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Abstract. This paper deals with control of (max,+)-linear systems when a dis-
turbance acts on system state. In a first part we synthesize the greatest control
which allows to match the disturbance action. Then, we look for an output feedback
which makes the disturbance matching. Formally, this problem is very close to the
disturbance decoupling problem for continuous linear systems.

1 Introduction

The (max,+) working group [1] has developed a linear theory for discrete
event systems which are characterized by synchronization phenomena and
time-delays. They have also proposed an optimal control law in regards of
just in time criterion. Roughly speaking, it consists in computing the latest
date of input events (which are controllable) in order to obtain output events
before given desired output dates. This control synthesis needs a complete
knowledge of the desired output. Since it is an open loop control, it is not
robust when disturbances act on the system. In [5] we have proposed a closed
loop control approach where the control objective is expressed as a reference
model. The controller design is based on the residuation theory applied to
particular mappings. Residuation theory makes possible to consider a kind of
mapping inversion defined on ordered sets, and then plays naturally a signif-
icant role in controller synthesis.
This presentation deals with controller design when disturbances act on the
system. As in conventional linear systems theory [10], the control is synthe-
sized in order to keep the system state x in the kernel of the output matrix
C. Section 2 recalls some algebraic tools and in particular that the kernel of
a linear mapping defined on dioids (or lattices) is an equivalence relation. In
Section 3 it is shown that our objective is equivalent to match the output due
to the disturbance. Then we show that the optimal control is the greatest (in
the dioid sense) which keeps the system state in the equivalence class gener-
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ated by the disturbance. This means that the inputs are delayed as much as
possible in order to match the output due to the disturbance.

2 Elements of dioid and residuation theories

2.1 Dioid Theory

We first recall in this section some notions from the dioid theory. A general
introduction is given in [4], and a detailed introduction can be found1 in [1].

Definition 1 (Dioid). A dioid is a set D endowed with two inner operations
denoted ⊕ and ⊗. The sum is associative, commutative, idempotent (∀a ∈ D,
a⊕a = a) and admits a neutral element denoted ε. The product is associative,
distributes over the sum and admits a neutral element denoted e. The element
ε is absorbing for the product.

Definition 2 (Order relation). An order relation can be associated with a
dioid D by the following equivalence : ∀a, b ∈ D, a � b ⇔ a = a⊕ b.

Definition 3 (Complete dioid). A dioid D is complete if it is closed for
infinite sums and if the product distributes over infinite sums too.

Theorem 1. Over a complete dioid D, the implicit equation a = ax⊕b admits
x = a∗b as least solution, where a∗ =

⊕
i∈IN (Kleene star operator) with

a0 = e.

The Kleene star operator, over a complete dioid D, will be represented by the
following mapping K : D → D, x 7→ x∗.

Definition 4 (Kernel [4],[3]). Let C : X → Y be a mapping. We call kernel
of C (denoted by ker C), the equivalence relation over X :

x
ker C≡ y ⇔ C(x) = C(y). (1)

The set of equivalence classes is denoted by X/ ker C and [x]C denotes the
equivalence class of x.

Remark 1. The usual kernel definition {x ∈ X | C(x) = ε} becomes meaning-
less in dioid algebra. Each equivalence class contains all the elements which
map to the same image, in [4], the term ”fibration” is used. Relation (1)
corresponds to the kernel definition of a mapping defined on lattices [6].

1 An electronic version is available on http://maxplus.org.
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2.2 Residuation theory

The residuation theory provides, under some assumptions, optimal solutions
to inequalities such as f(x) � b where f is an isotone mapping (f s.t. a �
b ⇒ f(a) � f(b)) defined over ordered sets. Some theoretical results are
summarized below. Complete presentations are given in [2] and [1].

