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Abstract

The reachability analysis problem of Max Plus Linear (MPL) systems has been properly solved using the Difference-Bound
Matrices approach. In this work, the same approach is considered in order to solve the reachability analysis problem of MPL
systems subjected to bounded noise, disturbances and/or modeling errors, called uncertain MPL (uMPL) systems. Moreover,
using the previous results on uMPL reachability analysis, we solve the conditional reachability problem, herein defined as the
support calculation of the probability density function involved in the stochastic filtering problem.
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1 Introduction

Discrete event systems subject to only synchronization
and time delay phenomena are a class of dynamic sys-
tems which can be described in a linear way in the
max-plus algebra. The max-plus algebra is an idempo-
tent semiring, an algebraic structure also called dioid
[8], in which the operations of sum (⊕) and product (⊗)
are defined as the maximization and addition, respec-
tively. Synchronization phenomena are modeled thanks
to maximization: the start of a task waits for the comple-
tion of the preceding tasks, while the delay phenomena
are depicted thanks to the classical sum: the completion
time of a task is equal to the starting time plus the task
duration.

The Max Plus Linear (MPL) equations are used to
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model manufacturing systems, telecommunication net-
works, railway networks, and parallel computing [8,11].
The linearity property has advantaged the emergence
of a specific theory for the performance analysis [26]
and the control of these systems, e.g., optimal open
loop control [15,29] and optimal state-feedback control.
Among closed-loop strategies we can cite the model
matching problem [30] and the control strategies al-
lowing the state to stay in a specific state subspace or
semimodule [7,21,28,33,36].

The MPL systems may be subjected to noise and dis-
turbances, which should be taken into account in order
to avoid tracking error or closed loop instability [39]. In
general, these perturbations are max-plus-multiplicative
and appear as uncertainties in the max plus model pa-
rameters. As a result the system matrices are uncertain.
The Stochastic Max Plus Linear (SMPL) systems are
defined as MPL systems where the matrices entries are
characterized by random variables [17,24,27,37,39]. In
this work, although the probabilistic aspects of the un-
certainties are not considered, we are interested in sys-
tems where the uncertain parameters can vary over a
known interval. Formally, we define the uncertain Max-
Plus Linear (uMPL) systems as nondeterministic MPL
systems where, at each event step, the entries of the sys-
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tem matrices can, independently, take an arbitrary value
within a real interval [13,14,35], as detailed in section
2.1.

To assess whether the system reaches a certain state from
a set of initial conditions is of great interest in many ap-
plications and concerns the reachability analysis. In [20]
residuation is used to determine if a state is reachable
from a single initial condition. In [19], it is shown that
if the initial set is a rational semimodule the reachable
set is also a rational semimodule. These authors men-
tion that this set has a “simple shape” and suggest that
an efficient numerical method remains to be designed.
In [32] reachability analysis of timed automata is tack-
led by considering max-plus polyhedra, a more general
class of set than semimodules. For a more exhaustive
presentation on max-plus polyhedra, see [6].

In [3] the forward reachability problem is addressed by
considering as initial set, the union of regions depicted as
difference bound matrices (DBM) [16]. In [2], backward
reachability analysis of autonomous MPL systems has
also been studied by considering a final set depicted as
union of DBM. In [4], these results have been extended
to nonautonomous MPL systems.

As shown in [3], to describe an MPL system by means of
DBM it is necessary to express it as a Piece-Wise Affine
System (PWA). This is always possible [25] and it is done
by partitioning the state space into regions in which the
system can be modeled by affine equations (in classical
algebra). The PWA system is simply the union of these
affine systems and the key point is that each affine sys-
tem and its corresponding active state space region can
be independently represented by one DBM (this is de-
tailed in section 2.3). The main advantage of this rep-
resentation is the existence of many efficient algorithms
for DBM manipulation and its drawback is the upsizing
of the representation of an MPL system from one com-
pact state equation to multiple DBM.

It should be remarked that, on one hand, [4] have proved
that any region described as a max-plus polyhedron can
also be described by a union of DBM. On the other
hand, the complexity of the algorithms involving max-
plus polyhedra are in general polynomial, while the com-
plexity of the DBM approach critically depends on the
number of PWA subsystems, which grows exponentially
with the dimension of the system. Due to the exponen-
tial complexity, the DBM approach comfortably handles
reachability computations for MPL models with up to
twenty state variables, see [4, Sec. 5]. Approaches based
on max-plus polyhedra seems to be a promising way to
reduce the complexity of reachability computations for
MPL systems and, therefore, to extend the dimension of
the addressable problem. However, to the best of the au-
thors’ knowledge, there are no approaches based on max-
plus polyhedra for solving the forward and the backward

reachability problem for general MPL systems and such
methods remain to be designed.

In this work, we aim to extend the DBM approach in
order to analyze uMPL systems. It is shown that uMPL
systems can be partitioned into components that can
be fully represented by DBM and that it is efficient for
reachability analysis of uMPL systems. Then, for the
forward reachability analysis, given a set of initial con-
ditions represented by a union of finitely many DBM,
the sets of states that may be reached at each event step
are computed. Similarly, for the backward reachability
analysis, given a set of final conditions represented by a
union of finitely many DBM, the sets of all states that
may lead to the set of final conditions in a fixed number
of steps can be computed.

Bayesian methods provide a rigorous general framework
for dynamic state estimation problems [22]. The objec-
tive of the Bayesian state estimation is to construct
the posterior probability density function (PDF) of the
states based on all information available. It should be
noted that the computation of the states PDF is quite
difficult. Although these problems are very closely re-
lated, this paper only concerns the reachability problem
and therefore the purpose is limited to the calculation
of the support of the prior and the posterior state es-
timation, which does not require the use of probability
measures (section 5). We define the conditional reach-
ability problem as the support calculation of the poste-
rior PDF of the uMPL system states. We assume that a
sequence of measurements related to the state through
an uMPL equation is given and then we show that this
problem can be solved by using the previous results on
reachability analysis of uMPL systems.

The paper is organized as follows: Section 2 recalls the
MPL systems and their decompositions as PWA sys-
tems, as well as the DBM representation of PWA systems
generated by MPL systems. Section 3 extends the PWA
systems to uMPL systems. Section 4 presents reacha-
bility analysis for uMPL systems. Section 5 deals with
the conditional reachability problem. Section 6 applies
the results of the paper in order to solve the conditional
reachability problem for a given uMPL system. Finally,
Section 7 concludes the work.

2 Preliminaries

2.1 Max Plus Linear Systems

A set S, endowed with two internal operations: sum(⊕)
and product(⊗) is a dioid or idempotent semiring if
the sum is associative, commutative and idempotent (i.e.
a ⊕ a = a) and the product is associative and left and
right distributive with respect to the sum 1 . The null (or

1 the product is not necessarily commutative
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zero) element, denoted by ε, is such that ∀a ∈ S, a⊕ ε =
a, and the identity element, denoted by e, is such that
∀a ∈ S, a ⊗ e = e ⊗ a = a. Besides, the zero element
is absorbing for the ⊗ operation (i.e. ∀a ∈ S, a ⊗ ε =
ε ⊗ a = ε) [8, Def. 4.1]. In this algebraic structure, a
partial order relation is defined by:

a � b⇔ a = a⊕ b. (1)

Given these conditions, it appears that the set
R ∪ {−∞} ∪ {∞} and the operations: α ⊕ β ≡
max{α, β} and α⊗β ≡ α+β, with ε = −∞, e = 0, and
with the convention that∞⊗ε = ε, is a dioid. Moreover,
it can be stated that this is a complete dioid since it is
closed for infinite sums and the left and right distribu-
tivity of the product extends to infinite sums 2 . This set
is called Max-Plus semiring and noted by Rmax. Note
that Rmax is linearly ordered with respect to ⊕ and the
order � in Rmax coincides with the usual linear order ≥.

