
δ

8⊕ γ
5
δ

8
)(

γ
3
δ

4)∗
Using calculation rules specific to M ax

in Jγ,δ K, the expression of dater d is simplified:

d = δ
3⊕ γ

2
δ

5⊕
(

γ
3
δ

6⊕ γ
4
δ

8
)(

γ
3
δ

4)∗
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Fig. 2: Dater d

2.2 Residuation Theory

Residuation theory gives the theoretical foundation for the control of (max,+)-
linear systems.

Definition 4 (Residuated mapping). Let f : E → F with E and F ordered sets.
Mapping f is said to be residuated if f is non-decreasing and if, for all y ∈ F , the
least upper bound of the subset {x ∈ E| f (x)� y} exists and lies in this subset. This
element in E is denoted f ](y). Mapping f ] from F to E is called the residual of f .

Let a be an element in a complete dioid D . The mappings La : x 7→ a⊗ x (left-
multiplication by a) and Ra : x 7→ x⊗a (right-multiplication by a) over D are residu-
ated. The residuals are denoted by L]

a(x) = a ◦\x (left-division by a) and R]
a(x) = x◦/a

(right-division by a). By definition, a ◦\b (resp. b◦/a) denotes the greatest solution x
of the inequality a⊗ x� b (resp. x⊗a� b).

The operations ◦\ and ◦/ are also extended to matrices. Hence, A ◦\B (resp. B◦/A)
corresponds to the greatest solution X of the inequality AX � B (resp. XA� B).

Example 4. For a,b in Nmax,

a ◦\b = b◦/a =

+∞ if a = ε or b =+∞

ε if a� b and a 6= b
b−a if b� a and a,b ∈ N0
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3 Modeling

After some preliminary remarks on the modeling assumptions, the modeling of
(max,+)-linear systems is presented both in the (max,+)-algebra and in the dioid
M ax

in Jγ,δ K.

3.1 Preliminaries

3.1.1 Input, Output, and Internal Events

The event set of a (max,+)-linear system is partitioned into

input events: these events are the source of synchronizations, but not subject to
synchronizations. Input events correspond to external events affecting the system
(e.g., external supplies of workpieces or orders from customers).

output events: these events are subject to synchronizations, but not the source of
synchronizations. Output events correspond to events in the system which are
directly seen by other systems (e.g., deliveries of finished products).

internal events: these events are both subject to and the source of synchroniza-
tions. Internal events model the internal dynamics of the system.

Events which are neither subject to nor the source of synchronizations are neglected,
as we focus on interactions between events. In the rest of this chapter, we consider
(max,+)-linear systems, where:

• the sets of input, output, and internal events are not empty
• there exist no direct synchronizations of output events by input events

In practice, these assumptions either hold or can be made to hold by adding some
fictitious internal events. Furthermore, the following convention for notation is used.
The numbers of input, output, and internal events are respectively denoted by m, p,
and n. Input, output, and internal events are respectively denoted by u, y, and x and
integer subscripts are used to distinguish events of the same kind.

Example 5. In the considered example, the event set is partitioned into

• input events u1, u2, and o
• internal events s1, s2, s3, f1, f2, and f3
• output event y

These events are relabeled according to the above notation (see Fig. 3). For this
system, m = 3, n = 6, and p = 1.
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Fig. 3: A manufacturing system

3.1.2 Earliest Functioning Rule

Synchronizations (i.e., conditions of the form: for all k ≥ l, occurrence k of event
e2 is at least τ units of time after occurrence k− l of event e1) only specify condi-
tions enabling occurrences of events, but never force an event to occur. Therefore, a
(max,+)-linear system is not univocally determined: a predefined timing pattern of
the input events may lead to different timing patterns for internal and output events.
The only requirement is that these patterns are admissible with respect to the syn-
chronizations required by the considered system.

In the following, we only consider a particular behavior for (max,+)-linear sys-
tems, namely the behavior under the earliest functioning rule. The earliest function-
ing rule requires that each internal or output event occurs as soon as possible. Under
the earliest functioning rule, a (max,+)-linear system is univocally determined: a
predefined timing pattern of the input events leads to a unique timing pattern for
internal and output events. This fundamental property is a direct consequence of the
model in the (max,+)-algebra presented later.

Example 6. In the considered example, the earliest functioning rule is suitable, as
the aim is to meet the orders as soon as possible.