Definition 5 (Residual and residuated mapping). An isotone mapping
f : D → E, where D and E are ordered sets, is a residuated mapping if for all
y ∈ E, the least upper bound of the subset {x|f(x) � y} exists and belongs to
this subset. It is then denoted f ](y). Mapping f ] is called the residual of f .
When f is residuated, f ] is the unique isotone mapping such that f ◦f ] � IdE ,
and f ] ◦ f � IdD where Id is the identity mapping respectively on E and D.

Theorem 2 ([1]). Consider the mapping f : E → F where E and F are
complete dioids of which the bottom elements are, respectively, denoted by εE
and εF . Then, f is residuated iff f(εE) = εF and f(

⊕
x∈G x) =

⊕
x∈G f(x)

for each G ⊆ E.

Corollary 1. The mappings La : x 7→ ax and Ra : x 7→ xa defined over a
complete dioid D are both residuated 2. Their residuals are usually denoted,
respectively, L]

a(x) = a◦\x and R]
a(x) = x◦/a in (max,+) literature.3

Theorem 3 ([1]). Let D be a complete dioid and A ∈ Dq×m be a matrix with
entries in D. Then, A◦/A is a matrix in Dq×q which verifies

A◦/A = (A◦/A)∗. (2)

2.3 Mapping restriction

In this subsection, the problem of mapping restriction and its connection with
the residuation theory is addressed. In particular the Kleene star mapping,
becomes residuated as soon as its codomain is restricted to its image.

Definition 6 (Restricted mapping). Let f : E → F be a mapping and
A ⊆ E. We will denote4 f|A : A → F the mapping defined by f|A = f ◦ Id|A
where Id|A : A → E, x 7→ x is the canonical injection. Identically, let B ⊆ F
with Imf ⊆ B. Mapping B|f : E → B is defined by f = Id|B ◦ B|f , where
Id|B : B → F , x 7→ x is the canonical injection.

Definition 7 (Closure mapping). An isotone mapping f : E → E defined
on an ordered set E is a closure mapping if f � IdE and f ◦ f = f .
2 This property concerns as well a matrix dioid product, for instance X 7→ AX

where A, X ∈ Dn×n. See [1] for the computation of A ◦\B and B◦/A.
3 a ◦\b is the greatest solution of ax � b.
4 These notations are borrowed from classical linear system theory see [10].
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Proposition 1 ([5]). Let f : E → E be a closure mapping. A closure mapping
restricted to its image Imf |f is a residuated mapping whose residual is the
canonical injection Id|Imf : Imf → E, x 7→ x.

Corollary 2. The mapping ImK|K is a residuated mapping whose residual is(
ImK|K

)] = Id|ImK.
This means that x = a∗ is the greatest solution to inequality x∗ � a∗. Actually,
the greatest solution achieves equality.

2.4 Projectors [4, 3]

Lemma 1. Let C : X → Y be a residuated mapping and let

ΠC = C] ◦ C. (3)

ΠC is a projector, i.e. ΠC ◦ΠC = ΠC and C ◦ΠC = C.

Lemma 2. Let B : U → X be a residuated mapping and let

ΠB = B ◦B]. (4)

ΠB is a projector, i.e. ΠB ◦ΠB = ΠB and ΠB ◦B = B.

2.5 Projections on the Image of a Mapping Parallel to the Kernel
of Another Mapping

We consider B : U → X and C : X → Y, the projection of x ∈ X on ImB
parallel to ker C is any x′ which belongs to ImB and is equivalent to x modulo
ker C, that is,

find x′ ∈ X , s.t. ∃u ∈ U : C(x′) = C(x) and B(u) = x′.