The ⊕ and ⊗ operations can be extended to matri-

ces as follows. If A,B ∈ Rn×p
max and C ∈ Rp×q

max, then:
[A⊕B]ij = aij ⊕ bij and [A⊗ C]ij =

⊕p
k=1 aik ⊗ ckj .

The autonomous model of an MPL system is given by:

x(k) = A⊗ x(k − 1), (2)

where the entries of matrixA ∈ Rn×n
max are the parameters

of the model, aij represents the minimal delay between
two events. The variable k ∈ N is an event-number and
the state vector x ∈ Rn

max is a dater, i.e, x(k) contains
the k-th date of occurrence of each event of the system.

The nonautonomous model of an MPL system is defined
as:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k), (3)

where u is an external input and B ∈ Rn×m
max .

Any nonautonomous MPL system can be transformed
into an augmented autonomous MPL model by con-

sidering F = (A B) ∈ Rn×(n+m)

max and y(k − 1) =(
x(k − 1)T u(k)T

)T
[8, Sec. 2.5.4].

x(k) = F ⊗ y(k − 1). (4)

To model uncertain systems, the entries of matrix A are
assumed to be nondeterministic. This is consistent with
the assumption that the entries of A are associated to

2 For complete dioids, the order relation (1) can be written
as: a � b⇔ a = a⊕ b⇔ b = a∧ b, where a∧ b is the greatest
lower bound of a and b.

the system delays, that are subject to variations due
to disturbances. Formally, it is assumed that at each
event step k the entries aij can, independently, take an
arbitrary value within the real interval [aij , aij ]. The
autonomous model of an uncertain MPL (uMPL) system
is given by:

x(k) = A(k)⊗ x(k − 1), (5)

whereA(k) ∈ Rn×n
max is an uncertain matrix whose entries

are in intervals [aij , aij ], with aij , aij ∈ R ∪ {−∞}.

Remark 1 To assure FIFO (first in, first out) rule, the
matrix A(k) must satisfy A(k) ≥ In, where In is the

identity matrix in Rn×n
max.

Remark 2 On real physical systems the uncertainty of
the system matrix entries may be coupled. Indeed, the
equation x(k) = A0(k) ⊗ x(k) ⊕ A1(k) ⊗ x(k − 1) fre-
quently represents real systems and is equivalent to equa-
tion (5) with A(k) = A∗0(k)⊕A1(k). In this case, even
if the independence of the entries of A0(k) and A1(k)
is assumed, in general, the entries of A(k) will be cou-
pled. Therefore, assuming the independence of the en-
tries of A(k) will lead to conservative results. This work
will be focused in systems modeled by equation (5). How-
ever the results can be extended to systems of the type
x(k) = A0(k)⊗x(k)⊕A1(k)⊗x(k− 1) (see end of sec-
tion 3).

Remark 3 The approach presented in this work com-
pute the exact set of states that can be reached from a
initial set via the uMPL system given by (5), in a given
number of event steps. Thus if the real system can be mod-
eled as the uMPL system given by (5) the approach leads
to the exact reach sets. On the other hand, if the uMPL
system is a conservative representation for the real sys-
tem, the approach compute an over approximation for
the reach sets.

2.2 Piece-wise Affine Systems

This section presents a procedure to express an MPL
system as a Piece-wise Affine (PWA) system [4, Sec. 2.2].
Classical PWA systems are described in [10], [25] and
[38]. The PWA systems are characterized by a partition
of the state space, defined by finitely many linear in-
equalities, and by affine equations that are active within
each component of the partition.

Every MPL model can be expressed as a PWA system in
the event domain [25]. Consider a generic MPL system
given by:

z(k) = A⊗ x(k − 1), (6)

where A ∈ Rn×p
max and z and x are vectors of appropriate

dimensions.
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Remark 4 Equation (6) is generic in the sense that it
can represent either an autonomous MPL system (p = n)
or an nonautonomous MPL system (p = n+m).

The PWA system representing (6) can be constructed
from the coefficients g = (g1, · · · , gn) ∈ {1, · · · , p}n [4,
Sec. 2.2]. Each g is associated with a dynamics and a
region Rg such that, for all x ∈ Rg, the element gi cor-
responds to the index of the maximum term of the i-
th system equation of (6), which can be expressed as
zi(k) =

⊕p
j=1{aij ⊗ xj(k − 1)}, i.e.,

aigi ⊗ xgi(k − 1) =

p⊕
j=1

{aij ⊗ xj(k − 1)}. (7)

From (1), equation (7) can be expressed as:

aij +xj(k−1) ≤ aigi +xgi(k−1) ∀j ∈ {1, · · · , p}. (8)

Therefore, the region Rg which represents the set of all

x ∈ Rp

max that satisfies (8), is given by:

Rg =

n⋂
i=1

p⋂
j=1
j 6=gi

{
x ∈ Rp

max : xj − xgi ≤ aigi − aij
}
. (9)

From (7) and (8), the affine dynamics that is active in
Rg is given by:

zi(k) = xgi(k − 1) + aigi , 1 ≤ i ≤ n. (10)

Example 1 Consider the following MPL system:

x(k) =

3 7

2 4

⊗ x(k − 1).

According to (9) we have the following regions Rg ∈
R2

max, for g ∈ {1, 2}2 = {(1, 1), (1, 2), (2, 1), (2, 2)}.

R(1,1) = {x2 − x1 ≤ −4} ∩ {x2 − x1 ≤ −2} = {x2 − x1 ≤ −4} ,
R(1,2) = {x2 − x1 ≤ −4} ∩ {x1 − x2 ≤ 2} = ∅,
R(2,1) = {x1 − x2 ≤ 4} ∩ {x2 − x1 ≤ −2} = {−4 ≤ x2 − x1 ≤ −2} ,
R(2,2) = {x1 − x2 ≤ 4} ∩ {x1 − x2 ≤ 2} = {x1 − x2 ≤ 2} .

Thus, according to (10), the corresponding PWA system
is given by:

x(k) =



1 0

1 0

x(k − 1) +

3

2

 if x(k − 1) ∈ R(1,1),0 1

1 0

x(k − 1) +

7

2

 if x(k − 1) ∈ R(2,1),0 1

0 1

x(k − 1) +

7

4

 if x(k − 1) ∈ R(2,2),

In [5, Algorithm 1] the algorithm describes a general
procedure to construct a PWA system corresponding
to an MPL system. The worst-case complexity of the
algorithm is O(pn(np + p3)) and the bottleneck resides
in the worst-case cardinality of the collection of regions
Rg, given by pn [4, Sec. 2.3].

Remark 5 The worst-case cardinality of the number of
regions can often be tightened: practically, each row i of
an n × p matrix has p′i ≤ p finite elements, thus the
worst-case cardinality is

∏n
i=1 p

′
i ≤ pn. Besides, many

regions are empty then the number of regions is drasti-
cally smaller than the worst-case bound. In (Adzkiya et al.
2015a., Sec. 5.1), some experiments were carried out in
order to test the efficiency of the approach: for any given
n it was generated an n × n matrix A with 2 finite ele-
ments (generated between 1 and 100) that were randomly
placed in each row. Table 1, presents the average num-
ber of regions and the average time to generate the PWA
system over 10 experiments, for n ∈ {10, 13, 16, 19}. The
experiments were run in a 12-core Intel Xeon 3.47 GHz
PC with 24 GB of memory.

