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On the Steady State Control of Timed Event Graphs
with Firing Date Constraints

Vinicius Mariano Gonçalves, Carlos Andrey Maia, Laurent Hardouin

Abstract—Two algorithms for solving a specific class of steady
state control problems for Timed Event Graphs are presented. In
the first, asymptotic convergence to the desired set is guaranteed.
The second algorithm, which builds on from the recent develop-
ments in the spectral theory of min-max functions, guarantees
Lyapunov stability since the distance between the actual state
and the desired set never increases. Simulation results show the
efficiency of the proposed approach in a problem of moderate
complexity.

Index Terms—Petri Nets; Timed Event Graphs; Max-plus al-
gebra; Geometrical Invariance; Steady State Control; Lyapunov
Stability;

I. INTRODUCTION

A. Presentation and state of art

Timed Event Graphs (TEGs hereafter, see Section II for
the definition) is an appropriate formalism for modeling some
systems, as for example train scheduling [18], manufacturing
systems [7], semi-conductor production process [6], car indus-
try [5] and ribosome dynamics [9]. These kinds of systems can
have their dynamics described by linear state-space models in
Max-plus Algebra (see Section II for the definition), with two
isomorphic possible approaches: daters (event domain) and
counters (time domain) [8]. In this context, it may be desirable
that a certain set of constraints in the state space holds. This
could be done by using the state variables to design a control
law, in analogy with classical control theory.

Several authors studied this problem when the constraints
can be written as a set of max-plus linear equations. In [3], the
authors deal with the problem in the time domain, treating a
specific subset of linear constraints. These results were further
generalized by the authors in [4]. In [7], working in the
event domain and assuming that all the states are measurable
and controllable, they were further generalized by treating
maximum duration constraints. In [20], a max-plus geometric
control method was used to find a linear feedback controller
that guarantees certain constraints (in the dater domain). In
[24] and [23], also working in the dater domain, the authors
deal with the problem using eigenvectors and by solving a
max-plus affine equation, respectively. Finally, the previous
work of the authors, [16], also proposed a linear feedback
controller, which is a solution of a max-plus affine equation.
The most general form of max-plus linear constraints was
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mail: laurent.hardouin@univ-angers.fr), FRANCE.

considered in [24], [20], [16], but in the first two the set
must be computed explicitly as an image of a matrix and,
although important recent advances have been made in the
recent years, this is still a hard problem. See the complexity
of algorithms such as [21], [2], [10], [29], which compute
the entire set of solutions of max-plus linear equations. [16],
specially, proposes a more tractable approach in which the
constraints can be manipulated in their implicit formulation
as a max-plus linear equation. It is also worth mentioning
that the related problem of observers in the max-plus setting
was discussed in [22].

All these works have in common the structure of the
proposed controller: a linear static state feedback. Further,
they consider different classes of max-plus linear constraints.
By the author’s knowledge, the most generic case, that is,
when each constraints in the state x can be written as a generic
two-sided max-plus linear equation Ex = Dx, was considered
in an implicit form, more computationally convenient, solely
in a previous work of the authors [16]. The present paper
proposes two algorithms to solve a steady state version of
the most general problem considered in [16], in which the
constraints are required to hold only from a given step onwards
for any given initial condition. The authors believe they are
the first to consider this kind of problem explicitly. In the first
algorithm, the asymptotic stability is ensured, implying the
convergence to the desired set. In the second one, which uses
optimization techniques to improve the rate of convergence
of the previous method, thus far only the Lyapunov stability
is ensured, since the error between the state and the desired
set is non-decreasing. These optimization techniques borrow
from recent developments on the generalized spectral theory of
min-max functions (see [15], [1] and the references therein).

Further, a broader class of constraints, in comparison with
the previously mentioned works, is considered: max-plus
multiplicatively invariant sets (see Definition 1). A special case
of these constraints, the one considered in [16], is discussed in
more detail. The resulting controller is not, in general, a linear
state feedback. By the author’s knowledge, no published work
thus far neither proposes a method for steady-state control of
the firing dates of TEGs, for the general problem considered
in [16], nor considers this generalized class of constraints.
Finally, aiming to illustrate the results developed in this paper,
the two proposed methodologies are applied in a problem of
moderate complexity.

B. Contributions

Succinctly, the contributions of this paper are:
• An approach to solve the steady-state control problem
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for max-plus linear event-invariant systems: the Peri-
odic Synchronizer (Algorithm 6.1). This approach offers
important advantages: it is computationally inexpensive,
finite step asymptotic stability is guaranteed and it is
possible to derive a bound to this number of steps, a
bound which can be shown to be in many cases strict
by experimental observations and thus not conservative.
The method also has some desirable robustness prop-
erties. An improvement to the speed of convergence
of this algorithm, the Feedback Accelerator (Algorithm
7.1), is also proposed. This approach is computationally
inexpensive and shown to be, in the worst case, non-
detrimental to the problem in some aspects (Subsection
VII-B). Experimental results, however, show that it can
in some cases improve the performance of the system
(Section IX);

• Another optimized algorithm, also computationally in-
expensive in average, for solving the proposed steady
state control problem: the Chebyshev-Optimized Feed-
back (Algorithm 8.1). In this algorithm, thus far only
the Lyapunov stability is guaranteed. Simulations under
many different approaches, as well as comparisons with
the previously mentioned algorithm and its improvement,
however, illustrate the efficiency of the method.

II. DEFINITIONS

A Timed Event Graph is a subclass of timed Petri nets in
which all places have a single upstream and single downstream
transitions. The Max-plus Algebra is the idempotent semiring
(dioid)

Qmax ≡ (Q ∪ {−∞},⊕,⊗)

in which ⊕ is the maximum and ⊗ is the traditional sum.
One also defines the complete dioid induced by Max-plus
algebra, Qmax ≡ (Q ∪ {−∞,∞},⊕,⊗). One denotes the
neutral element of the sum, −∞, as ⊥ and +∞ as >. One
defines also >⊗ ⊥=⊥ ⊗> =⊥. As in the traditional algebra,
the symbol ⊗ is usually omitted. Further, a matrix composed
entirely of ⊥, entirely of > and entirely of 0, of convenient
dimension, is denoted as ⊥ (bolded ⊥), > (bolded >) and 0,
respectively. If M is a matrix, the entry in the ith row and
jth columns is denoted as Mij or {M}ij , whichever is more
convenient. Square brackets are used to denote a sequence of
objects, for instance matrices, sets, functions, etc, as in x[k].
The dimension of the matrices will only be specified when
necessary. A matrix is said to be lower (upper) bounded if no
entry is equal to ⊥ (>).