3.1.3 Modeling with Daters

To capture the timed dynamics of a discrete event system, a dater is associated with
each event such that the dater gives the times of occurrences of the considered event.
In the following, no distinction in the notation is made between an event and the
associated dater. Hence, for an event d, d (k) denotes the time of occurrence k of
event d. This leads to the following interpretation for daters:

d (k) = ε: occurrence k of event d is at t = −∞. By convention, occurrence k,
with k < 0, of an event is always at t =−∞.

d (k) ∈ N0: occurrence k of event d is at time d (k).
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d (k) = +∞: occurrence k of event d never happens.

The fact that daters are non-decreasing (i.e., for a dater d, d (k+1) � d (k) for all
k ∈ Z) is always satisfied as occurrence k+1 of event d is never before occurrence
k of event d.

3.2 Modeling in the (max,+)-algebra

Next, we show how to model (max,+)-linear systems by recursive equations in the
(max,+)-algebra. Using daters, the synchronization “for all k ≥ l, occurrence k of
event e2 is at least τ units of time after occurrence k− l of event e1” corresponds to

∀k ∈ Z, e2 (k)≥ τ + e1 (k− l)

in the standard algebra or to

∀k ∈ Z, e2 (k)� τe1 (k− l)

in the (max,+)-algebra. Furthermore, the effect of several synchronizations on a
single event is also expressed by a single inequality. For example, the synchroniza-
tions “for all k ≥ l1, occurrence k of event e2 is at least τ1 units of time after oc-
currence k− l1 of event e1,1” and “for all k ≥ l2, occurrence k of event e2 is at least
τ2 units of time after occurrence k− l2 of event e1,2” are both expressed by a single
inequality either in the standard algebra

∀k ∈ Z, e2 (k)≥max(τ1 + e1,1 (k− l1) ,τ2 + e1,2 (k− l2))

or in the (max,+)-algebra

∀k ∈ Z, e2 (k)� τ1e1,1 (k− l1)⊕ τ2e1,2 (k− l2)

Hence, the rule describing the behavior of the system can be expressed by the
following matrix inequalities in Nmax.{

x(k)�
⊕L

i=0 (Aix(k− i)⊕Biu(k− i))
y(k)�

⊕L
i=0 Cix(k− i)

(1)

where x, u, and y respectively correspond to the vectors of daters associated with
internal, input, and output events, and L denotes the greatest parameter l over all
synchronizations. Furthermore, matrices Ai, Bi, and Ci belong respectively to Nn×n

max ,
Nn×m

max , and Np×n
max . The entries of these matrices are given by the parameters of the

synchronizations.
To simplify (1), the event set of the considered (max,+)-linear system is ex-

tended by additional internal events. The resulting extended set of internal events is
referred to as the set of state events. The daters of all state events are collected in a
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single vector, which, slightly abusing notation, is again called x. This allows us to
convert (1) to a first-order recursion. The resulting inequalities are given in (2). The
validity of this step results from the equivalence between the different synchroniza-
tion relations between events e1 and e2 pictured in Fig. 4.{

x(k)� A0x(k)⊕A1x(k−1)⊕B0u(k)
y(k)�C0x(k) (2)

e1 τ e2

(a)

e1 e2ei τ

(b)

e1 τ e2ei

(c)

Fig. 4: Equivalent synchronizations if no other synchronizations affect event ei

By convention, x(k) and y(k) have all entries equal to ε for k < 0. This choice
is valid according to (2). As the behavior under the earliest functioning rule is con-
sidered, the time of occurrence k ≥ 0 of state and output events is given by the
least solution for x(k) and y(k) in (2). Considering that x is composed of daters
(i.e., x(k)� x(k−1) for all k ∈ Z), we have

x(k)� A0x(k)⊕A1x(k−1)⊕B0u(k)

⇔ x(k)� A0x(k)⊕ (A1⊕ e)x(k−1)⊕B0u(k)

Hence, using Th. 1, the following (max,+)-linear state-space model is obtained:{
x(k) = Ax(k−1)⊕Bu(k)
y(k) =Cx(k) (3)

where A = A∗0 (A1⊕ e), B = A∗0B0, and C =C0. Hence, (max,+)-linear systems are
deterministic and, as expected, (max,+)-linear (i.e., a (max,+)-linear combination
of inputs induces the corresponding (max,+)-linear combination of outputs).
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Example 7. The synchronizations in the considered example are represented by the
following matrix inequalities in Nmax.