Table 1
Computation of PWA systems (average over 10 experiments)

n number of regions generating time

10 7.01× 102 4.73(s)

13 5.06× 103 46.70 (s)

16 4.91× 104 7.90 (min)

19 3.48× 105 67.07 (min)

2.3 Difference Bound Matrices

The Difference Bound Matrices (DBM) [16] are one of
the most efficient data structures for handling regions.
Particularly, each component of a PWA system gener-
ated by an MPL system can be represented by a DBM.
Following, we present a formal definition of DBM.

Definition 1 (Difference-Bound Matrix [16]) A
DBM is a square matrix that represents the intersection
of finitely many sets defined by xi − xj 1i,j αi,j, where
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1i,j∈ {<,≤} 3 and i 6= j with i, j ∈ {0, ..., n}, αi,j ∈
R ∪ {+∞} is the upper bound. An artificial value x0 is
considered. It is assumed equal to 0 and it is used to
represent bounds over a single variable, e.g., xi ≤ αi,0 ⇔
xi − x0 ≤ αi,0 or xi ≥ −α0,i ⇔ x0 − xi ≤ α0,i.

Therefore, a DBM is a matrix D in which di+1,j+1 =
(αi,j ,1i,j), represents the upper bound and the strict-
ness of the sign of xi−xj for i, j ∈ {0, ..., n}. From Defi-
nition 1, a DBM is a representation for a system of linear
inequalities: xi − xj 1ij αij

x0 = 0
i 6= j and i, j ∈ {0, ..., n} . (11)

Example 2 The set X = {x1 ∈ R : 1 < x1 ≤ 4} can
be represented by the following DBM:

x0 x1

D(X) =

(0,≤) (−1, <) x0


(4,≤) (0,≤) x1

Note that d
(X)
12 = (−1, <) represents x0 − x1 < −1 and

d
(X)
21 = (4,≤) represents x1 − x0 ≤ 4.

The solution set of (11) is the region of the DBM D,
noted byR(D). In general, the same region can be repre-
sented by different DBM. However, each DBM admits an
equivalent and unique representation in canonical form
[16, Th. 2]. By definition, if Dc is the canonical form of
D, then dcij is the cost of the least-cost path in D from
i to j [16, Sec. 4.1]. The Floyd-Warshall algorithm, pre-
sented in [18], can be used to obtain the canonical-form
representation of a DBM with a complexity that is cubic
w.r.t. its dimension.

Remark 6 The canonical DBM that represents the set
{x ∈ Rn} is an (n+ 1)× (n+ 1) matrix, noted by D(Rn),
which has entries equal to (0,≤) in the diagonal and
(∞, <) elsewhere.

Checking the emptiness of a DBM corresponds to check,
over the potential graph, for circuits with a strictly neg-
ative weight, which corresponds to an unfeasible con-
straint in (11), i.e., a constraint with αi,i < 0 or αi,i =
0 and 1i,i= {<}. This can be achieved by the Bellman-
Ford algorithm [9, Sec. 5], which is cubic w.r.t. the di-
mension of its input. However, if a DBM is in the canon-
ical form, the complexity of checking its emptiness re-
duces to linear w.r.t. its dimension [5, Sec. 2.3.3]. Be-
sides, if the DBM is in the canonical form, its projection
onto a subset of its variables can be find by deleting the

3 The symbols < and ≤ are assumed to be totally ordered
with < strictly less than ≤.

rows and columns corresponding to the complementary
variables [16, Sec. 4.1].

In many application it is necessary to compute the in-
tersection of DBM, which is again a DBM. Given two

n × n DBM, D(X1) and D(X2), with entries d
(X1)
ij =

(aij ,1
(X1)
ij ) and d

(X2)
ij = (bij ,1

(X2)
ij ), respectively, the

intersection D(X1∩X2) = D(X1) ∩D(X2) is defined by:

d
(X1∩X2)
ij =


(aij ,1

(X1)
ij )

if aij < bij

or (aij = bij, 1
(X1)
ij ≤1(X2)

ij ),

(bij ,1
(X2)
ij ) otherwise.

(12)
Another important operation is the Cartesian product
of DBM. Given two DBM D(X1) and D(X2) with dimen-
sions (p + 1) × (p + 1) and (n + 1) × (n + 1), respec-
tively, the Cartesian product of its regions is given by

R(D(X1)) × R(D(X2)) = {(x′T ,xT )T ∈ Rp+n : x′ ∈
R(D(X1)), x ∈ R(D(X2))}. From the DBM point of
view, the Cartesian product can be represented by an
augmented DBM D(X1×X2) = D(X1) × D(X2) with di-
mension (p+n+1)×(p+n+1), such thatR(D(X1×X2)) =
R(D(X1)) × R(D(X2)). Note that, in general, D(X1) ×
D(X2) 6= D(X2) ×D(X1).

Each region and the corresponding affine dynamics of
a PWA system generated by an MPL system can be
characterized by a DBM [5, Sec. 2.3.5]. From Definition 1
each region of the PWA system, presented in (9), can be
represented by a (p+1)×(p+1) DBM. Furthermore, the
affine dynamics (10) can be expressed as an intersection
of sets:

p⋂
i=1

{
zi(k)− xgi

(k − 1) ≤ aigi

}
∩

p⋂
i=1

{
xgi

(k − 1)− zi(k) ≤ −aigi

}
.

(13)
Therefore, the affine dynamics can be represented by an
(n + p + 1) × (n + p + 1) DBM, which constrain the
variables z(k) = (z1(k) · · · zn(k))T and x(k − 1) =
(x1(k − 1) · · · xp(k − 1))T and their differences.

Example 3 Each component of the PWA system of ex-
ample 1 can be represented by the following DBM: (No-
tation: x′ ≡ x(k) and x ≡ x(k − 1))

x0 x′1 x′2 x1 x2

D(1,1) =



(0,≤) (∞, <) (∞, <) (∞, <) (∞, <) x0


(∞, <) (0,≤) (∞, <) (3,≤) (∞, <) x′1
(∞, <) (∞, <) (0,≤) (2,≤) (∞, <) x′2
(∞, <) (−3,≤) (−2,≤) (0,≤) (∞, <) x1

(∞, <) (∞, <) (∞, <) (−4,≤) (0,≤) x2

x0 x′1 x′2 x1 x2

D(2,1) =



(0,≤) (∞, <) (∞, <) (∞, <) (∞, <) x0


(∞, <) (0,≤) (∞, <) (∞, <) (7,≤) x′1
(∞, <) (∞, <) (0,≤) (2,≤) (∞, <) x′2
(∞, <) (∞, <) (−2,≤) (0,≤) (4,≤) x1

(∞, <) (−7,≤) (∞, <) (−2,≤) (0,≤) x2
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x0 x′1 x′2 x1 x2

D(2,2) =



(0,≤) (∞, <) (∞, <) (∞, <) (∞, <) x0


(∞, <) (0,≤) (∞, <) (∞, <) (7,≤) x′1
(∞, <) (∞, <) (0,≤) (∞, <) (4,≤) x′2
(∞, <) (∞, <) (∞, <) (0,≤) (2,≤) x1

(∞, <) (−7,≤) (−4,≤) (∞, <) (0,≤) x2

In the following, are presented some important results
for calculating the image and the inverse image of a DBM
w.r.t a PWA system generated by an MPL system.

Proposition 1 [1, Th. 1] The image and the inverse
image of a DBM w.r.t. a subsystem of a PWA system
generated by an MPL system is a DBM.