The max-plus identity matrix of appropriate order is denoted
by I , more specifically Iij = 0 if i = j and ⊥ otherwise. The
pointwise infimum is denoted by ∧. + and − will have their
usual meaning as traditional sum and subtraction/opposite.
Further, � is the natural order in the dioid, M � N if and
only if M ⊕ N = N and M � N if and only if N � M .
Also, N 6� M and M 6� M means that N � M does not
hold and M � N does not hold, respectively.
◦\, ◦/ are used to denote the left and right residuation of the

product, respectively. For scalars α, β ∈ Qmax (see [8]), the
residuation can be computed as:

α◦/β = β◦\α ≡

{
α− β if β 6=⊥;
> if β =⊥ .

And hence, for matrices:

M◦\N ≡ max
MX�N

X or, equivalently,

{M◦\N}ij =
∧
k

Mki◦\Nkj ,

M◦/N ≡ max
XN�M

X or, equivalently,

{M◦/N}ij =
∧
k

Mik◦/Njk.

Note that, even if the entries of M and N are in Qmax,
M◦\N and M◦/N have, in general, entries in Qmax.

The absolute value of a scalar λ is denoted by |λ|. ‖x‖2 ≡√∑
i x

2
i (the square and square root being in the usual sense)

is the Euclidean norm of a vector, while ‖x‖∞ ≡ maxi |xi| is
the p-norm with p = ∞. MT is the transpose of M . For
a square matrix M , ρ(M) is the spectral radius (greatest
eigenvalue) of M . If λ 6=⊥, then λ−1 ≡ −λ. The Kleene
closure of M is defined as M∗ ≡

⊕∞
i=0M

i. For a natural
number n and a square matrix M , Mn, the nth power of M ,
is defined recursively as M0 ≡ I and Mn ≡MMn−1.

A semimodule, over a given dioid, is an analogous of vector
spaces over semirings, that is, a set of elements x together with
a scaling (λ, x) 7→ λx and sum (x, y) 7→ x ⊕ y operations
which preserve some properties in the context of this given
dioid. See [20] for the formal definition. Finally, ImM , the
image of M , is the semimodule generated by the max-plus
column span of the matrix M , that is, if M ∈ Qn×mmax , ImM ≡
{Mv | v ∈ Qmmax}.

III. THE PROBLEM

A. Problem statement

Problem 1: (Steady state control problem) Consider a TEG
whose dater evolution is given by the dynamical system

S :

{
x[k + 1] = Ax[k]⊕Bu[k + 1] for k ≥ 0

x[0] = xic
(3)

with x[k] ∈ Qnmax, A ∈ Qn×nmax , B ∈ Qn×mmax and xic ∈ Qnmax.
One assumes, therefore, that all the states are measurable and
can be used to compute the control action.

The objective is to design a non-decreasing controller u[k] ∈
Qmmax (u[k+1] � u[k]) and causal (that is, it does not requires
the prediction of events), such that the state x[k] belongs to a
particular set Xcons for all k ≥ k′, for a given k′. This set is
required to be max-plus multiplicatively invariant. �

Definition 1: (Max-plus multiplicatively invariant sets) A
set X is said to be max-plus multiplicatively invariant if
x ∈ X ⇒ λx ∈ X for any scalar λ ∈ Qmax. �

Note that for a max-plus multiplicatively invariant set
there always exist max-plus homogeneous functions L(x), so
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L(λx) = λL(x) for any scalar λ, and R(x) such that X
is characterized as the solution set of L(x) = R(x). For
an example of such functions, let QPnmax be the set of all
vectors in Qnmax such that maxi xi = 0 and X = X ∩QPnmax.
Let L(x) = maxi xi (which is max-plus homogeneous) and
R′ : QPnmax 7→ {0,−1} defined as 0 if x ∈ X and −1
otherwise. In this case, R(x) = (maxi xi)R

′((maxi xi)
−1x)

for x 6=⊥ and R(⊥) =⊥ is max-plus homogeneous and
the solution set to L(x) = R(x) is exactly X . In practice,
however, such functions naturally appear from the problem
description, as it will be shown for a particular kind of max-
plus multiplicatively invariant sets: a semimodule.

It is also important to define two concepts.
Definition 2: (Non-degenerate in the control sense) A prob-

lem as in Problem 1 is said to be non-degenerate in the control
sense if no column of the matrix B is null. �

A problem being non-degenerate in the control sense is not
a restrictive hypothesis. In fact, it can be assumed without loss
of generality: if there is a null column in B, say the ith one,
then the ith control input plays no role in the system and can
be removed.

Definition 3: (Coupled) A problem as in Problem 1 is said
to be coupled if the existence of a solution implies that, unless
x[k] 6=⊥, xi[k]− xj [k] stays bounded for all i, j and k. �

In this paper, one is only interested in coupled problems.
Indeed, it could be argued that otherwise they are meaningless
in practice or can be broken in independent subproblems,
which then can be solved separately. If the problem is not
coupled, in the steady state and under control there will be
disjoint sets of transitions, specifically those created from the
quotient by the equivalence relation “is coupled with” such that
i is coupled with j if and only if |xi[k] − xj [k]| is bounded,
that operate in different rates. This means that no interesting
synchronization was imposed between these disjoint subsets.

For instance, specifications of the form x[k] � Qx[k]
are discussed in [20]. That paper argues that, frequently, in
practical applications the entries Qij of this matrix can be
chosen to be different than ⊥ (by replacing it by a very large
negative number, for instance). This alone would imply that
xj [k] − xi[k] ≤ −Qij and xi[k] − xj [k] ≤ −Qji and thus
|xi[k] − xj [k]| ≤ max(−Qij ,−Qji), which is finite under
the consideration that Qij 6=⊥ for all i and j. This, in turn,
implies that the problem is coupled. Putting bound constraints
is a way to ensure that the problem is coupled, but not the
only one. Indeed, the system itself may guarantee that all the
trajectories have xi[k]− xj [k] bounded.

An example of a non-coupled problem is a system com-
posed of two completely independent machines in which, as
a constraint, one is required to produce one piece at every
2 minutes and the other at every 1 minute. This problem is
not coupled because if x1[k] and x2[k] represent the time
of completion of the kth pieces for the first and second
machines, respectively, then |x1[k]−x2[k]| grows roughly with
2k−1k = 1k = k, which is unbounded. There is no interesting
additional requirement in the firing dates, at least in steady
state, that can be imposed between them.

Taking these observations in consideration, the following
hypothesis will be posed.

Hypothesis 3.1: (Non-degenerate in the control sense and
coupled problems) It will be assumed that any problem as in
Problem 1 is non-degenerate in the control sense and coupled.
�

At last, it is important to emphasize that in some applica-
tions guaranteeing the desired constraints only in steady state is
prohibitive, since the violation of them can imply inadmissible
consequences. For instance, a manufacturing system for which
one of the constraints is that a piece cannot stay in the oven
more than, say, 3 minutes: violation of this constraint may
imply the loss of the piece. In this case, the approaches
referenced in Section I may be more appropriate. Nevertheless,
the proposed approaches can also be used to this purpose
provided that it is possible to choose a convenient initial
condition xic.

