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1 introduction

Positive systems have the peculiar property that any nonnegative input and nonneg-
ative initial state generates a nonnegative state trajectory and nonnegative output
trajectory for all times. Positivity of the variables often emerges as the immediate
consequence of the nature of the phenomenon itself ([1]).

Among those large class of systems, this paper focuses on the positive systems
in which the state trajectories are non decreasing and for which the phenomena are
mainly delays and synchronization. A relevant model of these systems involves the
operators ’max’ and ’+’ (or by duality, the operators ’min’ and ’+’ ). The nice and
relatively old idea was to consider these systems in a specific algebraic structure,
namely idempotent semiring, in which these models become linear and then can
be studied in an analogous manner to the classical linear systems. The reader is
invited to consult [2][3] for an exhaustive introduction to this system theory, and
([4],[5]and [6]) for a presentation to the controllers synthesis. This paper attempts to
extend the theory of this kind of systems by considering systems subject to nonlinear
constraints in the peculiar algebraic setting. More precisely the state trajectories must
satisfy the following constraint : X =AX⊕BU �A�xwhere A describes the internal
dynamic of the system and A the constraints which must be respected.The main
contribution of this paper demonstrates that the residuation theory makes possible to
characterizing the greatest element in ImA∗ ∩ ImA∗ . This result is used to synthesize
a precompensator P, such that control u = Pv ensures to achieve a model matching
while satisfying the constraints.

2 Algebraic preliminaries

Definition 1. A dioid D is a set endowed with two internal operations denoted by ⊕
(addition) and⊗ (multiplication), both associative and both having neutral elements
denoted by ε and e respectively, such that⊕ is also commutative and idempotent (i.e.
a⊕a= a). The ⊗ operation is distributive with respect to ⊕, and ε is absorbing for
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the product (i.e. ε ⊗a= a⊗ε = ε , ∀a). Dioids can be endowed with a natural order
: a� b iff a= a⊕b. A dioid is complete if every subset A ⊆ D admits a least upper
bound equal to

⊕
x∈A

x and if ⊗ distributes over finite and infinite sums. The greatest

element of a Dioid is denoted � =
⊕
x∈D

x. A complete dioid have a complete lattice

structure, and then a� b⇔ b= a∧b.
Theorem 1. ([2],[6])

Over a complete dioid D , the implicit equation x = ax⊕ b admits x = a∗b as
least solution, where a∗ = ⊕i∈Nai with a0 = e. Furthermore, if x, y ∈ D , we have
x(yx)∗ = (xy)∗x and x∗ ⊗ x∗ = x∗.

Remark 1. (Matrix dioid) We can extend the notion of scalar dioid to matrix dioid by
considering the following two internal operations;

Let A,B ∈ Dn×p and C ∈ D p×q (A⊕B)i j = Ai j⊕Bi j and (A⊗C)i j =
k=p⊕
k=1

Aik⊗Ck j

Definition 2. (Isotone mapping) A mappingΠ from an ordered setD into an ordered
set C such that ∀ a, b ∈ D , a� b⇒ Π(a) � Π(b).

Lemma 1. ([2]) Let Π be a mapping from a dioid D into another dioid C . The
following statements are equivalent:

1. the mapping Π is isotone;
2. if lower bounds exist in D and C , Π is a ∧-submorphism, that is, ∀ a, b ∈ D ,

Π(a∧b) � Π(a)∧Π(b).

Lemma 2. ([2]) If a admits a left inverse b and a right inverse c, then
• b= c and this unique inverse is denoted a−1;
• moreover, ∀x,y, a(x∧ y) = ax∧ay.
The same holds true for right multiplication by a, and also for right and left

multiplication by a−1.

Definition 3. ([7],[2]) A multiplicative lattice-ordered group G , means that, in ad-
dition to being a group and a lattice, the multiplication is isotone, and
• the multiplication is necessarily distributive with respect to both the upper and the
lower bounds (G is called a reticulated group),
•moreover, the lattice is distributive (that is, upper and lower bounds are distributive
with respect to one another).