x(k)�


ε ε ε ε ε ε

4 ε ε ε ε ε

ε ε ε ε ε ε

ε ε 2 ε ε ε

ε e ε e ε ε

ε ε ε ε 2 ε

x(k)⊕


ε e ε ε ε ε

ε ε ε ε ε ε

ε ε ε e ε ε

ε ε ε ε ε ε

ε ε ε ε ε e
ε ε ε ε ε ε

x(k−1)⊕


e ε e
ε ε ε

ε e e
ε ε ε

ε ε ε

ε ε ε

u(k)

y(k)�
(

ε ε ε ε ε e
)

x(k)

This leads to the following (max,+)-linear state-space model:
x(k) =


e e ε ε ε ε

4 4 ε ε ε ε

ε ε e e ε ε

ε ε 2 2 ε ε

4 4 2 2 e e
6 6 4 4 2 2

x(k−1)⊕


e ε e
4 ε 4
ε e e
ε 2 2
4 2 4
6 4 6

u(k)

y(k) =
(

ε ε ε ε ε e
)

x(k)

Let us consider the input corresponding to a supply of five workpieces of type 1 and
type 2 at time 0 and an order of five workpieces of type 5 at time 0. Hence the kth,
0 ≤ k ≤ 4, occurrence of event u1 (“a workpiece of type 1 enters the system”), u2
(“a workpiece of type 2 enters the system”) and u3 = o (“an order is received”) is at
time 0. The associated daters are

u1 (k) = u2 (k) = u3 (k) =

 ε if k < 0
e if 0≤ k < 5
+∞ if k ≥ 5

The induced output can be easily calculated from the linear difference equation (3):

y(k) =


ε if k < 0
6⊗4k if 0≤ k < 5
+∞ if k ≥ 5

Hence, a workpiece of type 5 is delivered at time 6, 10, 14, 18, and 22.

3.3 Modeling in the Dioid M ax
in Jγ,δ K

Next, we show how to model (max,+)-linear systems in the dioid M ax
in Jγ,δ K. Let us

consider the synchronization “for all k≥ l, occurrence k of event e2 is at least τ units
of time after occurrence k− l of event e1”. As mentioned before, this corresponds
to the following inequality in Nmax:



Max-plus-linear Systems for Manufacturing Problems 15

∀k ∈ Z, e2 (k)� τe1 (k− l)

Rewriting this relation with the operators γ and δ leads to the following inequality
over daters: e2 �

(
δ τ γ l

)
(e1). Furthermore, the combination of several synchroniza-

tions on the same event can be expressed in a single inequality by using the operation
⊕ over daters. For example, synchronizations “for all k ≥ l1, occurrence k of event
e2 is at least τ1 units of time after occurrence k− l1 of event e1,1” and “for all k≥ l2,
occurrence k of event e2 is at least τ2 units of time after occurrence k− l2 of event
e1,2” are both expressed by a single inequality:

e2 �
(

δ
τ1γ

l1
)
(e1,1)⊕

(
δ

τ2γ
l2
)
(e1,2)

Hence, the rule describing the behavior of the system can be expressed by the fol-
lowing matrix inequalities. {

x� A(x)⊕B(u)
y�C (x) (4)

where x, u, and y respectively correspond to the vectors of daters associated with
internal, input, and output events and matrices A, B, and C respectively belong to
M ax

in Jγ,δ Kn×n, M ax
in Jγ,δ Kn×m, and M ax

in Jγ,δ Kp×n. Furthermore, as daters can be
represented by elements in the dioid M ax

in Jγ,δ K, the vectors of daters x, u, and y
appearing in (4) can be replaced by vectors with entries in M ax

in Jγ,δ K. This leads to
the following matrix inequalities in M ax

in Jγ,δ K.{
x� Ax⊕Bu
y�Cx (5)

Under the earliest functioning rule, y = Cx and, using Th. 1, x = A∗Bu. This leads
to a transfer function matrix H = CA∗B. Hence, the output y induced by input u is
given by y = Hu.