Given an MPL system (possibly nonautonomous) char-

acterized by a matrix A ∈ Rn×p
max, the general proce-

dure for calculating the image of a DBM D, with region
R(D) ∈ Rp, w.r.t. each subsystem of a PWA system
generated by A is: 1) compute the Cartesian product of
D(Rn) and D (see remark 6); 2) intersect the obtained
DBM with the DBM generated by region (9) and dy-
namics (13); 3) compute the canonical form of the in-
tersection; and 4) project the canonical-form represen-
tation over the variables at event k (i.e. z1(k), ..., zn(k))
(cf. Proposition 1).

Similarly, the general procedure for calculating the in-
verse image of a DBM D, with regionR(D) ∈ Rn, w.r.t.
each subsystem of a PWA system generated by A is: 1)
compute the Cartesian product of D and D(Rp); 2) in-
tersect the obtained DBM with the DBM generated by
region (9) and dynamics (13); 3) compute the canonical
form of the intersection; and 4) project the canonical-
form representation over the variables at event k−1 (i.e.
x1(k − 1), ..., xp(k − 1)) (cf. Proposition 1).

The worst-case complexity of calculating the image or
the inverse image critically depends on computing the
canonical-form representation. The complexity of calcu-
lating the canonical-form representation of a DBM is
cubic w.r.t. its dimension (see section 2.3). Thus, the
worst-case complexity is O((n+ p)3) [4].

2.4 Interval Analysis

Interval arithmetic is presented in [34] and extended to
max-plus algebra in [12,23,29,31]. An interval is defined
as:

[x] = [x, x] = {x ∈ Rmax : x ≤ x ≤ x}. (14)

The intersection of two intervals [x] and [y] is empty or
an interval, defined by:

[x] ∩ [y] = [max{x, y}, min{x, y}]. (15)

If the intervals have nonempty intersection, the union is
an interval defined by:

[x] ∪ [y] = [min{x, y}, max{x, y}]. (16)

The Max-Plus operations can be extended to intervals
as follows:

[x]⊕ [y] = {x⊕ y : x ∈ [x] , y ∈ [y]} = [x⊕ y, x⊕ y], (17)

[x]⊗ [y] = {x⊗ y : x ∈ [x] , y ∈ [y]} = [x⊗ y, x⊗ y]. (18)

According to (1) and (17) a partial order for intervals in
Rmax can be defined as:

[x] � [y]⇔ x � y and x � y. (19)

In particular,

[x] = [y]⇔ x = y and x = y. (20)

Moreover, the Max-Plus sum can be extended to a finite
number of intervals:

n⊕
i=1

[x]i =

{
n⊕

i=1

xi : xi ∈ [x]i

}
=

[
n⊕

i=1

xi,

n⊕
i=1

xi

]
. (21)

The uMPL systems (Sec. 2.1) can be viewed as MPL
systems whose each matrix entry aij is in the interval
[aij] = [aij , aij ]. Defining [A] as a matrix of intervals
such that A(k) ∈ [A] = ([aij])1≤i≤n, 1≤j≤p, a generic

model for an uMPL system is given by:

z(k) = A(k)⊗ x(k − 1), A(k) ∈ Rn×p
max, A(k) ∈ [A] . (22)

The i-th system equation of (22) can be rewritten as:

zi(k) =

p⊕
j=1

{aij ⊗ xj(k − 1)}, aij ∈ [aij] . (23)

Then, given x(k − 1), and by using (21), zi(k) is in the
interval defined by:

[zi] (k) =

 p⊕
j=1

{aij ⊗ xj(k − 1)},
p⊕

j=1

{aij ⊗ xj(k − 1)}

 . (24)

In this work, we aim to represent the intervals [zi] (k)
as DBM. As we discuss in the next section, the intervals
[zi] (k) cannot be represented by a single DBM. There-
fore, we propose a partition of the state space in which
interval (24) can be expressed as a DBM suitable form.
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3 Partitioned Uncertain Max Plus Systems

This section presents the main contribution. We aim to
use the DBM data structure for the reachability analy-
sis of uMPL systems. In Section 2.2 we have seen that
every MPL system can be expressed as a PWA system
and Section 2.3 shows how DBM representation of PWA
systems is efficient for reachability analysis. Seeking for
generality, we observe that the reachability analysis of an
MPL system through the DBM approach is possible be-
cause each partitionRg (9) and corresponding dynamics
(13) are DBM. In the following, we propose a partition
of the state space of uMPL systems that satisfies this
property. On this purpose let us rewrite interval (24) as:

p⊕
j=1

{aij⊗xj(k−1)} � zi(k) �
p⊕

j=1

{aij⊗xj(k−1)} (25)

According to Definition 1, the DBM can easily handle
restrictions of the type

⊕p
j=1{aij ⊗ xj(k − 1)} � zi(k),

since they can be rewritten as
⋂p

j=1{xj(k− 1)− zi(k) ≤
−aij}. On the other hand, the DBM are not suitable to
represent the union of sets. Therefore, restrictions of the
type zi(k) �

⊕p
j=1{aij ⊗ xj(k − 1)} ≡

⋃p
j=1{zi(k) −

xj(k−1) ≤ aij} cannot be represented by a single DBM.
The main result of this work is to propose a partition
of the state space in which the dynamics (25) can be
expressed as a DBM suitable form.

Let us consider the problem of finding the region where,
for all i, [zi] (k) can be expressed as:

[zi] (k) =

 p⊕
j=1

{aij ⊗ xj(k − 1)}, aigi ⊗ xgi (k − 1)

 , (26)

where g = (g1, · · · , gn) with gi ∈ {1, · · · , p} has the
same interpretation as in (9).

This problem corresponds to find a region where the
following equality holds for all i ∈ {1, ..., n}: p⊕
j=1

{aij ⊗ xj}, aigi ⊗ xgi

 =

 p⊕
j=1

{aij ⊗ xj},
p⊕

j=1

{aij ⊗ xj}

 .

(27)

From (20), the equality holds if:

aigi ⊗ xgi =

p⊕
j=1

{aij ⊗ xj} ∀i. (28)

According to (1), for all i, j, equation (28) is equivalent
to:

aigi ⊗ xgi � aij ⊗ xj ⇔ xj − xgi ≤ aigi − aij . (29)

The region corresponding to (29) is given by:

Ru
g =

n⋂
i=1

p⋂
j=1
j 6=gi

{
x ∈ Rp

max : xj − xgi ≤ aigi − aij

}
. (30)

Region (30) defines a partition for uMPL systems. More-
over, if x ∈ Ru

g then zi(k) ∈ [zi] (k), as defined in (26).

Example 4 Consider the following uMPL system:

x(k) = A(k)⊗ x(k − 1), where A(k) ∈

 2 [5, 6]

[3, 4] 3

 .

According to (30) and (26), the corresponding partitioned
uMPL system is: (Notation: x′ ≡ x(k) and x ≡ x(k−1))

x′ ∈



[(2⊗ x1)⊕ (5⊗ x2) , 2⊗ x1]

[(3⊗ x1)⊕ (3⊗ x2) , 4⊗ x1]

 if x ∈ Ru
(1,1)

,

[(2⊗ x1)⊕ (5⊗ x2) , 6⊗ x2]

[(3⊗ x1)⊕ (3⊗ x2) , 4⊗ x1]

 if x ∈ Ru
(2,1)

,

[(2⊗ x1)⊕ (5⊗ x2) , 6⊗ x2]

[(3⊗ x1)⊕ (3⊗ x2) , 3⊗ x2]

 if x ∈ Ru
(2,2)

,

where: Ru
(1,1) = {x ∈ R2

max : x2 − x1 ≤ −4}, Ru
(2,1) =

{x ∈ R2

max : −4 ≤ x2 − x1 ≤ 1} and Ru
(2,2) = {x ∈

R2

max : x2 − x1 ≥ 1}. The region Ru
(1,2) is empty. The

regions Ru
(1,1), R

u
(2,1) and Ru

(2,2) are shown in figure 1.