B. Non-decreasing input

The proposed problem (Problem 1) requires that u[k+1] �
u[k], an important requirement to ensure that the designed
control input is realizable.

First of all, one assumes that A � I . In practice, this
assumption can be considered without loss of generality,
because it simply implies that the firings are ordered, that
is, x[k] � x[k − 1]. If A 6� I , one can simply replace A
by A ⊕ I . This is true because it will not change the non-
decreasing trajectories of the system, which are exactly the
ones that are relevant in practical applications. In this way,
the system naturally “implements” a causalisation.

Proposition 1: (Causalisation) Assume that A � I . Con-
sider two trajectories of the system represented by Equation
(3), xn[k] and xc[k], with the same initial condition, xn[0] =
xc[0], in which in the former the input u[k + 1] is used and
in the latter

⊕k
i=0 u[i+1]. Then xc[k] = xn[k] for all k ≥ 0.

Proof: The proof follows by induction. Suppose xc[k] =
xn[k]. Since A � I , the following equalities hold

xc[k + 1] = Axc[k]⊕B

(
k⊕
i=0

u[i+ 1]

)
=

Axc[k]⊕B

(
k⊕
i=0

u[i+ 1]

)
⊕ xc[k].

Further

xc[k + 1] = Axc[k]⊕B

(
k⊕
i=0

u[i+ 1]

)
⊕ xc[k] =

(Axc[k]⊕Bu[k + 1])⊕ xc[k]⊕B

(
k−1⊕
i=0

u[i+ 1]

)
.

Expanding xc[k] = Axc[k − 1]⊕ B
(⊕k−1

i=0 u[i+ 1]
)

it is

clear that xc[k]⊕B
(⊕k−1

i=0 u[i+ 1]
)
= xc[k]. Hence

xc[k + 1] = (Axc[k]⊕Bu[k + 1])⊕ xc[k] =
(Axc[k]⊕Bu[k + 1]) =

(Axn[k]⊕Bu[k + 1]) = xn[k + 1]
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in which A � I and xc[k] = xn[k] were used. Since it obvious
holds for k = 0, because they have the same initial condition,
the proof is completed.

So, using u[k + 1], which can be possibly not non-
decreasing, produces the same output as the non-decreasing⊕k

i=0 u[i + 1]. This means that it is possible to disregard
the non-decreasing requirement when the control sequence
{u[k + 1]} is designed. The causalisation can be made when
implementing, generating a new non-decreasing sequence
{
⊕k

i=0 u[i+ 1]}.
So, such a procedure will be assumed from now on and

the non-decreasing property will not be mentioned anymore
in this text.

C. Causality

Another concern is the causality of the control law. For
instance, consider the (feedback) control law u1[k] = −1 +
x1[k], which reads as “fire u1 for the kth time one time unit
before x1 fires for the kth time”. This control law requires a
prediction of events.

Suppose that the control law is written as Fx[k], a feedback
control. Then, in order to this term to be causal F must be a
causal matrix.

Definition 4: (Causal matrix) A matrix F is said to be
causal if all its entries are non-negative or ⊥. �

In this text, the feedback terms will come as solutions of
inequalities of the form BF � M for specific matrices M ,
and it is advantageous to have BF as close as possible to M .
Let F be the set of all causal matrices. Therefore, the problem
asks for

max
F∈F

BF �M. (4)

Since the set of causal matrices is closed under (max-plus)
addition (if F [1], F [2] ∈ F , so is F [1] ⊕ F [2]), the problem
presented in Equation (4) has a solution. To this, it is necessary
to define the concept of causal projection [12].

Definition 5: (Causal projection) The causal projection of
a matrix F , denoted by Cp(F ), is obtained from F by
exchanging all negative entries to ⊥. �

Taking this into consideration, one proceeds by computing
B◦\M , that is, solving by residuation the problem presented
in Equation (4) disregarding the causality constraint, and then
applying the causal projection to this matrix. Thus

F = Cp(B◦\M). (5)

Finally, it is important to mention that the concept of causal
feedbacks was also discussed and considered in [4].

IV. MEAN-PAYOFF GAMES

A. Basic facts

Before presenting the two methods for solving the proposed
problem (Problem 1), it is necessary to discuss the concept
of mean-payoff games. This concept will be useful in both
methods that will be proposed to solve Problem 1.

Consider a directed bipartite graph with two disjoint sets
of nodes, say “CIRCLE” nodes (n nodes i = 1, 2, .., n) and
“SQUARE” nodes (m nodes j = 1, 2, ..,m). A game is played

in which, initially, a pawn is in one SQUARE node j. A player,
MIN, plays by moving the pawn to a CIRCLE node i and
receives from the other player, MAX, an amount Gij . After,
it is time for the player MAX to move the pawn to a SQUARE
node j′ and then to receive from MIN an amount Hij′ . Finally,
a turn ends and this zero-sum game proceeds again with a
move from MIN player, and so on.

Given a number of turns k, one defines vj [k] as the value1 of
the finite horizon game for player MAX in which k turns are
played and the starting SQUARE node is j. The mean payoff
version of this game is of special interest (called mean-payoff
game). There the payoff of an infinite trajectory (k → ∞)
is defined as the average payment (payments received minus
payments made) per turn received by player MAX. In this
case, the value of this game at the starting SQUARE node
j, the scalar χj , is the limsup of the ratio (in the traditional
algebra) vj [k]/k as k goes to infinity (see [1] for a deeper
discussion).

There is a close connection between mean-payoff games
and max-plus linear equations [1]. First, every max-plus linear
equation Py = Qy can be written as Gy � Hy, since one
can write equivalently Py � Qy and Qy � Py, which
clearly can be rewritten as Uy � V y. Therefore, when a max-
plus linear equation is written in this form, Gy � Hy, the
above-described game provides useful information about the
solutions of this equation. Indeed, the vector χ can be obtained
by studying the dynamic programming operator for this game
(see [14] for an example of a pseudo-polynomial algorithm
for computing the vector χ), the function f(y) = G◦\(Hy),
which is a min-max function [19]. Hence, one can define χ
as a functional χ(f) which takes the dynamic programming
operator of the mean-payoff game and return a vector with the
value in each state, a state being a SQUARE node.