Theorem 2. ([2]) Let G be a multiplicative lattice-ordered group, and a,b ∈ G .
Since each element of G admits an inverse, one has the remarkable formulae:

(a∧b)−1 = a−1⊕b−1, (a⊕b)−1 = a−1∧b−1, a∧b= a(a⊕b)−1b,

Proposition 1. Let G be a multiplicative lattice-ordered group, a and b in G and
x ∈ D with D a dioid and G ⊆ D then ax∧bx= (a∧b)x.
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Proof. First, using lemma (1) we have (a∧b)x� ax∧bx. Second, since a and b are
in G from theorem (2), we have (a∧b)−1 = a−1⊕b−1, so:

ax∧bx= (a∧b)(a−1⊕b−1)(ax∧bx)
=(a∧b)[(x∧a−1bx)⊕ (b−1ax∧ x)] � (a∧b)[x⊕ x](a∧b)x

this leads to ax∧bx= (a∧b)x.
Definition 4. In the sequel, we will endow the dioidD with the product a�b= a⊗b
with the following convention ε ��=� (we recall that ε ⊗�= ε). And over matrix
dioid, (A�B)i j =

n∧
k=1

Aik�Bk j with A ∈ D p×n and B ∈ Dn×q. In the sequel,

e� ∈ Dn×n is the identity matrix of the law �, i.e, e�ii = e, and e�i j = � if i �= j.

Definition 5. In the next, we will consider the dual star operator which is given by:
g∗ =

∧
i∈N

g�i with g�i = g�·· ·�g︸ ︷︷ ︸
i times

and g�0 = e�.

Proposition 2. Let G be a reticulated group and A,B ∈ D p×n be two matrices with
each entry in G and x ∈ Dn×q then we have (A∧B)� x= A� x∧B� x

Proof. Let A,B ∈ D p×n be two matrices with each entry in G then

(
(A∧B)� x

)
i j =

k=n∧
k=1

(A∧B)ik� xk j =
k=n∧
k=1

(Aik ∧Bik)� xk j

=
k=n∧
k=1

(Aik� xk j)∧ (Bik� xk j) thanks to proposition (1)

=
(k=n∧
k=1

(Aik� xk j)
)
∧

(k=n∧
k=1

(Bik� xk j)
)

= (A� x∧B� x)i j.

Residuation theory allows a kind of pseudo-inversion of mapping defined over
lattices, it plays a central role in the control of systems. For (max,+) linear systems
we refer the reader to [6] and [5] for an introduction.

Definition 6. Let f be a mapping from a complete dioid D to a complete dioid C , f
is lower semi-continuous (l.s.c), respectively, upper semi-continuous (u.s.c), if for all
subsets (finite or infinite) X ofD f (

⊕
x∈X

x) =
⊕
x∈X

f (x), respectively f (
∧
x∈X

x) =
∧
x∈X

f (x).

Definition 7. An isotone mapping f :D → C , where D and C are ordered sets, is a
residuated mapping if for all y ∈ C , the least upper bound of the subset {x| f (x)� y}
exists and belongs to it. It is denoted by f #(y), and f # is called the residual of f .
An isotone mapping g : D → C is a dual residuated mapping if for all y ∈ C , the
greatest lower bound of the subset {x|g(x) � y} exists and belongs to it. It is then
denoted by g�(y), and g� is called the dual residual of g.

Theorem 3. ([2]) Let f ,g be isotone mappings from : D to C , where D and C are
ordered sets, the following equivalences holds true:
f is a residuated⇔ f ◦ f # � IdC and f # ◦ f � IdD ⇔ f is l.s.c and f (ε) = ε .
g is dual residuated⇔ g◦g� � IdC and g� ◦g� IdD ,⇔ g is u.s.c and g(�) = �.



4 Ouerghi Iteb and Hardouin Laurent

Example 1. ([2]) The mapping La : D → D , x �→ a⊗ x is isotone and l.s.c (i.e
La(

⊕
x∈X

x) =
⊕
x∈X

La(x)), then it is residuated. The residual is denoted L#a(x) = a◦\x in
(max, +) literature. We recall that ε◦\x= �, �◦\x= ε and �◦\� = �.
Proposition 3. ([2, §4.4.2]) If Π : D → C and Φ : C → B are dually residuated
mappings, then Φ ◦Π is also dually residuated and (Φ ◦Π)� = Π � ◦Φ �. Π ∧Φ is
also dually residuated and (Π ∧Φ)� = Π � ⊕Φ �.