From Definition 1, each region (30) can be represented
by a (p+1)×(p+1) DBM. From (26), for all i ∈ {1, ..., n},
zi(k) is in the set defined by the following inequalities:

zi(k) � aigi ⊗ xgi (k − 1), (31)

zi(k) �
p⊕

j=1

{aij ⊗ xj(k − 1)} ⇔


zi(k) � ai1 ⊗ x1(k − 1),

...

zi(k) � aip ⊗ xp(k − 1).

(32)

From this set, the following region can be defined:

n⋂
i=1

{
zi(k)− xgi (k − 1) ≤ aigi

}
∩

n⋂
i=1

p⋂
j=1

{
xj(k − 1)− zi(k) ≤ −aij

}
(33)

According to Definition 1, it is straightforward to see
that the dynamics of a partitioned uMPL system can be
represented by a (n+ p+ 1)× (n+ p+ 1) DBM.
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Remark 7 Each component of a partitioned uMPL
system (region plus corresponding dynamics) can
be fully characterized by the intersection of (30)
and (33). This intersection can be represented by a
(n + p + 1) × (n + p + 1) DBM which constrains the
variables [z1, . . . , zn, x1, . . . , xp] and their differences.

Given [A] = [A, A], where A, and A ∈ Rn×p
max, Algo-

rithm 1 describes a procedure to generate a partitioned
uMPL system represented by a collection of DBM D.

Algorithm 1 Generating a partitioned uMPL system
represented by a collection of DBM.

input: [A] = [A, A], where A, A ∈ Rn×p
max

output: D

1: D← ∅;
2: for each g ∈ {1, ..., p}n do
3: Compute the region Ru

g according to (30);
4: if Ru

g is not empty then
5: Compute the dynamics active in Ru

g accord-
ing to (33);

6: Generate the DBM Dg that represents Ru
g

and the corresponding active dynamics;
7: Save Dg into the output variable: D ← D ∪
{Dg};

8: end if
9: end for each

The worst-case complexity of Algorithm 1 is calculated
as follows. The maximum number of iterations in steps 2,
3 and 4 is pn, np and p3. Thus, the worst-case complexity
isO(pn(np+p3)). Note that the algorithm for generating
a PWA from an MPL systems has the same worst-case
complexity (see section 2.2).

Remark 8 We shall remark that the complexity of rep-
resenting an uMPL systems as a collection of DBM crit-
ically depends on the number of regions of the partitioned
systems. The regions of the partioned uMPL system only
depends on the upper bound of the uMPL system matrix
(see equation 30), which can be represented by a deter-
ministic matrix. Therefore, the results of the experiment
mentioned in remark 5 (for deterministic MPL systems)
holds for uMPL systems as well.

Example 5 In this example, the uMPL system of
example 4 is alternatively represented as a collec-
tion of DBM. For each g ∈ {1, 2}2 = {(1, 1), (1, 2),
(2, 1), (2, 2)}, we compute a DBM Dg which repre-
sents the region Ru

g and the corresponding dynamics.

The DBM D(1,1) is constructed as follows. From (30),

we have that: Ru
(1,1) = {x ∈ R2

max : x2 − x1 ≤ −4︸ ︷︷ ︸
d
(1,1)
54

}.

From (33), the dynamics active in Ru
(1,1) is given

by: {x′1 − x1 ≤ 2}︸ ︷︷ ︸
d
(1,1)
24

∩{x′2 − x1 ≤ 4}︸ ︷︷ ︸
d
(1,1)
34

∩{x1 − x′1 ≤ −2}︸ ︷︷ ︸
d
(1,1)
42

∩{x2 − x′1 ≤ −5}︸ ︷︷ ︸
d
(1,1)
52

∩{x1 − x′2 ≤ −3}︸ ︷︷ ︸
d
(1,1)
43

∩{x2 − x′2 ≤ −3}︸ ︷︷ ︸
d
(1,1)
53

.

Thus, D(1,1) is given by:

x0 x′1 x′2 x1 x2

D(1,1) =



(0,≤) (∞, <) (∞, <) (∞, <) (∞, <) x0


(∞, <) (0,≤) (∞, <) (2,≤) (∞, <) x′1
(∞, <) (∞, <) (0,≤) (4,≤) (∞, <) x′2
(∞, <) (−2,≤) (−3,≤) (0,≤) (∞, <) x1

(∞, <) (−5,≤) (−3,≤) (−4,≤) (0,≤) x2

The same procedure is used to compute D(2,1) and D(2,2).
x0 x′1 x′2 x1 x2

D(2,1) =



(0,≤) (∞, <) (∞, <) (∞, <) (∞, <) x0


(∞, <) (0,≤) (∞, <) (∞, <) (6,≤) x′1
(∞, <) (∞, <) (0,≤) (4,≤) (∞, <) x′2
(∞, <) (−2,≤) (−3,≤) (0,≤) (4,≤) x1

(∞, <) (−5,≤) (−3,≤) (1,≤) (0,≤) x2

x0 x′1 x′2 x1 x2

D(2,2) =



(0,≤) (∞, <) (∞, <) (∞, <) (∞, <) x0


(∞, <) (0,≤) (∞, <) (∞, <) (6,≤) x′1
(∞, <) (∞, <) (0,≤) (∞, <) (3,≤) x′2
(∞, <) (−2,≤) (−3,≤) (0,≤) (−1,≤) x1

(∞, <) (−5,≤) (−3,≤) (∞, <) (0,≤) x2

Remark 9 If aij = aij ∀i, j (deterministic case), re-
gion Ru

g, given by (30), equals region Rg, given by (9). In
this case, for all x ∈ Ru

g, inequality (32) can be expressed

as zi(k) �
⊕p

j=1{aij ⊗xj(k− 1)} =
⊕p

j=1{aij ⊗xj(k−
1)} = aigi ⊗ xgi(k − 1). Therefore, it is straightforward
to see that the set (33) equals the set (13).

As proved below, the image and the inverse image of a
DBM through each partition of an uMPL system is a
DBM. Therefore, the DBM approach is useful for reach-
ability analysis of uMPL systems. Proposition 2 is an
extension of Proposition 1 to uMPL systems.

Proposition 2 The image and the inverse image of a
DBM w.r.t. a subsystem of a partitioned uMPL system
is a DBM.