Example 8. The synchronizations in the considered example are represented by the
following matrix inequalities in M ax

in Jγ,δ K.
x�


ε γ ε ε ε ε

δ 4 ε ε ε ε ε

ε ε ε γ ε ε

ε ε δ 2 ε ε ε

ε e ε e ε γ

ε ε ε ε δ 2 ε

x⊕


e ε e
ε ε ε

ε e e
ε ε ε

ε ε ε

ε ε ε

u

y�
(

ε ε ε ε ε e
)

x

Hence, using [12], the transfer function matrix H is given by

H =
(

δ 6
(
γδ 4
)∗

δ 4
(
γδ 2
)∗

δ 6
(
γδ 4
)∗ )
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As before, let us consider the input corresponding to a supply of five workpieces
of type 1 and type 2 at time 0 and to an order of five workpieces at time 0. The
associated operators in M ax

in Jγ,δ K are

u1 = u2 = u3 = e⊕ γ
5
δ
+∞

The induced output is given by

y = δ
6⊕ γδ

10⊕ γ
2
δ

14⊕ γ
3
δ

18⊕ γ
4
δ

22⊕ γ
5
δ
+∞

This result is of course coherent with the one obtained by modeling in the (max,+)-
algebra.

4 Control

In this section, we focus on control methods modifying the internal dynamics of
the system by adding a (max,+)-linear prefilter P (see Fig. 5a) or a (max,+)-linear
output feedback F (see Fig. 5b). As in standard control theory, a prefilter is a dy-
namical system that processes an external input v as, e.g., a reference signal, and
provides a suitable input u = Pv to the system to be controlled. The notion of output
feedback refers to a scenario where the system output y is fed back via a dynami-
cal system F to generate the input u = Fy⊕ v to the system to be controlled. Both
control structures aim at modifying the given system dynamics to make it react in
an appropriate way to any external input. In a manufacturing context, where exter-
nal inputs are often non-controllable (e.g., orders from customers or parts delivered
by suppliers), this is clearly an appropriate strategy. Note that other control meth-
ods such as optimal feedforward control [5] and model predictive control [9] are
available to directly manipulate the inputs when this is possible.

v u y
P H

(a)

v u y

w
F

H

(b)

Fig. 5: Different Control Architectures

The main purpose of the control approach discussed in this section is to reduce
the size of internal buffers (and the number of workpieces in the production process
at a given time instant) by adequately delaying the occurrences of input events. This
effect can be easily quantified using second order theory for (max,+)-linear systems
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[14] (i.e., least upper bounds for the number of tokens in places are computed).
However, the main drawback of this control approach is a possible slowing down of
the system. Hence, choosing a prefilter or a feedback amounts to finding a trade-off
between rapidity of the system and sizes of the internal buffers. In the following, we
review some techniques to address this trade-off. The principle is to reduce as much
as possible the internal buffers while satisfying some requirements on the rapidity
of the system. Two typical requirements are: preservation of the transfer function
matrix or preservation of the throughput.

Example 9. In the considered example, the internal buffers B1 between machine M1
and machine M3 and B2 between machine M2 and machine M3 are of interest. In
the uncontrolled case, u = v. In this case, the sizes of the buffers B1 and B2 are both
equal to +∞, as the number of tokens between the transitions labelled x2 (resp. x4)
and x5 in Fig. 3 is unbounded. On the other hand, not controlling the system lets the
system evolve maximally fast, as no synchronizations are added by a prefilter P or
an output feedback F . Clearly, in practice, buffers always have restricted size, and
it is therefore vital to introduce control.

4.1 Model Reference Control

In model reference control [6, 7, 13], the requirement with respect to the rapidity
of the system is expressed by a reference model G. The transfer function matrix
of the controlled system, denoted Hc, must satisfy the condition Hc � G. Hence,
the reference model G is an upper bound for the transfer function matrix of the
controlled system: the dynamics of the controlled system is required to be at least as
fast as the one specified by the reference model G. In the following, model reference
control is only considered for the case G = H (i.e., the controlled system must be
at least as fast as the uncontrolled one or, in other words, control is not allowed
to “slow down” the output of the system). However, under some assumptions, the
following discussion can be generalized to any reference model G. Next, model
reference control by using either a prefilter or an output feedback is investigated.

4.1.1 Prefilter

Applying a prefilter P leads to the transfer function matrix HP for the controlled
system. Hence, a prefilter P such that HP� H or, equivalently, such that P� H ◦\H
is valid for model reference control. Under this restriction, we want to delay as much
as possible the occurrences of input events, i.e., select the optimal (i.e., greatest)
prefilter P such that P � H ◦\H. Therefore, H ◦\H seems to be the optimal prefilter.
However, it is not always possible to implement this prefilter, as it may be non-causal
(i.e., at time t this prefilter may need information available at time t + 1 or later).
This problem is solved by using a specific mapping called causal projection and
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denoted Pr+ (see [8, 10] for a formal discussion on the causal projection). Hence,
the optimal prefilter, denoted PH , is given by

PH = Pr+ (H ◦\H)

By construction, PH � e and HPH � H. Hence, HPH = H. Thus, the prefilter PH
does not modify the transfer function matrix of the system.