Define the nth composition of f as fn(y) ≡ f(fn−1(y))
with f0(y) ≡ y. Then, for any upper and lower bounded vector
y (see [1])

χ(f) = lim
N→∞

fN (y)

N
. (6)

The following definition is important.
Definition 6: (Non-degenerate min-max function) A min-

max function f is said to be non-degenerate if as long as
y is lower and upper bounded, so is f(y). �

In practical applications, the min-max functions f are non-
degenerate. Hence the following theorem, which is fundamen-
tal for this paper, is shown in [1]:

Theorem 1: (Support of a solution, see Theorem 3.2 in
[1]) Let f(y) = G◦\(Hy) be a non-degenerate min-max
function which is the dynamic programming operator of the
mean payoff game associated to the max-plus linear equation
Gy � Hy. A solution y of Gy � Hy such that yi 6=⊥ exists
if and only if χi(f) ≥ 0 (i is a winning state, by definition).
Moreover if R = {i | χi(f) ≥ 0} there exists a vector y
solution of Gy � Hy such that yi 6=⊥ for all i ∈ R. �

Also, the following comes easily as a corollary from Lemma
2.2 in [17], since any min-max function is a topical function.

1In the sense of the MINIMAX theorem, see [25].
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Corollary 1: of Lemma 2.2 in [17] (Bounded value for non-
degenerate functions) Suppose a min-max function f is non-
degenerate. Then χ(f) is upper and lower bounded.

Proof: Indeed, Lemma 2.2 in [17] says that ‖χ(f)‖∞ ≤
miny ‖f(y) − y‖∞. So, for instance, ‖χ(f)‖∞ ≤ ‖f(0)‖∞.
‖f(0)‖∞ is bounded by the non-degeneracy hypothesis. And
the proof is complete.

The concept of mean-payoff games is useful for solving two
specific problems that will appear on this text.

B. Modified two-sided eigenproblem

Problem 2: (Two sided-eigenproblem, see [15]) A two-
sided eigenproblem can be stated as the problem of solving
the equation Uy = λV y for the unknowns λ and y 6=⊥. �

Given a two-sided eigenproblem Uy = λV y, it can be
written as (

U
λV

)
y �

(
λV
U

)
y

and hence as G(λ)y � H(λ)y. The problem of finding a
non-trivial solution y 6=⊥ to this problem can then be stated
as the problem of finding λ such that at least one of the
scalars χj(fλ) is non-negative. In this case, this can be written
equivalently as maxj χj(fλ) ≥ 0. Due to the structure of
these particular matrices G(λ) and H(λ), it can be shown that
χj(fλ) ≤ 0 and hence the problem can be stated as simply
maxj χj(fλ) = 0, since there is no hope in obtaining positive
values (see [15]).

The function s(λ) ≡ maxj χj(fλ) is the spectral function
associated to the mean-payoff game [15]. The problem is then
reduced to find a zero of this spectral function, which is
piecewise affine Lipschitz, non-convex (in general) and non-
positive [15]. Once a λ is found, any algorithm for solving
max-plus linear equations can be used to find a y, which will
be guaranteed to be 6=⊥, such that Uy = λV y. See [13], [14],
[15], [21], [2], [11], [10], [29] and the references therein for
examples of algorithms to solve max-plus linear equations.

A pseudo-polynomial method for finding zeros to this
spectral function, and hence solving Problem 2, was developed
in [15]. Although the method requires that the entries of U
and V are integers or ⊥, this can be assumed without loss of
generality in the dioid Qmax which has rational or ⊥ entries.
Indeed, if U, V do not have all entries integers or ⊥, but also
non-integer rationals, one can always redefine the units of the
problem by multiplying (in traditional algebra) all the entries
of U ,V by an integer d such that all entries of the new matrices
U ′, V ′ are integers or ⊥.

However, in this work one is interested in finding solutions
of Uy = λV y such that a subset of entries yi of y, those in
which the index i is in a given set I, are non ⊥. This is a
modified two-sided eigenproblem.

Problem 3: (Modified two sided-eigenproblem) A modified
two sided-eigenproblem, for a given I, is the problem of
solving Uy = λV y such that yi 6=⊥ ∀i ∈ I. �

It will be argued further in this text, specifically in Proposi-
tion 5, that for some particular cases of problems Uy = λV y,
the solution for the associated two-sided eigenproblem is also
a solution for the associated modified one for a special subset

I. These cases will be the only ones present in this text, so it
is enough consider only Problem 2.

C. Distance between max-plus affine spaces

Definition 7: (Chebyshev distance, see [15]) The Cheby-
shev distance d(x, y) between two vectors x and y with
common support R, that is, xi 6=⊥ if and only if yi 6=⊥,
is defined as

d(x, y) ≡ max
i∈R
|xi − yi|

in which R = {i | xi 6=⊥}.
�
If x, y are upper and lower bounded, the Chebyshev distance

d(x, y) coincides with the distance induced by the ∞-norm
‖x−y‖∞. Since all the vectors x, y that will be handled in this
context are lower and upper bounded, the notation ‖x− y‖∞
will be used instead of d(x, y).

One can then consider the following problem:
Problem 4: (Computing the Chebyshev distance between

max-plus affine spaces) Consider two max-plus affine spaces
U = u⊕ ImU and V = v⊕ ImV . The problem of computing
the Chebyshev distance between U and V , d(U ,V), is defined
as

d(U ,V) ≡ min
u′∈U
v′∈V

‖u′ − v′‖∞.

�
To handle this problem, an important property of the Cheby-

shev distance must be presented.
Property 1: (see Equation 26 in [15], or even by inspection)

For two lower-and-upper bounded vectors x, y ∈ Qnmax

‖x− y‖∞ = min{δ ∈ R | δx � y , δy � x}.

Further, the strict equality is achieved for at least one index
in the first or in the second inequality. �

In order to deal with Problem 4, the following proposition
will be important.

Proposition 2: (Characterization of the components of χ)
Let f(y) = G◦\(Hy) be non-degenerate. The following holds

χj(f) = max{λ ∈ R | ∃y ∈ Qnmax, yj 6=⊥, λy � f(y)}.

Proof: The proof is inspired by the ones presented in
[1]. Clearly, using the fact that min-max functions are non-
decreasing, one has that λy � f(y) implies λNy � fN (y).
Let y be a vector in which yj 6=⊥, and z a vector obtained by
replacing all ⊥ entries of y by any finite rational entry. As y �
z one has f(y) � f(z), again using the fact min-max functions
are non-decreasing, and hence fN (y) � fN (z). Therefore
λNy � fN (z). Dividing, as in traditional algebra, both sides
by N and taking the limit as N → ∞, one concludes using
Equation (6), the fact that z only has rational entries and the
fact that yj is finite that λ � χj(f).