PROOF. Given a partitioned uMPL system defined by
the regions (30) and corresponding dynamics (26), the
general procedure for calculating the image of a DBM
D, with region R(D) ∈ Rp, w.r.t. each subsystem of the
partitioned uMPL system can be decomposed in the fol-
lowing steps: 1) compute the Cartesian product ofD(Rn)

and D (see remark 6); 2) intersect the obtained DBM
with the DBM generated by region (30) and dynamics
(33); 3) compute the canonical form of the intersection;
and 4) project the canonical-form representation over
the variables at event k (i.e. z1(k), ..., zn(k)). Similarly,
the general procedure for calculating the inverse image
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of a DBM D, with region R(D) ∈ Rn, w.r.t. each sub-
system of a partitioned uMPL system generated by an
uMPL system can be decomposed in the following steps:
1) compute the Cartesian product of D and D(Rp); 2) in-
tersect the obtained DBM with the DBM generated by
region (30) and dynamics (26); 3) compute the canonical
form of the intersection; and 4) project the canonical-
form representation over the variables at event k−1 (i.e.
x1(k − 1), ..., xp(k − 1)). As stated in the proof of [1,
Th. 1], the Cartesian product of DBM is an augmented
DBM, the intersection of DBM is a DBM, the canonical
form of a DBM is a DBM and the orthogonal projection
of a DBM is a DBM. Then, the image and the inverse
of a DBM w.r.t. each subsystem of a partitioned uMPL
system is a DBM. As in the computation of the image
and the inverse image of a DBM w.r.t a subsystem of a
PWA system generated by an MPL system, the worst-
case complexity is O((n + p)3) and critically depends
on computing the canonical-form representation, whose
complexity is cubic w.r.t its dimension (see section 2.3).

Corollary 1 The image and the inverse image of a
union of finitely many DBM w.r.t. a partitioned uMPL
system is a union of finitely many DBM.

Computing the image of a union of q DBM w.r.t. a parti-
tioned uMPL system can be done by computing the im-
age of each DBM w.r.t each component of the partitioned
uMPL system. Similarly, computing the inverse image of
a union of q DBM w.r.t. a partitioned uMPL system can
be done by computing the inverse image of each DBM
w.r.t each component of the partitioned uMPL system.
Thus the worst-case complexity of computing the image
or the inverse image depends on the number of DBM
(considered to be q), on the worst-case cardinality of the
collection of subsystems (given by pn) and on the worst-
case complexity of computing the image of each DBM
w.r.t each component of the partitioned uMPL system
(given by O((n + p)3)). Therefore, the worst-case com-
plexity is O(qpn(n+ p)3).

Recalling remark 2, in many practical situations the
uMPL systems are modeled by:

x(k) = A0(k)⊗x(k)⊕A1(k)⊗x(k− 1)⊕B(k)⊗u(k),
(34)

where A0(k) ∈ [A0], A1(k) ∈ [A1], B(k) ∈ [B], x ∈
Rn

max and u ∈ Rm

max.

In the following, it is shown how the results presented
in this section can be extended to systems in this form.
The system (34) can be expressed as:

x(k) = H(k)⊗ r(k), (35)

whereH(k) ∈ ([A0] [A1] [B]) and r(k) = (xT (k) xT (k−
1) uT (k))T . Then, according to (30), the region corre-

sponding to each component of the partition is given by:

Ru
g =

n⋂
i=1

n+n+m⋂
j=1
j 6=gi

{
r ∈ Rn+n+m

max : rj − rgi ≤ higi − hij

}
, (36)

and, according to (33), the corresponding dynamics is
given by (note that ri(k) = xi(k) for i ∈ {1, ..., n}.):

n⋂
i=1

{
ri − rgi ≤ higi

}
∩

n⋂
i=1

n+n+m⋂
j=1

{
rj − ri ≤ −hij

}
. (37)

Therefore, the uMPL system (34) can be represented by
a collection of (n+ n+m+ 1)× (n+ n+m+ 1) DBM.
As a result, proposition 2 holds for this model of uMPL
systems.

4 Reachability Analysis of Uncertain MPL sys-
tems

This section presents an extension for uMPL systems of
some of the results on reachability analysis introduced in
[2], [3] and [4]. In the following, the definition of reach set
is recalled [3, Def. 3]. Moreover, in order to be compatible
with the uncertainty context in which the uMPL systems
are defined, a modification in the definition of backward
reach set [2, Def. 7] is introduced.

Definition 2 (reach set) Given an uMPL system and
a nonempty set of initial conditions X0 ⊆ Rn, the reach
set XN at the event step N > 0 is the set of all states
{x(N) : x(0) ∈ X0} that can be reached via the uMPL
dynamics, possibly by application of controls.

Definition 3 (backward reach set) Given an uMPL
system and a nonempty set of final positions X0 ⊆ Rn,
the backward reach set X−N is the set of all states
x(−N) that may lead to X0 in N steps of the uMPL
dynamics, possibly by application of controls.

4.1 Forward Reachability Analysis

For autonomous uMPL systems, given a nonempty set
of initial conditions X0, the reach set Xk at the event
step k can be recursively calculated as the image of the
reach set Xk−1 w.r.t the uMPL dynamics:

Xk = I[A]{Xk−1} = {A⊗ x : x ∈ Xk−1, A ∈ [A]}. (38)

From Corollary 1, if Xk−1 is a union of qk−1 DBM,
then Xk = I[A]{Xk−1} is a union of qk DBM. Thus,
by induction, it can be concluded that if X0 is a union
of q0 DBM, then Xk is a union of qk DBM, for each
k ∈ N. Given the set of initial conditions X0, comput-
ing XN at the event step N can be done as follows:
first, construct the partitioned uMPL system generated
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by A(k); then, for each k ∈ {1, ..., N}, compute the im-
age of Xk−1 w.r.t. the partitioned uMPL system. The
worst-case complexity to compute I[A]{Xk−1}, for each

k ∈ {1, ..., N} is O(qk−1n
n+3). Thus, the overall com-

plexity is O(nn+3
∑N

k=1 qk−1).

Remark 10 Given the cardinality qk−1 of the DBM
union set at event step k − 1, the worst-case cardinality
qk is qk−1n

n, which corresponds to the maximum pos-
sible number of nonempty DBM representing the image
of the intersection of each DBM at k − 1 and each re-
gion of the partitioned system. Practically many regions
are empty, and even for nonempty regions, many inter-
sections of DBM and regions are also empty, then the
cardinality qk is drastically smaller than its worst-case
bound. However, in general, it is not possible to quantify
the exact cardinality qk a priori [4, Sec. 5].

For nonautonomous uMPL systems, given a nonempty
set of initial conditions X0 and the set of inputs Uk for
each k ∈ N, the reach set Xk at the event step k can be
recursively calculated as:

Xk = I[F]{Xk−1 × Uk} = {F ⊗ y : y ∈ Xk−1 × Uk, F ∈ [F]}.
(39)

where F = (A B) and y =
(
xT uT

)T
.

If Xk−1 is a union of qk−1 DBM and Uk is a union of
rk DBM then Xk−1 × Uk is a union of q̄k−1 = qk−1rk
DBM. Thus, from Corollary 1, Xk = I[F]{Xk−1 × Uk}
is a union of qk DBM. By induction, it can be con-
cluded that if X0 is a union of q0 DBM and Uk is a
union of rk DBM for each k ∈ N, then Xk is a union
of qk DBM, for each k ∈ N. Given a nonautonomous
uMPL system, the set of initial conditions X0 and set
of inputs Uk for each k ∈ {1, ..., N}, computing XN

can be done as follows: first, construct the partitioned
uMPL system generated by [F] = ([A] [B]); then, for
each k ∈ {1, ..., N}, compute the image of Xk−1 × Uk

w.r.t. the partitioned uMPL system. The worst-case
complexity to compute I[F]{Xk−1×Uk}, for each k ∈ N
is O(q̄k−1(n + m)n+3). Thus, the overall complexity is

O((n+m)n+3
∑N

k=1 q̄k−1).

4.2 Backward Reachability Analysis

For autonomous uMPL systems, given a set of final posi-
tions X0, the backward reach set X−k can be recursively
calculated as the inverse image of the reach set X−k+1

w.r.t the uMPL dynamics:

X−k = I−1
[A]
{X−k+1} = {x ∈ Rn : ∃A ∈ [A] : A⊗ x ∈ X−k+1}.