Example 10. The prefilter PH associated with the considered example is given by

PH = Pr+ (H ◦\H) =

 (
γδ 4
)∗

ε
(
γδ 4
)∗

δ 2
(
γδ 4
)∗ (

γδ 2
)∗

δ 2
(
γδ 4
)∗(

γδ 4
)∗

ε
(
γδ 4
)∗


As expected, the prefilter PH does not modify the transfer function matrix of the
system:

HPH = H =
(

δ 6
(
γδ 4
)∗

δ 4
(
γδ 2
)∗

δ 6
(
γδ 4
)∗ )

A state-space system realizing the transfer function matrix PH is:
xP =

(
γδ 4 ε

ε γδ 2

)
xP⊕

(
e ε e
ε e ε

)
v

u =

 e ε

δ 2 e
e ε

xP

An implementation of this system in terms of a TEG is shown in Fig. 6. In the con-

4

2

Machine M1

Machine M2

Machine M3

y

x1 x2

x3 x4

x5 x6

u1

u3

u2

2

4

Prefilter PH

2

2

Buffer B1

Buffer B2

v1

v2

v3

xP2

xP1

Fig. 6: Model Reference Control with Prefilter

trolled system, the size of the internal buffer B2 is equal to 0: as soon as a workpiece
of type 4 is produced by machine M2, this workpiece is immediately used by ma-
chine M3. However, it can be easily seen that the size of the internal buffer B1 is



Max-plus-linear Systems for Manufacturing Problems 19

still equal to +∞. Hence, in this example, using a prefilter that does not modify the
system transfer function matrix will not allow to upper-bound all internal buffers.

4.1.2 Output Feedback

To understand the need for feedback, we have to consider perturbations in the model.
In the following, we only consider additive state perturbations. This leads to a mod-
ified version of the model in M ax

in Jγ,δ K:{
x� Ax⊕Bu⊕q
y�Cx (6)

where vector q ∈M ax
in Jγ,δ Kn represents state perturbations. Note that, for manu-

facturing systems, additive state perturbations are sufficient to model a large class
of uncertainties and failures such as machine breakdowns or changes in processing
times of machines. Considering perturbations leads to an additional transfer func-
tion matrix from q to y. Indeed,

y = Hu⊕CA∗q

Perturbations do also affect the sizes of internal buffers. In many cases, the exis-
tence of perturbations strongly reduces the advantages induced by prefilters, as, by
construction, prefilters cannot take into account perturbations.

Example 11. Taking into account perturbations annihilates the gain induced by the
optimal prefilter PH in the considered example. With the optimal prefilter PH , the
sizes of internal buffers B1 and B2 remain equal to +∞ when perturbations are con-
sidered. Indeed, a breakdown of machine M3, such as machine M3 is broken from
the start (i.e., q4 = δ+∞ and qi = ε for i 6= 4), could lead to an infinite accumulation
of workpieces in buffers B1 and B2.

The previous discussion illustrates the need for control structures taking into ac-
count perturbations. In the following, we focus on output feedback, i.e., u = Fy⊕v.
The transfer function matrix of the controlled system is obtained as follows.

y = Hu⊕CA∗q

= HFy⊕Hv⊕CA∗q

= (HF)∗Hv⊕ (HF)∗CA∗q

where the last equality follows from Th. 1. Hence, if we choose the reference model
G = H, i.e., we require feedback to not slow down the output of the system, we seek
a feedback F such that (HF)∗H � H. To delay the occurrences of input events as
much as possible, we select the greatest causal feedback F such that (HF)∗H � H.
This feedback, denoted FH , is given by

FH = Pr+ (H ◦\H◦/H)
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For the proof, the reader is invited to consult [6, 8]. As (HFH)
∗ � e, (HFH)

∗H �H.
Furthermore, by construction, (HFH)

∗H � H. Hence, (HFH)
∗H = H. Thus, the

feedback FH does not modify the transfer function matrix of the system.