From (3)-(4), it comes that z = ΠC(x) = C] ◦ C(x) is the greatest element
in the equivalence class of x modulo kerC , and ξ = ΠB(z) = B ◦ B](z) is
the greatest element in ImB which is less than z. Then z is ’subequivalent’
(see [4]) to x modulo ker C, i.e. C ◦ΠB ◦ΠC(x) = C(ξ) � C(x). If equality
holds true (i.e. C(ξ) = C(x)), ΠB ◦ ΠC will be denoted by ΠC

B , which is a
projector (i.e. ΠC

B = ΠC
B ◦ΠC

B ). The question of existence and uniqueness of
projections for given operators B and C are studied in [4, 3]. We summarize
the results

• Existence of projections for all x is equivalent to the condition C = C◦ΠC
B

(i.e. ξ = ΠC
B (x) ∈ [x]C).

• Uniqueness is equivalent to the condition B = ΠC
B ◦B (i.e. any x ∈ ImB

remains invariant by ΠC
B ).
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3 Control in the presence of disturbances{
x = Ax⊕Bu⊕ Sq
y = Cx

⇒
{

x = A∗Bu⊕A∗Sq
y = Cx

(5)

where u ∈
(
ZZmax[[γ]]

)p
is the control vector, x ∈

(
ZZmax[[γ]]

)n
the state vector,

y ∈
(
ZZmax[[γ]]

)q
the output vector, q ∈

(
ZZmax[[γ]]

)m
the disturbance (uncon-

trollable input) vector. Matrices of proper size A,B,C, S have entries in dioid
ZZmax[[γ]] with only non-negative exponents integer values. In the conventional
linear system theory [10], the disturbance decoupling problem consists in find-
ing a control u such that the disturbance q has no influence on the controlled
output y (i.e. y = 0, ∀q ∈ Q, the control keeps system state x in the ker-
nel of C). Our problem must be stated in a different way since trajectories
u, x, y and q are monotonous and no decreasing. The output cancellation is
consequently meaningless in this context. Here we seek for a control u which
keeps the system state x in the equivalence class of A∗Sq modulo kerC. We
say that such a control u ensures the disturbance matching, if u is such that

A∗Sq
ker C
≡ x ⇔ A∗Sq

ker C
≡ A∗Bu⊕A∗Sq ⇔ CA∗Sq = CA∗Bu⊕ CA∗Sq. (6)

The right statement shows that the objective will be achieved iff CA∗Sq �
CA∗Bu. Obviously the set of controls verifying (6) may contain many ele-
ments, hence we are interested in computing the greatest one, formally

uopt =
⊕

{u|A∗Bu⊕A∗Sq
ker C
≡ A∗Sq}

u.
(7)

The greatest element in
(
ZZmax[[γ]]

)n
such that y = CA∗Sq is by definition the

greatest element in [A∗Sq]C , i.e.

ΠC(A∗Sq) = C] ◦ C(A∗Sq).

We denote with the same symbol the matrix C and the linear mapping x 7→
Cx. However, since this greatest state is not necessarily reachable, we seek for
the greatest reachable state x ensuring the disturbance matching. This state
is the projection of ΠC(A∗Sq) in ImA∗B, i.e.,

ξ = ΠA∗B ◦ΠC(A∗Sq) = A∗B ◦ (A∗B)] ◦ C] ◦ C(A∗Sq). (8)

It is the greatest element in ImA∗B which is ’subequivalent’ to ΠC(A∗Sq), i.e.
such that C(ξ) � C(A∗Sq). If C ◦ΠA∗B ◦ΠC = C then ΠA∗B ◦ΠC = ΠC

A∗B

is a projector in ImA∗B parallel to kerC and ξ is the greatest element in
[A∗Sq]C .

Remark 2. System (5) can represent a Timed Event Graph (TEG), where
u represents controllable transitions, x internal transitions and q represents
uncontrollable transitions which delay the firing of internal transitions. In
this context, it is useless that tokens enter too soon into the system. Then the
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control objective is to delay maximally tokens input by taking the disturbance
into account. The control uopt achieves optimally the just-in-time criterion
when some disturbances q acts on the system.

The greatest control uopt allowing to reach this greatest state x (for a given
q), is uopt = (A∗B)] ◦ C] ◦ C(A∗Sq) = (CA∗B) ◦\ (CA∗Sq).
Practically, this control computation requires the disturbance5 knowledge.
Our problem is then to find a feedback F which allows to avoid this assump-
tion.