It will be shown that this value χj(f) is achievable. Indeed,
consider the function f ′(y) = χj(f)

−1f(y). Notice that the
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operation χj(f)
−1 is valid: χj(f) is not ⊥ since f is non-

degenerate. See Corollary 1. By virtue of Equation (6), it is
clear that if f is max-plus homogeneous, f(αy) = αy for any
scalar α, then χ(αf) = αχ(f). f(y) = G◦\(Hy) is clearly
max-plus homogeneous and therefore one has that χj(f ′) =
χj(f)

−1χj(f) = 0 ≥ 0. Then, Theorem 1 states that there
exists a w with wj 6=⊥ such that Gw � χ−1j Hw and therefore
χjGw � Hw. After residuation one concludes that χjw �
G◦\(Hw) = f(w). This shows that λ = χj(f) is achievable
with this vector w. And the proposition is proved.

Proposition 2 and Property 1 allow one to conclude the
following.

Proposition 3: (Computing the distance of max-plus affine
spaces) Let U = u⊕ImU and V = v⊕ImV be affine spaces.
Let

G =

(
u U ⊥
v ⊥ V

)
, H =

(
v ⊥ V
u U ⊥

)
(7)

and f(w) = G◦\(Hw). Suppose f is non-degenerate. Then

d(U ,V) = χ0(f)
−1

in which 0 is the index of the first column of G,H .
Proof: One has

d(U ,V) = min
û,v̂
‖(u⊕ Uû)− (v ⊕ V v̂)‖∞. (8)

Let t 6=⊥. Using the fact that the distance ‖u′ − v′‖∞ is
invariant by max-plus multiplications by a t 6=⊥: ‖u′−v′‖∞ =
‖u′t− v′t‖∞

d(U ,V) = min
û,v̂,t6=⊥

‖(ut⊕ Uût)− (vt⊕ V v̂t)‖∞.

Let ût = ũ, v̂t = ṽ and w = (t ũT ṽT )T . Using Property
1 with n being the number of columns of G,H

d(U ,V) = min{δ ∈ R | ∃w ∈ Qnmax, t 6=⊥, δHw � Gw}.

Or, letting λ = δ−1 and using the fact that w0 = t

d(U ,V)−1 =

max{λ ∈ R | ∃w ∈ Qnmax, w0 6=⊥, λGw � Hw}.

Using residuation

d(U ,V)−1 =

max{λ ∈ R | ∃w ∈ Qnmax, w0 6=⊥, λw � G◦\(Hw)}.

And hence, in light of Proposition 2 (f is non-degenerate
by hypothesis), λ = χ0(f) and thus δ = λ−1 = χ0(f)

−1.
And the proposition is proved.

By a quick glance in the algorithm proposed in [14] for
computing the value of mean payoff games, it is clear that if
the entries of G and H are rational numbers or ⊥ (hence in
Qmax) and f is non-degenerate, χ0(f) is a rational number,

since the rationals are closed for all the operations (for which
the number is finite) in the algorithm: maxima/minima, tra-
ditional sums/subtractions and traditional products/divisions.
Hence, χ0(f) ∈ Q.

It is also of interest to compute the vectors û, v̂ which ensure
this distance in Equation (8). Once the distance δ is found, one
needs to solve the max-plus linear equation δHw � Gw with
w0 6=⊥. Note that a vector with this characteristic, w0 6=⊥,
exists due to the definition of the distance. A suggestion to
find a solution is to use the iterative procedure given in [1]: in
order to solve a max-plus linear equation Jw � Kw iterate

w[k + 1] = J◦\(Kw[k]) ∧ w[k], (9)

which is convergent to the greatest solution smaller than
or equal to the initial guess w[0]. The problem is that the
sequence in Equation (9) can take an infinite amount of steps
to converge. This happens only if there is an entry of w that
necessarily must be ⊥. For instance, the equation w � (−1)w,
in which w is a scalar, is such an example because it will take
k → ∞ to w[k + 1] = (−1)w[k] to converge to the only
solution (w =⊥).

This behaviour can be avoided with the help of Theorem 1
and also the handy results in [30]. In the latter work it is shown
that, if the hypothesis that the entries of J and K are either
integers or ⊥ holds true, the cycle-time vector χ associated to
the function f(w) = J◦\(Kw) can be computed in finite time,
more precisely, in pseudo-polynomial time. This hypothesis
can always assumed to be the true if one is working in Qmax,
since the units can be scaled to integers (see the discussion in
Subsection IV-B).

The technique shown in [30] relies in the iterations of
the function f(w) (value iteration). So, in possession of this
information, one can use Theorem 1 to characterize the entries
j in which χj < 0 so these respective entries in wj can
be set to ⊥ and removed from w, obtaining a new (thus
far) unknown vector w′. In this way, the reduced equation,
after removing the variables in which wj =⊥, J ′w′ � K ′w′

has a solution w′ in which all the entries are non-⊥ and the
iteration algorithm given by Equation (9), which will assuredly
converge in a finite number of steps, can be used in this
new equation. Finally, owing to the fact that Jw � Kw is
equivalent to (JT IT )Tw � (KT IT )Tw, since the constraint
w � w is innocuous, the dynamic programming operator for
this equation is f ′(w) = J◦\(Kw)∧w and hence the sequence
in Equation (9) can be used to both compute the cycle-time
vector χ and to find the solution w.

Since the sequence in Equation (9) has the property of
converging to the greatest solution smaller than or equal to
the initial guess w[0], one can set w0[0] = 0 and all the other
entries as sufficiently large numbers and the algorithm will
converge to a solution in which w0 is already 0 and hence
û and v̂ can be extracted directly from w. Nevertheless, if
a solution with w0 6= 0 is found (it will be a finite number,
however), one can compute a new solution w′ in which w′0 = 0
by simple subtracting (in traditional algebra) each entry of w
by w0: w′ = w−10 w.
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V. (A,B) MAX-PLUS GEOMETRICAL INVARIANT SETS

A. Approach for general max-plus multiplicatively invariant
sets

A key concept for solving Problem 1 is the one of (A,B)
max-plus geometrical invariance of sets.

Definition 8: ((A,B) max-plus geometrical invariant sets,
see [20]) A set N ⊆ Qnmax is said to be (A,B) max-plus
geometrical invariant if it is a semimodule and for every
x ∈ N there exists an u ∈ Qmmax such that Ax⊕Bu ∈ N . �

Now a proposition, which will be helpful for finding an
(A,B) max-plus geometrical invariant in the set of constraints
Xcons, will be presented.

Proposition 4: (An (A,B) max-plus geometrical invariant
set): Let Xcons be a max-plus multiplicatively invariant set
and L,R max-plus homogeneous functions such that Xcons is
characterized by the equation L(x) = R(x) (such functions
always exist, see the comment after Definition 1) . Consider
a solution triple {λ, q, w} to the equation

L(q) = R(q);

Aq ⊕Bw = λq. (10)

Then the set N (q) = {αq | α ∈ Qmax} is an (A,B) max-
plus geometrical invariant set in Xcons.

Proof: By the first Equation in (10), it is clear N (q) ⊆
Xcons. It only remains to prove that this set is an (A,B) max-
plus geometrical invariant set.