Proposition 4. If each entry of A admits an inverse then the mapping ΓA : x �→ A� x
is u.s.c, with x an element of Dn×q, that is: ΓA(

∧
x∈X

x) =
∧
x∈X

ΓA(x)

Proof. ΓA(
∧
x∈X

x) = A� (
∧
x∈X

x)

⇒ (ΓA(
∧
x∈X

x))i j =
n∧

k=1
Aik� (

∧
x∈X

xk j) thanks to proposition 1;

(ΓA(
∧
x∈X

x))i j =
n∧

k=1

∧
x∈X

(Aik� xk j)=
∧
x∈X

n∧
k=1

(Aik� xk j)=
∧
x∈X

(ΓA(x))i j

then ΓA(
∧
x∈X

x) =
∧
x∈X

ΓA(x)

Corollary 1. Let A ∈ Dn×n, X ∈ Dn×q be two matrices, if each entry of A admits an
inverse then the mapping ΓA : x �→ A� x is dually residuated and its dual residual

is given by Γ �
A : x �→ A•\x with (A•\x)i j =

l=n⊕
l=1
Ali•\xl j =

l=n⊕
l=1
A−1li � xl j and by respecting

the following rules �•\x= ε , ε•\x= � and ε•\ε = ε (i.e. ε−1� ε = ε). It is important
to note that a � b ⇒ a•\x � b•\x. Furthermore, if b admits an inverse b•\(a⊗ c) =
(b•\a)⊗ c (i.e. b−1� (a⊗ c) = (b−1�a)⊗ c).

Proposition 5. Let G be a reticulated group, A,B ∈ D p×n two matrices with each
entry in G and x ∈ Dn×q then we have (A∧B)•\x= A•\x⊕B•\x.
Proof. The result is a direct application of proposition (3).

Theorem 4. ([2, §4.5]) Let A ∈ Dn×n, the following equivalences holds true:

x= A∗ ⊗ x⇔ x� A⊗ x⇔ A◦\x� x⇔ A∗◦\x= x.

Corollary 2. The greatest solution of Ax� x and x� B is A∗◦\B.
Proposition 6. Let G ∈ Dn×n with each entry in a reticulated group then the follow-
ing equivalences holds true:

x� G� x⇔ G•\x� x⇔ G∗•\x= x⇔ G∗ � x= x.

Proof. First, we prove that: x� G� x⇒ G•\x� x.
If x � G� x then G•\x � G•\(G� x) since (G•\.) is isotone, furthermore theorem (3)
yields G•\(G� x) � x, then G•\x� x.
Second, we prove that: G•\x� x⇒ G∗•\x= x.
If x� G•\x⇒ x� (e�•\x)⊕ (G•\x)⊕ (G�2•\x)⊕·· · and thanks to proposition (5)
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⇒ x� (e� ∧G∧G�2∧·· ·)•\x= G∗•\x� e�•\x= x so x= G∗•\x.
Third, we prove that x= G∗•\x⇒ x= G∗ � x
x=G∗•\x⇒G∗�x=G∗�(G∗•\x)� x (thanks to theorem 3), butG∗�x� e��x= x,
then G∗ � x= x.
Fourth, we prove that G∗ � x= x⇒ x� G� x.
Thanks to proposition 4, G∗ � x= (x∧G� x∧G�2� x∧·· ·) � G� x.

Proposition 7. Let A ∈ Dn×p, X ∈ D p×q and B ∈ Dn×n be three matrices. If each
element Bi j admits an inverse then we have B•\(A⊗X) = (B•\A)⊗X

Proof. (B•\(A⊗X))i j =
l=n⊕
l=1
Bli•\(A⊗X)l j =

l=n⊕
l=1
Bli•\(

k=p⊕
k=1

Alk⊗Xk j)

=
l=n⊕
l=1

k=p⊕
k=1

Bli•\(Alk⊗Xk j) since Γ �
B is l.s.c

=
k=p⊕
k=1

l=n⊕
l=1

(Bli•\Alk)⊗Xk j since Bli admits an inverse

=
k=p⊕
k=1

(B•\A)ik⊗Xk j = ((B•\A)⊗X)i j.