(40)
From Corollary 1 it can be shown that if X0 is a union of
q0 DBM, then X−k is a union of q−k DBM, for each k ∈
N. Given the set of final conditions X0, computing X−N
can be done as follows: first, construct the partitioned

Fig. 1. Reachability Analysis for uMPL systems.

uMPL system generated by A(k); then, for each k ∈
{1, ..., N}, compute the inverse image of Xk−1 w.r.t. the
partitioned uMPL system. The worst-case complexity to
compute I−1[A]{X−k+1}, for each k ∈ N isO(q−k+1n

n+3).

Thus, the overall complexity is O(nn+3
∑N

k=1 q−k+1).

For nonautonomous uMPL systems, given a set of final
conditions X0 and the set of inputs U−k for each k ∈ N,
the backward reach set X−k can be recursively calcu-
lated as the inverse image of X−k+1:

X−k = I−1
[F]
{X−k+1}

= {x ∈ Rn : ∃u ∈ U−k+1, ∃F ∈ [F] : F ⊗ y ∈ X−k+1}. (41)

Given an nonautonomous uMPL system, characterized
by the matrices [A] and [B], the set of final positions X0

and set of inputs U−k+1 for each k ∈ {1, ..., N}, com-
puting X−N can be done as follows: first, construct the
partitioned uMPL system generated by [F] = ([A] [B]);
then, for each k ∈ {1, ..., N}, compute the inverse im-
age of Xk−1 w.r.t. the partitioned uMPL system; next,
intersect the inverse image with Rn × U−k+1; and fi-
nally, project the intersection over the state variables.
From Corollary 1, it can be shown that X−k is a union
of finitely many DBM, for k ∈ N. The worst-case com-
plexity to compute I−1[F]{X−k+1} isO(q̄−k+1(n+m)n+3),

where: q̄−k+1 = q−k+1r−k+1 and q−k+1 and r−k+1 are,
respectively, the cardinality of the DBM union set repre-
senting X−k+1 and U−k+1. Thus, the overall complexity

to compute X−N is O((n+m)n+3
∑N

k=1 q̄−k+1).

Example 6 Considering the partitioned uMPL system
obtained in Example 5 and the set of initial conditions

X0 = {x ∈ R2

max : 0 ≤ x1 ≤ 1.5, − 6 ≤ x2 ≤ 4}, the
reach set X1 is calculated as follows. The set X0 can be
represented by the following DBM:

10



x0 x1 x2

D(X0) =


(0,≤) (0,≤) (6,≤) x0

(1.5,≤) (0,≤) (∞, <) x1

(4,≤) (∞, <) (0,≤) x2

The cross product D(R2×X0) = D(R2)×D(X0) is given by:
x0 x′1 x′2 x1 x2

D(R2×X0) =



(0,≤) (∞, <) (∞, <) (0,≤) (6,≤) x0


(∞, <) (0,≤) (∞, <) (∞, <) (∞, <) x′1
(∞, <) (∞, <) (0,≤) (∞, <) (∞, <) x′2
(1.5,≤) (∞, <) (∞, <) (0,≤) (∞, <) x1

(4,≤) (∞, <) (∞, <) (∞, <) (0,≤) x2

The intersection of D(R2×X0) and D(1,1) is given by:
D(R2×X0) ∩D(1,1) =

x0 x′1 x′2 x1 x2

(0,≤) (∞, <) (∞, <) (0,≤) (6,≤) x0


(∞, <) (0,≤) (∞, <) (2,≤) (∞, <) x′1
(∞, <) (∞, <) (0,≤) (4,≤) (∞, <) x′2
(1.5,≤) (−2,≤) (−3,≤) (0,≤) (∞, <) x1

(4,≤) (−5,≤) (−3,≤) (−4,≤) (0,≤) x2

The canonical form of the intersection is given by:
cf(D(R2×X0) ∩D(1,1)) =

x0 x′1 x′2 x1 x2

(0,≤) (−2,≤) (−3,≤) (0,≤) (6,≤) x0


(3.5,≤) (0,≤) (−1,≤) (2,≤) (9.5,≤) x′1
(5.5,≤) (2,≤) (0,≤) (4,≤) (11.5,≤) x′2
(1.5,≤) (−2,≤) (−3,≤) (0,≤) (7.5,≤) x1

(−2.5,≤) (−6,≤) (−7,≤) (−4,≤) (0,≤) x2

The image of X0 w.r.t. the component g = (1, 1), noted

byX
(1,1)
1 , is obtained by computing the orthogonal projec-

tion of cf(D(R2×X0)∩D(1,1)) over x′, which corresponds
to delete the rows and columns corresponding to x:

x0 x′1 x′2

D
(X

(1,1)
1

)
=


(0,≤) (−2,≤) (−3,≤) x0

(3.5,≤) (0,≤) (−1,≤) x′1
(5.5,≤) (2,≤) (0,≤) x′2

Therefore X
(1,1)
1 = R(D(X

(1,1)
1 )) = {x′ ∈ R2 : 2 ≤

x′1 ≤ 3.5, 3 ≤ x′2 ≤ 5.5, 1 ≤ x′2 − x′1 ≤ 2}. Applying
the same procedure for the other components, we obtain

X
(2,1)
1 = {x′ ∈ R2 : 2 ≤ x′1 ≤ 8.5, 3 ≤ x′2 ≤ 5.5, − 3 ≤

x′2 − x′1 ≤ 2} and X
(2,2)
1 = {x′ ∈ R2 : 6 ≤ x′1 ≤

10, 4 ≤ x′2 ≤ 7, −3 ≤ x′2 − x′1 ≤ −2}. Finally, the
reach set X1 is the union of the images of X0 w.r.t. each
component of the partitioned uMPL system. Thus, X1 =

X
(1,1)
1 ∪X(2,1)

1 ∪X(2,2)
1 = {x′ ∈ R2 : 2 ≤ x′1 ≤ 8.5, 3 ≤

x′2 ≤ 5.5, −3 ≤ x′2 − x′1 ≤ 2} ∪ {x′ ∈ R2 : 6 ≤ x′1 ≤
10, 4 ≤ x′2 ≤ 7, −3 ≤ x′2 − x′1 ≤ −2}.

The backward reach set X−1 is calculated as fol-

lows. First, we compute D(X0×R2) = D(X0) × D(R2):
x0 x′1 x′2 x1 x2

D(X0×R2) =



(0,≤) (0,≤) (6,≤) (∞, <) (∞, <) x0


(1.5,≤) (0,≤) (∞, <) (∞, <) (∞, <) x′1
(4,≤) (∞, <) (0,≤) (∞, <) (∞, <) x′2
(∞, <) (∞, <) (∞, <) (0,≤) (∞, <) x1

(∞, <) (∞, <) (∞, <) (∞, <) (0,≤) x2

Next, we compute D(X0×R2) ∩ D(1,1) and its canonical
form: cf(D(X0×R2) ∩D(1,1)) =

x0 x′1 x′2 x1 x2

(0,≤) (0,≤) (−1,≤) (2,≤) (∞, <) x0


(1.5,≤) (0,≤) (−1,≤) (2,≤) (∞, <) x′1
(3.5,≤) (2,≤) (0,≤) (4,≤) (∞, <) x′2
(−0.5,≤) (−2,≤) (−3,≤) (0,≤) (∞, <) x1