Therefore, it is sufficient and necessary to show that for
any x ∈ N (q), that is, x = αq for a given α, there exists
u such that Ax ⊕ Bu remains in N (q). If x = αq, choose
u = αw, and it is clear by the second Equation in (10) that
Ax ⊕ Bu = λx and thus in N (q). Further, N (q) is clearly
an one-dimensional semimodule. And the proof is complete.

Solving Equation (10) for general functions L,R can be
a hard problem. A very general technique for solving this
equation for a wide class of such functions L and R is
formulating them as an Extended Linear Complementarity
Problem and then solving it with an appropriate solver, as
in [27]. However, this approach can take a prohibitive amount
of time.

B. A special case: finitely generated semimodules

This text will discuss an important special case of a max-
plus multiplicatively invariant set: a finitely generated semi-
module of Qmax, which can be characterized implicitly as the
set of all solutions x of a max-plus linear equation (see [22])

Ex = Dx (11)

for given matrices E,D ∈ Qq×nmax (that is, L(x) = Ex,
R(x) = Dx). This is the most general form of max-plus
linear constraints, and was considered in [20], [24], [16].
The first two papers, however, do not consider the implicit
formulation given by Equation (11). They instead require that
all solutions of Equation (11) are found, which may be in
general a time consuming problem. Nevertheless, in this case,

finding a solution to Equation (10) is equivalent to solving the
equation

Eq = Dq;

Aq ⊕Bw = λq. (12)

Equation (12) is max-plus nonlinear for the parameters
{λ, q, w}. However, it can be transformed in a two-sided
eigenproblem (Problem 2). To this, multiply both sides of
the first equation in Equation (12) by λ. The resulting set of
equations will be equivalent as long as λ is invertible (λ 6=⊥),
which is a very weak assumption. Now, substitute the second
equation in the first one, but only in the left side of the first
equation. The resulting equation is

EAq ⊕ EBw = λDq;

Aq ⊕Bw = λq. (13)

If one defines y ≡ (qT wT )T ∈ Qn+mmax , it is clear that
Equation (13) can be written as Uy = λV y for appropriate
matrices U, V ∈ Q(n+q)×(n+m)

max , namely

U =

(
EA EB
A B

)
, V =

(
D ⊥
I ⊥

)
(14)

and hence the problem of solving Equation (12) can be stated
as a two-sided eigenproblem. However, soon it will be clear
that one needs to find a solution triple {λ, q, w} of Equation
(12) such that q has no ⊥ entries, that is, a modified two-
sided eigenproblem (Problem 3) in which I = {1, 2, ..., n}
(the entries of y relative to q). However, it turns out that for
some particular cases of problems, a solution to a two-sided
eigenproblem is also a solution to the modified one. Indeed:

Proposition 5: (Modified two-sided eigenproblem can be
reduced to a traditional one) Consider a problem as in Problem
1 under Hypothesis 3.1 with the set Xcons given by the
solutions of the equation Ex = Dx. In this case, the respective
Equation (13) is such that any solution y ≡ (qT wT )T such
that y 6=⊥ has q without any ⊥ entries. Hence, a solution to
the two-sided eigenproblem associated to Equation (13) is also
a solution to the associated modified two-sided eigenproblem
in which I is the set of entries respective to q in y.

Proof: If y 6=⊥, then either q or w (possibly both) has at
least a single non-⊥ entry.

Suppose the former, that is, q has at least a single non-
⊥ entry. Under this supposition, the fact that the associated
problem is coupled implies that q has no ⊥ entries. This is
true because x[k] = λkq is a possible trajectory to the system
(pick x[0] = q and u[k + 1] = λkq), and hence the coupled
hypothesis implies that qi− qj is always bounded. Since there
exists an i such that qi 6=⊥, this implies that qj is also not
⊥. This concludes the proof for the case that q has at least a
single non-⊥ entry.

Suppose the latter, that is, w has at least a single non-⊥
entry. Now, according to Equation (13), q � Bw and, since
the problem is non-degenerate in the control sense, Bw is not
the ⊥ vector and hence q has at least one non-⊥ entry. In this
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case, the same argument in the previous case holds and q has
no ⊥ entry. This concludes the proof.

It is important to mention that [20] presents an iterative
method, for which the number of steps is finite under certain
assumptions, that computes the greatest (A,B) max-plus geo-
metrical invariant set in a given finitely generated semimodule,
considering the knowledge of a matrix M which column
span generates this set. However, this computation can be
very complex in terms of memory and time consuming. In
fact, even obtaining M can be a complex problem, since in
general this semimodule is described implicitly as a max-plus
linear equation, and writing this semimodule as ImM requires
finding all the solutions to this equation, for which no very
efficient algorithm is known yet (again, the reader is invited
to see the complexity of algorithms such as [21], [2], [10],
[29], which compute the entire set of solutions of max-plus
linear equations). In contrast, the proposed method computes
only a subspace of this set, but is simpler and therefore can
be, generally, used in problems of higher dimensions.

VI. THE PERIODIC SYNCHRONIZER

A. Formalization

One shall show that Problem 1 can be solved using a
periodic input u[k+1] = hλk+1w. To this end, it is important
to recall the following property of the Kleene closure:

Property 2: (see Lemma 2.2 in [18]) For any matrix M ∈
Qn×nmax with non-positive spectral radius there exists a natural
number r′ ≤ n such that for all r ≥ r′

M∗ =

r⊕
i=0

M i. (15)

�
Taking this into consideration, one makes the following

definition.
Definition 9: (Convergency number) For a given matrix M

with ρ(M) ≤ 0, the convergency number of M , κ(M), is
defined as the smallest r′ in Property 2 that ensures Equation
(15). �

Note that computing κ(M) often comes as a byproduct
of the computation of M∗, and therefore can be done in
polynomial time.

Hence, it is possible to state the principal result of this
section.

Proposition 6: (Periodic synchronizer) Consider Problem 1,
with Xcons, L and R as in Proposition 4, and assume that
there exists a solution triple of Equation (10), {λ, q, w} such
that q is lower bounded and λ > ρ(A) 6=⊥. Then, for any
scalar h 6=⊥, the periodic input u[k+1] = hλk+1w guarantees
that there exists a k′ such that x[k] ∈ Xcons (i.e L(x[k]) =
R(x[k])) ∀k ≥ k′, thus solving Problem 1.

Proof: Using u[k+1] = hλk+1w, multiplying both sides
of this equation by λ−(k+1) and using the change of variables
x̂[k] = λ−kx[k], the system in Equation (3) can be written as

x̂[k + 1] = (λ−1A)x̂[k]⊕ hBw. (16)

Hence, for any k, by iterating Equation (16):

x̂[k + 1] = (λ−1A)k+1xic︸ ︷︷ ︸
G[k]

⊕h

(
k⊕
i=0

(λ−1A)i

)
Bw︸ ︷︷ ︸

H[k]

.

