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Some basic notations

I Tropical algebra, or Max-Plus algebra, is the algebra in which the
sum ⊕ is the maximum and the product ⊗ (omitted) is the
traditional sum;

I The neutral element of the sum, −∞, denoted in this context as
null, has the symbol ⊥. A vector or matrix of appropriate dimension
full of null entries will also be denoted by ⊥;

I I is the tropical identity matrix of appropriate dimension;

I M∗ =
⊕∞

i=0 M
i is the Kleene Closure of M;

I ρ(M) is the spectral radius of M, that is, the largest eigenvalue;

I Im{M} is the right image of M, that is, the set {x |∃y , x = My};
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Problem statement

I Consider a Tropical Linear Event-Invariant System

x [k + 1] = Ax [k]⊕ Bu[k] (1)

in which x [k] ∈ X is the state vectors and u[k] ∈ U is the control
vectors;

I Consider also a semimodule S ⊆ X described implicitly as the set of
x ∈ X such that

Ex = Dx ; (2)

I S is the set of desirable specifications;

I Tropical regulation problem R(A,B,E ,D): find a control action
u[k] such that for all initial condition x [0] there exists a natural
number K such that for all k ≥ K , x [k] ∈ S;
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(A,B) geometrical invariance and coupled problems

I [Katz, 2007]: A semimodule K ⊆ X is said to be (A,B) geometrical
invariant if for any x ∈ K there exists u ∈ U such that Ax ⊕Bu ∈ K;

I [Katz, 2007]: Given a specification semimodule S of a problem
R(A,B,E ,D), there exists a maximal (A,B) geometrical invariant
semimodule inside S. It will be denoted by Kmax(R);

I Definition: a problem R is said to be coupled if any member x of
Kmax(R), except the null vector itself, has only finite entries;
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(A,B) geometrical invariance and coupled problems

I Computing Kmax(R) can be very onerous [Katz, 2007]. So, it is not
feasible, in general, to compute it to check the coupled property;

I Very practical sufficient condition: suppose the constraints Ex = Dx
can be written in the special form x = M∗x (often the case);

I M∗ only having finite entries implies finite volume [Katz, 2007],
which in turn implies the coupled property;
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Control characteristic equation

I Definition: the control characteristic equation C(R) associated to
the problem R(A,B,E ,D) is the following equation for the
unknowns χ ∈ X , µ ∈ U and λ ∈ R

λχ = Aχ⊕ Bµ;

Eχ = Dχ. (3)

Furthermore, a solution {λ, χ, µ} is proper if no entry of χ is the
null element ⊥;

I Definition: the control characteristic spectrum of a problem, Λ(R),
is the set of λ such that {λ, χ, µ} is a proper solution;
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Non-critical problems

I All the members of Λ(R) are greater than the uncontrolled
(u[k] =⊥) system spectral radius, ρ(A): it is not possible to increase
the system rate;

I Definition: a problem R is said to be critical if the control
characteristic spectrum Λ(R) is the singleton {ρ(A)}. Otherwise, it
is said to be non-critical;
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Convergence number

I Definition: Given a square matrix M with ρ(M) ≤ 0, the
convergence number κ(M) is the smallest number k such that

M∗ = I ⊕M ⊕M2 ⊕M3 ⊕ ...⊕Mk . (4)

I If M has n rows (and hence n columns), then κ(M) ≤ n.
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Main results

I Theorem 1: a coupled problem R is solvable only if the control
characteristic equation C(R) has a proper solution {λ, χ, µ};

I Theorem 2: a coupled and non-critical problem R is solvable if and
only if its control characteristic equation C(R) has a proper solution
{λ, χ, µ}. The control action is a simple state feedback of the form

u[k] = Fx [k] (5)

in which F = µ(−χ)T . Furthermore, the closed loop system will
have eigenvalue equal to λ and convergence to S is achieved in at
most κ(λ−1A) events.
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Sketch of the proof of Theorem 1

I If the problem has a solution, there exists an (A,B) geometrical
invariant set inside the specification set S;

I Let K be one of these sets. The fact that the problem is coupled, by
hypothesis, implies that it is finitely generated. Then it can be
written as K = Im{X} for a matrix X ;
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Sketch of the proof of Theorem 1
I Since K is (A,B) geometrical invariant, there exist matrices U and

V such that
XV = AX ⊕ BU (6)

and furthermore, since K is inside the specification set S

EX = DX ; (7)

I Let v be an eigenvector of V with eigenvalue λ. Post-multiply the
two last equations by v

λ(Xv) = A(Xv)⊕ B(Uv);

E (Xv) = D(Xv); (8)

I Finally, since the problem is coupled, all the entries of X are not ⊥,
and therefore Xv has no ⊥ entry. By this and the Equation (8),
clearly χ = Xv , µ = Uv and λ compose a proper solution of the
control characteristic equation.
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Solving the control characteristic equation

I The control characteristic equation C(R) can be written
conveniently as(

A B
EA EB

)(
χ
µ

)
= λ

(
I ⊥
D ⊥

)(
χ
µ

)
; (9)

I This can be written as Uy = λVy , for unknowns {λ, y}. This is a
tropical two-sided eigenproblem [S. Gaubert and S. Sergeev, 2013];

I Can be studied using parametric mean-payoff games, [S. Gaubert
and S. Sergeev, 2013];

I Techniques for solving it studied only very recently, [P. A Binding
and H. Volkmer, 2007; R. A. Cuninghame-Green and P. Butkovic,
2008; P. Butkovic, 2010; S. Gaubert and S. Sergeev, 2013];