Proposition 8. Let us consider a dioid D , a reticulated group G ⊆ D and two ma-
trices A,G ∈ Dn×n and each entry of G in G . The greatest x such that
A⊗ x� x� G� x and x� B is given by x̂= ((G∗•\A∗)∗)◦\B
Proof. First, we prove that: A⊗ x� x� G� x and x� B⇒ x� x̂.
Second we prove that x̂ satisfy the following properties
(i) x̂ � B
(ii) x̂ = A∗ ⊗ x̂
(iii) x̂ = G∗ � x̂
By considering propositions 6 and theorem 4, A⊗ x� x� G� x implies that
x = G∗ � x = G∗•\x = A∗ ⊗ x, which means that x ∈ ImG∗ ∩ ImA∗. Then, x must be
such that x = G∗•\(A∗x). The assumption about entries of G and proposition 7 leads
to x= (G∗•\A∗)⊗ x⇒ x� (G∗•\A∗)◦\x, which is equivalent to x= ((G∗•\A∗)∗)◦\x (see
theorem 4).
Then A⊗ x� x� G� x and x� B⇔ x= ((G∗•\A∗)∗)◦\x and x� B
⇔ x� x̂= ((G∗•\A∗)∗)◦\B. According to theorem 4 x̂ is such that

(G∗•\A∗)⊗ x̂� x̂� (G∗•\A∗)◦\x̂ (1)

Now it suffices to prove that (i), (ii) and (iii) are respected
First we prove that x̂ ∈ ImA∗, according to theorem 4, this is equivalent to
x̂= A∗ ⊗ x̂= A∗◦\x̂; x̂� (G∗•\A∗)◦\x̂⇒
A∗◦\x̂� A∗◦\((G∗•\A∗)◦\x̂) = ((G∗•\A∗)⊗A∗)◦\x̂

= (G∗•\(A∗ ⊗A∗))◦\x̂ (see proposition 7)
= (G∗•\A∗)◦\x̂� x̂ since (G∗•\A∗) � e (see theorem 1).

Furthermore, x̂� A∗◦\x̂ (since A∗ � e), then x̂= A∗◦\x̂, i.e, x̂ ∈ ImA∗.
Second, we prove that x̂ ∈ ImG∗, i.e, x̂ = G∗ � x̂ = G∗•\x̂ (see proposition 6), from
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equation (1), x̂� (G∗•\A∗)⊗ x̂= G∗•\(A∗ ⊗ x̂) = G∗•\x̂ since x̂= A∗ ⊗ x̂.
On the other side G∗ � e� then x̂� G∗•\x̂ so x̂= G∗•\x̂= G∗ � x̂.
Third, since (G∗•\A∗)∗ � e, x̂� B.
To summarize, x̂ is the greatest solution of A⊗ x� x� G� x and x� B.

3 Application to P-temporal event graphs

3.1 P-temporal event graphs
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Fig. 1. A P-temporal event graph

The P-temporal Petri net model defined in [8], enables to model manufacturing
systems whose activities times are included between a minimum and a maximum
value, that is the sojourn time associated to each place Pi is included in an interval
[smini ,smaxi ] with 0≤ smini ≤ smaxi . Before the duration smini , the token in pi is in the
non-available state. After smini and before smaxi , the token in pi is in the available
state for the firing of a transition. After smaxi , the token in pi violates the constraints.

A transition is fired as soon as there is an available token in each upstream place.
The behavior of a transition may be described as a sequence of firing dates. The
variable x(k) is a ”dater” and it represents the k+1th firing date of the transition la-
beled x. For each increasing sequence x(k), it is possible to define the transformation
x(γ) =

⊕
k∈Z

x(k)⊗ γk, where γ is a backward shift operator in event domain (that is

y(γ) = γx(γ)⇔ y(γ) = x(k−1), see [2], p. 228). This transformation is analogous to
the Z-transform used in discrete-time classical control theory and the formal series
x(γ) is a synthetic representation of the trajectory {x(k)}k∈Z

. The set of formal series
in γ is denoted Zmax[[γ]] and constitutes a dioid. In general, the behavior of a p-TEG
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(i.e, the firing sequence of each transition) can be represented by linear relations over
this dioid: {

x(γ) = Ax(γ)⊕Bu(γ) = A∗Bu(γ),
y(γ) = Cx(γ) =CA∗Bu(γ), (2)

but trajectories must respect non-linear constraints which are given by:{
x(γ) � A� x(γ)∧B�u(γ),
y(γ) � C� x(γ).