Now, it is possible to note the following facts:
1) Let k ≥ κ(λ−1A). By the definition of κ(λ−1A) (see

Definition 9), H[k] = h(λ−1A)∗Bw;
2) By the second equation in Equation (10) and the fact

that λ > ρ(A), one concludes that (λ−1A)∗Bw = λq;
3) Since λ > ρ(A), G[k]→⊥ as k →∞. Considering this

and also that, by Fact 2, H[k] = λhq for k ≥ κ(λ−1A)
and that H[k] is lower bounded by hypothesis (since
q is lower bounded by hypothesis and λ, h 6=⊥), there
exists a finite r ≥ κ(λ−1A) such that H[k] � G[k] for
all k ≥ r;

Take k′ = r+1. Due to three previous facts, it is clear that
for all k ≥ k′, x̂[k] = H[k − 1] = h(λ−1A)∗Bw = hλq or
equivalently x[k] = hλk+1q for all k ≥ k′. Therefore, x[k] is
a scalar multiple of q for k ≥ k′. Further, q is a member of the
constraint set due to the first equation in Equation (10), and
since the constraint set is max-plus multiplicatively invariant,
so x[k] ∈ Xcons for k ≥ k′. And the proof is complete.

With the results so far, one can readily conclude the
following.

Corollary 2: of Proposition 6: (Bound on the number of
steps and convergency for λ = ρ(A)). Let t ≡ κ(λ−1A) and
h in Proposition 6 be such that

hλq � (λ−1A)t+1xic (17)

(such h always exists because λq is lower bounded) then
convergence to the desired set occurs in at most t + 1 steps.
This is also true even when λ = ρ(A), provided that Equation
(10) is modified to

L(q) = R(q);

q = (λ−1A)∗B(λ−1w). (18)

Proof: Note that if Equation (17) holds, then r in Fact
3 in Proposition 6 can be taken to be κ(λ−1A). And the first
assertion is proved.

In order to show that convergency occurs even when λ =
ρ(A), one analyzes the three facts presented in Proposition
6. Fact 1 holds even when λ = ρ(A). Fact 2 is not true for
λ = ρ(A), since the second equation in Equation (10) has an
infinite number of solutions for q in this case. This is handled
by the modified Equation (18) which ensures the uniqueness.
Finally, in Fact 3, it is not true that G[k] →⊥ as k → ∞ if
λ = ρ(A), but Equation (17) guarantees that there exists a s
such that H[k] � G[k] for all k � s (s = κ(λ−1A)).

B. The algorithm

The proposed algorithm generates, as input, a periodic
signal in the system till the system eventually synchronizes
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(and thus the name) with this input and becomes periodic too.
The algorithm can then be presented in a succinct way as
follows:

Algorithm 6.1: Control algorithm: periodic synchronizer
1) Solve Equation (10) (for λ > ρ(A)), or Equation

(18) (for λ = ρ(A)) with q with no ⊥ entries (see
Problem 3 and Subsection IV-B) obtaining a triple
{λ, q, w};

2) (Optional if λ > ρ(A), necessary if λ = ρ(A))
Find h such that Equation (17) holds, thus insuring
convergence in at most κ(λ−1A) + 1 steps;

3) Take the control input of the system as u[k+1] =
hλk+1w.

Perhaps the most striking feature of the Periodic Syn-
chronizer, specially to control theorists, is the fact that for
λ > ρ(A) it operates in open loop: no information on the
current state is needed to perform the control. For λ = ρ(A),
however, it is necessary to consider the initial condition, see
Corollary 2 and Equation (17). Nevertheless, the procedure is
robust in the sense that a sporadic perturbation in the event
occurrence dates can be considered as a new initial condition,
and then eventually the system will again converge to the
desired set, since convergence is ensured for any initial condi-
tion. This behavior will be illustrated in Subsection IX-B. This
discussion suggests that TEGs are, in some sense, inherently
“stable” since a periodic input eventually synchronizes to a
periodic output. The interesting question in the context is
exactly if there exists an input which synchronizes with an
output in the desired set.

Of course, the periodic input u that guarantees the desired
behavior depends on the parameters A,B of the system. Thus,
if there is a longstanding change of behavior of the system as,
for example, a modification on the matrices A,B, this periodic
input may be unable to solve the desired problem. Due to this
fact, it is advisable to maintain some on-line identification
system, which operates in closed-loop, that eventually recom-
putes the new inputs when there is a significant change in the
system structure.

Finally, it is important to mention that [18] proposes a
method similar to the Periodic Synchronizer. The method was
presented in the context of creating timetables to trains, but
could be in principle adapted to any kind of system that fits
in its framework. Although the authors do not discuss this
subject, the problem of generating timetables can be rephrased
as a control problem and then it is comparable to the proposed
approach. There, the method is applied to systems such that
B = I and its aim is to make the system follow a periodic
timetable x[k] = d[k] = λkq for a given scalar λ > ρ(A) and
vector q. Hence, as opposed to this paper, the state constraints
are given explicitly instead of a solution of an equation as
L(x) = R(x). It is shown that it is necessary and sufficient to
guarantee the timetable that λq � Aq and λ > ρ(A). Indeed,
in the case that B = I , the second equation in Equation (18)
reduces to λq = Aq⊕w which is exactly λq � Aq. Hence, the
result shown in the present paper generalizes the one found

in [18], at least as far as the “sufficiency” of the result is
concerned. In addition, the assumption B = I can be quite
restrictive. Further in this paper, a control problem inspired in
a TEG presented in the same reference, [18], is solved with
the Periodic Synchronizer. However, in this case B 6= I and
hence it does not fit in the framework presented in [18].

C. Computational complexity

In terms of computational complexity, the only potentially
complex part of Algorithm 6.1 is solving Equation (10) with
the constraint that q has no ⊥ entries. For the general problem
the complexity is hard to describe since it depends on the
functions L and R.

If constraints as Equation (11) are considered, the issue is
then solving Equation (13) with the same constrain in q. This
is a modified two-sided eigenproblem, Problem 3. Under Hy-
pothesis 3.1, Problem 3 reduces to Problem 2 (see Proposition
5). In this case, it was shown in [15] that solving the Problem 2
associated to the equation Uy = λV y has pseudo-polynomial
complexity. Let U, V ∈ Qs×tmax , in which U and V has only ⊥
and integer entries (this can be assumed without loss of gener-
ality, see Subsection IV-B). In this case, let TSE(s, t, U, V ) be
the computational complexity of solving Problem 2 associated
to the equation Uy = λV y (see [15] for the exact expression
for TSE(s, t, U, V )). Hence, if A ∈ Qn×nmax , B ∈ Qn×nmax and
E,D ∈ Qq×nmax , then the complexity of this algorithm is given
by TSE(n+q, n+m,U, V ), which is pseudo-polynomial (see
[15]), with U and V given by Equation (14).