3.1 Output feedback

We discuss the existence and the computation of an output feedback controller
which leads to a closed-loop system making the disturbance matching. The
objective of the control (denoted by u = Fy with F ∈

(
ZZmax[[γ]]

)p×q
) is to

keep the transfer relation between y and q unchanged. System (5) becomes{
x = A∗BFy ⊕A∗Sq
y = Cx = CA∗BFy ⊕ CA∗Sq

(9)

The output equation (y = CA∗BFy ⊕ CA∗Sq) can be solved by considering
Theorem 1. We obtain6 y = (CA∗BF )∗CA∗Sq = CA∗(BFCA∗)∗Sq. Accord-
ing to the previous section, the disturbance matching problem with output
feedback can be stated as follows : find the greatest output feedback (denoted
F̂ ) such that the transfer function between y and q remains unchanged, i.e.

F̂ = {
⊕

F |M(F ) � CA∗S}, (10)

where mapping M : X 7→ (CA∗BX)∗CA∗S is not residuated since M(ε) =
CA∗S 6= ε. Nevertheless the following result shows that it is possible to com-
pute the greatest output feedback F̂ .

Proposition 2. The greatest solution of (10) is F̂ = CA∗B◦\CA∗S◦/CA∗S.

Proof. F = ε is a solution of (10) (since M(ε) = CA∗S), hence the great-

est solution, if it exists, also achieves equality. From (10), we seek for the

5 In a manufacturing system, q may represent the supply of raw material which is
a priori known. The problem is then very similar to the problem introduced in
[9] which establishes an optimal open-loop control in presence of known uncon-
trollable inputs.

6 We recall that (ab)∗a = a(ba)∗ (see [5]).
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greatest feedback verifying (CA∗BF )∗CA∗S � CA∗S. Since RCA∗S : x 7→

xCA∗S is residuated (cf. Corollary 1), we have (CA∗BF )∗CA∗S � CA∗S ⇔

(CA∗BF )∗ � CA∗S◦/CA∗S. According to (2), the last expression shows that

CA∗S◦/CA∗S belongs to the image of K. Since ImK|K is residuated (cf. Corol-

lary 2), there is also the following equivalence (CA∗BF )∗ � CA∗S◦/CA∗S ⇔

CA∗BF � CA∗S◦/CA∗S. Finally, since mapping LCA∗B : x 7→ CA∗Bx is

residuated too (see Corollary 1), we verify that F̂ = CA∗B◦\CA∗S◦/CA∗S is

the greatest solution of M(F̂ ) = (CA∗BF̂ )∗CA∗S � CA∗S.

Property 1. This feedback is the greatest such that x = A∗(BFCA∗)∗Sq ∈

[A∗Sq]C and obviously the resulting state x is lower than ξ = ΠC(A∗Sq).

Furthermore x = A∗(BFCA∗)∗Sq � A∗Sq. Therefore, if x ∈ [ξ]C it exists a

control u = Fy such that x = Ax ⊕ Bu ⊕ Sq ∈ [ξ]C . It seems interesting to

characterize under which conditions if x ∈ [ξ]C it exists a control u = Fy such

that x = Ax⊕ Bu ∈ [ξ]C and to exhibit the links with the (A,B)−invariant

definition given in [7].

4 Conclusion

The objective is to synthesize a control law keeping state x in the kernel of C.
It presents a strong analogy with the disturbance decoupling of the traditional
control systems. However it must be noted that the reached objective does
not lead to an output cancellation. Indeed the specific kernel definition of a
mapping on a lattice and the nature of the considered systems allow to obtain
the greatest control such that the output remains unchanged for any distur-
bance. The problem is obviously linked with the problem of characterization
of (A,B)−invariant and future works will discuss this point [8].
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