, (3)

in which � is given in definition (4), and A represents the constraints relations be-
tween internal transitions, B represents the constraints relations between internal
transitions and input transitions and C represents the constraints relations between
output transitions and internal transitions. Entries of matrices A, B andC are assumed
to be in the reticulated group Zmax ⊂ Zmax[[γ]].

Example 2. Figure 1 gives an example of P-temporal timed event graph. We suppose
that there is no constraint on the input and output transition (this condition doesn’t
affect the generality of results ).
The behavior of the P-temporal event graph can be represented by

A⊗X(γ) � X(γ) � A�X(γ).

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
1 5 ε ε ε 1γ ε ε ε
ε 7 5 ε ε ε 3γ2 ε ε
ε ε ε 2 ε ε 1 ε ε
ε ε ε ε 3 ε ε ε ε
ε ε ε ε ε 3 ε ε ε
ε ε ε ε ε ε 1 ε ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
2 8 � � � � � � �
� 9 7 � � � � � �
� � � 4 � � 3 � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e ε ε
ε e ε
ε ε e
ε ε ε
ε ε ε
ε ε ε
ε ε ε
ε ε ε
ε ε ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,C=
(

ε ε ε ε ε ε ε e ε
ε ε ε ε ε ε ε ε e

)
.

Entry A(5,7) = 3γ2, corresponds to the place between transition x7 and x5, and means
that there are two tokens in the place and that the minimum sojourn time is 3 time
units. A(6,4) = 4 means that the tokens in the place between transitions x4 and x6
must not stay more than 4 time units. The entries equal to � = +∞, mean that there
is no constraint on the sojourn time. It must be noted that each entry admits an in-
verse (with the convention�−1 = ε). This assumption is essential to solve the control
problem.

3.2 Optimal control of p-temporal event graphs

The control method proposed herein is based on the Just-in- Time strategy and on the
model reference approach (see [6],[9],[10]). Let H ∈ (Zmax[[γ]])p×q be the transfer
matrix of the plant and Gre f ∈ (Zmax[[γ]])p×q be the reference model, i.e., the desired
transfer matrix for the controlled system. The precompensation problem for TEG is
solved by finding the greatest precompensator P such that HP� Gre f . The optimal
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solution, denoted by Po, is given by Po = H◦\Gre f .
This means that, for a given external input v ∈ (Zmax[[γ]])q, the input variable, given
by u= P⊗ v , will be maximal and ensures that ∀ v HPov� Gre f v.

For P-TEG, the problem is to compute the greatest P such that HP =CA∗BP �
Gre f and A∗BP� A�A∗BP. By considering X = A∗BP, this problem may be written:

X � A∗B((CA∗B)◦\Gre f ) = X0 and A⊗X � X � A�X ,

which admits the following optimal solution: Xopt = ((A∗•\A∗)∗)◦\X0 = A
∗◦\X0 (see

proposition 8). Therefore, the precompensator must be such that P�Popt =A∗B◦\Xopt .
The last question arising is to know if Popt respect the constraints. It suffices that
A∗BPopt = A

∗ ⊗A∗BPopt . By lack of places, this problem is not adressed here.

Example 3. Let us consider the p-temporal given in figure (1) and a model reference

given by: Gre f =
(
14(4γ)∗ 21(4γ)∗ 19(4γ)∗
11(4γ)∗ 18(4γ)∗ 16(4γ)∗

)
the optimal precompensator is given

by: Popt =

⎛
⎝ 7(4γ)∗ 14(4γ)∗ 12(4γ)∗

(4γ)∗ 7(4γ)∗ 5(4γ)∗
2(4γ)∗ 9(4γ)∗ 7(4γ)∗

⎞
⎠.
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