I Pseudopolynomial algorithms: not very difficult to solve currently for
medium-sized systems [S. Gaubert and S. Sergeev, 2013];



Solving the control characteristic equation

I The control characteristic equation C(R) can be written
conveniently as(

A B
EA EB

)(
χ
µ

)
= λ

(
I ⊥
D ⊥

)(
χ
µ

)
; (9)

I This can be written as Uy = λVy , for unknowns {λ, y}. This is a
tropical two-sided eigenproblem [S. Gaubert and S. Sergeev, 2013];

I Can be studied using parametric mean-payoff games, [S. Gaubert
and S. Sergeev, 2013];

I Techniques for solving it studied only very recently, [P. A Binding
and H. Volkmer, 2007; R. A. Cuninghame-Green and P. Butkovic,
2008; P. Butkovic, 2010; S. Gaubert and S. Sergeev, 2013];

I Pseudopolynomial algorithms: not very difficult to solve currently for
medium-sized systems [S. Gaubert and S. Sergeev, 2013];



Solving the control characteristic equation

I The control characteristic equation C(R) can be written
conveniently as(

A B
EA EB

)(
χ
µ

)
= λ

(
I ⊥
D ⊥

)(
χ
µ

)
; (9)

I This can be written as Uy = λVy , for unknowns {λ, y}. This is a
tropical two-sided eigenproblem [S. Gaubert and S. Sergeev, 2013];

I Can be studied using parametric mean-payoff games, [S. Gaubert
and S. Sergeev, 2013];

I Techniques for solving it studied only very recently, [P. A Binding
and H. Volkmer, 2007; R. A. Cuninghame-Green and P. Butkovic,
2008; P. Butkovic, 2010; S. Gaubert and S. Sergeev, 2013];

I Pseudopolynomial algorithms: not very difficult to solve currently for
medium-sized systems [S. Gaubert and S. Sergeev, 2013];



Solving the control characteristic equation

I The control characteristic equation C(R) can be written
conveniently as(

A B
EA EB

)(
χ
µ

)
= λ

(
I ⊥
D ⊥

)(
χ
µ

)
; (9)

I This can be written as Uy = λVy , for unknowns {λ, y}. This is a
tropical two-sided eigenproblem [S. Gaubert and S. Sergeev, 2013];

I Can be studied using parametric mean-payoff games, [S. Gaubert
and S. Sergeev, 2013];

I Techniques for solving it studied only very recently, [P. A Binding
and H. Volkmer, 2007; R. A. Cuninghame-Green and P. Butkovic,
2008; P. Butkovic, 2010; S. Gaubert and S. Sergeev, 2013];

I Pseudopolynomial algorithms: not very difficult to solve currently for
medium-sized systems [S. Gaubert and S. Sergeev, 2013];



Solving the control characteristic equation

I The control characteristic equation C(R) can be written
conveniently as(

A B
EA EB

)(
χ
µ

)
= λ

(
I ⊥
D ⊥

)(
χ
µ

)
; (9)

I This can be written as Uy = λVy , for unknowns {λ, y}. This is a
tropical two-sided eigenproblem [S. Gaubert and S. Sergeev, 2013];

I Can be studied using parametric mean-payoff games, [S. Gaubert
and S. Sergeev, 2013];

I Techniques for solving it studied only very recently, [P. A Binding
and H. Volkmer, 2007; R. A. Cuninghame-Green and P. Butkovic,
2008; P. Butkovic, 2010; S. Gaubert and S. Sergeev, 2013];

I Pseudopolynomial algorithms: not very difficult to solve currently for
medium-sized systems [S. Gaubert and S. Sergeev, 2013];



Solving the control characteristic equation

I The technique in [S. Gaubert and S. Sergeev, 2013] is based in the
construction of the spectral function s(λ) associated to the
two-sided equation;

I Piecewise affine, Lipschitz continuous and nonpositive function;

I The set of λ, such that {λ, y} is a solution for a y =⊥, is the set of
λ such that s(λ) = 0;

I In the context of the control characteristic equation C(R),
y = (χT µT )T , however, y 6=⊥ does not guarantee, in principle,
that χ has not ⊥ entries. That is, it does not guarantee that the
solution generated from y will be proper to C(R);

I If the problem is coupled, however, any solution to the two-sided
eigenproblem generates a proper solution to the control
characteristic equation C(R), that is, y 6=⊥ implies that χ does not
have ⊥ entries;
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Solving the control characteristic equation
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I Algorithms for finding the zeroes of s(λ) require evaluations of this
function, see [S. Gaubert and S. Sergeev, 2013];

I This can be done by solving the associated mean-payoff game at the
point λ;

I In the given example, ρ(A) = 50 (red line). The control
characteristic spectra is Λ = {50} ∪ [90, 100], which is not the
singleton {ρ(A)} = {50}, so the problem is non-critical;
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Conclusions

I Concepts as coupled, critical, control characteristic equation and
control characteristic spectrum have been proposed;

I With the aid of them, sufficient and necessary conditions to a wide
class of problems have been derived;

I Solutions can be computed efficiently by pseudopolynomial
algorithms;

I It was implemented in a real plant, showing the characteristics
expected by theory (as robustness to perturbations) [V. M.
Gonçalves, 2014];

I More results/details in V. M. Gonçalves’s thesis [V. M. Gonçalves,
2014].
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Gonçalves, 2014];

I More results/details in V. M. Gonçalves’s thesis [V. M. Gonçalves,
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algorithms;

I It was implemented in a real plant, showing the characteristics
expected by theory (as robustness to perturbations) [V. M.
Gonçalves, 2014];
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