Example 12. The feedback FH associated with the considered example is given by

FH = Pr+ (H ◦\H◦/H) =

 ε

γ2
(
γδ 2
)∗

ε


As expected, the feedback FH does not modify the transfer function matrix of the
system:

(HFH)
∗H = H =

(
δ 6
(
γδ 4
)∗

δ 4
(
γδ 2
)∗

δ 6
(
γδ 4
)∗ )

A state-space system realizing the transfer function matrix FH is given by:
xF = γδ 2xF ⊕ y

w =

 ε

γ2

ε

xP

An implementation of this system in terms of a TEG is shown in Fig. 7. The size
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2

Machine M1

Machine M2

Machine M3

x1 x2

x3 x4

x5 x6

u1

u3

u2

2

Buffer B1

Buffer B2

v1

v2

v3

y

2

Feedback FH
xF

Fig. 7: Model Reference Control with Output Feedback

of the internal buffer B2 is now equal to 2, whereas in the uncontrolled case it was
equal to +∞, i.e., by using an output feedback, we indeed succeed in reducing the
size of internal buffer B2. However, the size of the internal buffer B1 is still equal
to +∞. Hence, for this example, using an output feedback that does not modify the
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system transfer function matrix will not allow to upper-bound all internal buffers. In
other words, the specification of not altering the system transfer function matrix is
too strict. For this reason, we will now describe control for a less restrictive control
specification.

4.2 Preserving the Throughput

The aim of this approach is to preserve the throughput (i.e., the maximal average
production rate) of the system. Clearly, preserving the transfer function matrix, as
done in model reference control, implies preserving the throughput. Hence, the lat-
ter is less restrictive (in terms of requirements on the rapidity of the system) than the
former, and we expect smaller internal buffers, if all events are delayed as much as
possible subject to the respective requirement. In general, the optimal control pre-
serving the throughput will slow down the system in the sense of providing a greater
transfer function matrix. In the literature, this approach has only been investigated
for feedback [15, 16]. As shown in [4], the greatest output feedback preserving the
throughput leads to internal buffers of finite size.

Example 13. The throughput associated with the considered example amounts to
one workpiece every four units of time. The greatest feedback Fσ preserving the
throughput is

Fσ =

 γ2δ 2
(
γδ 4
)∗

γ
(
γδ 4
)∗

γ2δ 2
(
γδ 4
)∗


The resulting closed-loop transfer function matrix is

(HFσ )
∗H =

(
δ 6
(
γδ 4
)∗

δ 4
(
γδ 4
)∗

δ 6
(
γδ 4
)∗ )

while the open-loop transfer function matrix is

H =
(

δ 6
(
γδ 4
)∗

δ 4
(
γδ 2
)∗

δ 6
(
γδ 4
)∗ )

Hence, the transfer function matrix of the controlled system is strictly greater than
the one of the uncontrolled one, i.e., the controlled system is slower than the uncon-
trolled one. However, as expected, the throughput of the controlled system and of
the uncontrolled system are both equal to one workpiece every four units of time.

A state-space system realizing the transfer function matrix Fσ is given by:
xF = γδ 4xF ⊕ y

w =

 γ2δ 2

γ

γ2δ 2

xP

An implementation of this system in terms of a TEG is shown in Fig. 8. The size of
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Fig. 8: Output Feedback Preserving the Throughput

internal buffer B1 is equal to two, and the size of the buffer B2 is equal to one. Hence,
by appropriately slowing down the system, the suggested feedback has indeed suc-
ceeded in strongly reducing internal buffers B1 and B2 (in the uncontrolled case, the
sizes of internal buffers B1 and B2 are both equal to +∞). A behavior affected by
the suggested feedback is provided by the input

v1 = v3 = e⊕ γ
5
δ
+∞ and v2 = δ

20⊕ γ
5
δ
+∞

This corresponds to an order of five workpieces and an arrival of five workpieces of
type 1 at time t = 0, and an arrival of five workpieces of type 2 at time t = 20. In the
uncontrolled system, workpieces of type 5 are delivered at time 24, 26, 28, 30, and
32. With feedback Fσ , workpieces of type 5 are delivered at time 24, 28, 32, 36, and
40. Hence, the feedback Fσ slowed down the system

5 Conclusion

In this chapter, we have explained how to use (max,+)-linear systems to model
manufacturing problems characterized by synchronizations (i.e., conditions of the
form: for all k ≥ l, occurrence k of event e2 is at least τ units of time after oc-
currence k− l of event e1). Furthermore, we have also presented some methods to
address the trade-off between rapidity of the system and sizes of internal buffers. In
particular, we have discussed two techniques preserving the transfer function ma-
trix (i.e., the input-output behavior) and preserving the throughput (i.e., the maximal
average production rate). Many other techniques have been investigated, e.g., pre-
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serving the response to a specific input [17] or preserving both the input-output
behavior and the perturbation-output behavior [18].
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