(−4.5,≤) (−6,≤) (−7,≤) (−4,≤) (0,≤) x2

Then, the inverse image of X0 w.r.t. the component

g = (1, 1), noted by X
(1,1)
−1 , is obtained by computing the

orthogonal projection of cf(D(X0×R2) ∩D(1,1)) over x:

x0 x1 x2

D
(X

(1,1)
−1

)
=


(0,≤) (2,≤) (∞, <) x0

(−0.5,≤) (0,≤) (∞, <) x1

(−4.5,≤) (−4,≤) (0,≤) x2

Therefore X
(1,1)
−1 = R(D(X

(1,1)
−1

)) = {x ∈ R2 : −2 ≤
x1 ≤ −0.5, x2 ≤ −4.5, x2 − x1 ≤ −4}. Applying
the same procedure for the other components, we obtain

X
(2,1)
−1 = {x ∈ R2 : − 7 ≤ x1 ≤ −0.5, − 6 ≤ x2 ≤
−3.5, −4 ≤ x2 − x1 ≤ 1} and X

(2,2)
−1 = {x ∈ R2 : x1 ≤

−4.5, −6 ≤ x2 ≤ −3.5, x2−x1 ≥ 1}. Finally, the back-
ward reach set X−1 is the union of the inverse images
of X0 w.r.t. each component of the partitioned uMPL

system. Thus, X−1 = X
(1,1)
−1 ∪ X(2,1)

−1 ∪ X(2,2)
−1 = {x ∈

R2 : −2 ≤ x1 ≤ −0.5, x′2 ≤ −4.5, x2−x1 ≤ −4}∪{x ∈
R2 : x1 ≤ −0.5, −6 ≤ x2 ≤ −3.5, − x2 − x1 ≥ −4}.

The set of initial/final conditions X0, the reach set X1

and the backward reach set X−1 are shown in Figure 1.

5 Conditional Reachability Analysis

Bayesian methods provide a rigorous general framework
for dynamic state estimation problems [22]. Consider the
following system:

x(k) = fk−1 (x(k − 1),w(k)) , (42)

z(k) = hk (x(k),v(k)) . (43)

Where x ∈ Rn and z ∈ Rl are, respectively, the state
and measurement vectors; w ∈ Rm and v ∈ Rr are in-
dependent identically distributed (iid) process noise se-
quence; fk−1 : Rn × Rm → Rn is in general a nonlinear
transition function and hk : Rn × Rr → Rl is the mea-
surement function.

In the Bayesian approach, one aims to construct the
posterior PDF p(xk|z1, ..., zk), which is the PDF of
the states x(k) given all the available information
z(1), ..., z(k) at the event step k. The posterior PDF
may be obtained recursively in two stages: prediction
and update [22]. In the prediction stage it is assumed
that the required PDF p(xk−1|z1, ..., zk−1) is available
at the event step k − 1. Therefore, using the system
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model and the Chapman-Kolmogorov equation it is pos-
sible to obtain the prior PDF p(xk|z1, ..., zk−1), based
on all information available at the event step k − 1. In
the update stage, the required PDF p(xk|z1, ..., zk) is
obtained by updating the prior PDF, via the Bayes rule,
based on the new available information zk and on the
measurement model.

In this work, the functions fk−1(.) and hk(.) are assumed
to be uMPL systems as defined in Section 2.1, i.e:

x(k) =A(k)⊗ x(k − 1), A(k) ∈ [A] , (44)

z(k) = C(k)⊗ x(k), C(k) ∈ [C] . (45)

The elements of matrices A(k) ∈ Rn×n and C(k) ∈
Rl×n are stochastic processes with supports in real inter-
vals(see section 2.4). No further assumptions are made
on these processes.

We define the calculation of the support of p(xk|z1, ..., zk),
denoted by Xk|k, as the conditional reachability prob-
lem. Assuming that Xk−1|k−1 is known at the event step
k − 1, the support of the prior PDF p(xk|z1, ..., zk−1),
noted by Xk|k−1, can be calculated via (38) for au-
tonomous uMPL sytems:

Xk|k−1 = I[A]{Xk−1|k−1} = {A⊗x : x ∈ Xk−1|k−1, A ∈ [A]},
(46)

and via (39) for nonautonomous uMPL systems:

Xk|k−1 = I[F]{Xk−1|k−1 × Uk}
= {F ⊗ y : y ∈ Xk−1|k−1 × Uk, F ∈ [F]}. (47)

Remark 11 The set Xk−1|k−1 is assumed to be a given
union of qk−1|k−1 DBM, then Xk|k−1 is a union of
qk|k−1 DBM. Thus, the worst-case complexity to com-

pute Xk|k−1 is O(qk−1|k−1n
n+3) for autonomous sys-

tems and O(q̄k−1|k−1(n + m)n+3) for nonautonomous
systems (see section 4.1).

In the update stage, the new information zk can be used
to update Xk|k−1. By using (40) it is possible to obtain

the set of all states X̃k|k that may lead to zk via the
measurement model in one event step.

X̃k|k = I−1
[C]{zk} = {x ∈ Rn : ∃C ∈ [C] : C⊗x ∈ Zk}. (48)

Remark 12 The measurement zk can be represented by
a single DBM D(zk), then X̃k|k is a union of q̃k|k DBM.

Therefore, the worst-case complexity to compute X̃k|k is

O(nl(l + n)3).

Then, the support of p(xk|z1, ..., zk), noted by Xk|k, is
obtained by updating Xk|k−1 as follows:

Xk|k = Xk|k−1 ∩ X̃k|k. (49)

Fig. 2. Support evolution of p(xk|z1, ..., zk).

Remark 13 The intersection of two sets represented
by the union of finitely many DBM is again a union
of finitely many DBM. Therefore, Xk|k is a union of
qk|k DBM. The worst-case cardinality qk|k of the DBM
union set Xk|k is qk|k = qk|k−1q̃k|k, and the worst-case

complexity to compute Xk|k, given Xk|k−1 and X̃k|k, is

O(qk|k−1q̃k|kn
2).

6 Results

In this section, we use the results from Section 5 to cal-
culate the support of the posterior PDF of an uMPL
system. The system considered is characterized by:

A(k) ∈

 2 [5, 6]

[3, 4] 3

, C(k) ∈

[1, 2] 1

0 [1, 3]

 .

The sequence of observation obtained via simu-
lation 4 is given by: z(1) = [14.16, 13.18]T and
z(2) = [18.00, 19.68]T . Using this sequence and the ini-
tial condition X0 =

{
x ∈ R2 : 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 8

}
,

the sets Xk|k for k = 1, 2, were calculated according to
(49). Figure 2 depicts the sets Xk|k and the set of initial
conditions X0.

7 Conclusions

In this work we have presented a procedure to partition
the state space of an uMPL system into components that
can be completely characterized by DBM. This has lead
us to be able to present a procedure for computing the

4 For the simulation, it was considered that the matrices
entries are uniformly distributed in the corresponding inter-
vals, e.g., the element a12 of A(k) is uniformly distributed
between 5 and 6.
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image and the inverse image of a DBM w.r.t. each com-
ponent of the partitioned uMPL system which is similar
to the procedure of computing the image and the inverse
image of a DBM w.r.t. each component of a PWA sys-
tem generated by an (deterministic) MPL system. Con-
sequently, most of the previous results on reachability
analysis of MPL systems could be extended to uMPL
systems. The complexity of the proposed algorithms has
the same worst-case bound comparing with the algo-
rithms proposed in [4], with the advantage of handling
a broader class of MPL systems. In section 5, we have
presented an application of the approach were we use
the forward and backward reachability analysis to com-
pute the support of the posterior PDF of the states of
an uMPL system.
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