VII. THE FEEDBACK ACCELERATOR

A. Formalization

The Periodic Synchronizer presented in the previous section
may generate a long transient state till the system stabilizes.
According to the previous discussions in Subsection VI-A,
there are two factors that impact the number k′, which is an
upper bound of the number of steps taken for convergence to
the desired set. The first one is the convergence number, t ≡
κ(λ−1A). The second is the number r in Proposition 6, which
depends on the system parameters and also the choice of h (it
is easy to see that r is non-increasing with the parameter h.
Since the latter is generally easily controlled by choosing the
appropriate h according to Equation (17), it is advantageous
to focus the effort in improving the former.

One relatively simple idea to try to improve the con-
vergence number is to “pre-close” the loop with a linear
feedback, while still keeping a free term on the control input:
u[k + 1] = Fx[k] ⊕ g[k + 1]. Thus, using this input on the
system given by Equation (3):

Sacc :

{
x[k + 1] = (A⊕BF )x[k]⊕Bg[k + 1] for k > 0

x[0] = xic

Let Aacc ≡ A⊕BF . The objective is thus to design F in
a way that the convergence number κ(λ−1Aacc) is as smaller
as possible. After this, Algorithm 6.1 can be used in this new
system using the control input g[k].

Ideally, A ⊕ BF = αQ∗ for a matrix Q and a scalar α.
Indeed, if λ ≥ α, the convergence number κ(λ−1(A⊕ BF ))
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would be 1, the smallest possible, except for the very particular
case of a diagonal matrix with non-positive entries, which has
a convergence number of 0, and the Periodic Synchronizer
would converge very quickly. However, this equation for the
unknowns F,Q, α is not max-plus non-linear and hard to
solve.

Inspired by the ideas on Section V, one can use α = λ and
Q = (λ−1A). The resulting equation is now max-plus affine
and easily solvable, if it has a solution. However, frequently
such solution does not exists. Thus, one possibility is to
weaken the problem by finding the greatest F solution to the
inequation

Aacc = A⊕BF � λ(λ−1A)∗ (19)

and if a solution to the non-weakened equation exists, such
F will also be found by solving this weakened equation.
See Section 3.2.3.2 in [8]. Since naturally λ(λ−1A)∗ � A,
Equation (19) is equivalent to BF � λ(λ−1A)∗.

Since the causality of F is necessary, the discussion in
Subsection III-C is applicable. In this case, M = λ(λ−1A)∗.
Hence, one can obtain the causal F as

F = Cp(B◦\(λ(λ−1A)∗)). (20)

B. Effects on the system

A natural question is how this linear feedback (Equation
(20)) affects the system: if it is really capable of improving
the system performance, in what regard, and if it can also
occasionally be deleterious.

First, it can be proved that this approach at least maintains
the convergence number. This can be shown using the
following result.

Proposition 7: (Inequality in the convergence number) Let
X � Y , X � Y ∗, with ρ(X), ρ(Y ) ≤ 0. Then κ(X) � κ(Y ).

Proof: Let t ≡ κ(Y ). In this case Y ∗ =
⊕t

i=0 Y
i.

Since X � Y ,
⊕t

i=0X
i �

⊕t
i=0 Y

i. By Y ∗ � X , one
can conclude that (Y ∗)k = Y ∗ � Xk. Finally, one has that⊕t

i=0X
i �

⊕t
i=0 Y

i = Y ∗ � Xk, for any k. This final
conclusion,

⊕t
i=0X

i � Xk, implies that X∗ =
⊕t

i=0X
i.

This implies that κ(X) is at most t and the proof is complete.

Using Y = λ−1A, X = λ−1Aacc, one can see by using
Proposition 7 that, for any Aacc such that Equation (19) holds,
κ(λ−1Aacc) � κ(λ−1A). Thus, as claimed, the feedback
approach in the worst case maintains the convergence number.

Another concern is that the approach may reduce the set
of solutions of Equation (10). Thus, one may ask about how
these two equations, the one with A and other with Aacc,
compare with each other in regard to the solution set. It turns
out that, as long as λ is fixed (since Aacc depends on λ) and
strictly greater than ρ(A), the solutions sets are equal, and so
the linear feedback neither increases nor decreases the number
of solutions.

Proposition 8: (Equality of sets) For a given λ > ρ(A),
for any Aacc such that Equation (19) holds, the solution set
{q, w} of

Aq ⊕Bw = λq (21)

is the same as the one of

Aaccq ⊕Bw = λq. (22)

Proof: Since λ > ρ(A), Equation (21) is equivalent to
q = (λ−1A)∗B(λ−1w), while Equation (22) is equivalent to
q = (λ−1Aacc)

∗B(λ−1w).
Now, let Y = λ−1A, X = λ−1Aacc. So as in Proposition

7, X � Y , X � Y ∗. Due to the monotonicity of the Kleene
Closure, applying it to both sides one concludes from the first
equation that X∗ � Y ∗ and from the second X∗ � Y ∗. Thus
X∗ = Y ∗ and then (λ−1A)∗ = (λ−1Aacc)

∗. This concludes
the proof.

Again, if λ = ρ(A), Equation (18) must be used instead
of Equation (10). In this case, it follows as a corollary of the
result concluded in Proposition 8, namely that (λ−1A)∗ =
(λ−1Aacc)

∗, that the solutions sets are equal.
Finally, it is important to note that the number of steps

taken for convergence may not be an adequate measure of
performance: a low number of steps may be needed for
convergence, but the time elapsed since the initial firings
till such step may be large since the gap of time between
consecutive firings can be very large. Conversely, a high
number of steps may be necessary for convergency but the
elapsed time since the initial firings can be small, since the
gap between consecutive firings can be very small.

Thus, one may use as a measure of performance the elapsed
time vector T ≡ x[k] − x[0], in which k is the first step in
which convergence occurs. Thus, a natural question is how
the T of the original system compares with the Tacc of the
accelerated one, given the same initial condition x[0].

Consider that h is chosen according to Equation (17). In
Algorithm 6.1, convergency occurs with x[k] = hλk+1q,
with any h such that Equation (17) holds. If one is interested
in a small elapsed time vector, the smallest h such that
it holds can be chosen. Further, due to Proposition 8, the
same (λ−1A)∗Bw can be chosen for both the normal and
accelerated system. Thus, the comparison is reduced between
the right side of Equation (17) for the normal and accelerated
system, that is, (λ−1A)t+1xic and (λ−1Aacc)

s+1xic, with
t = κ(λ−1A) and s = κ(λ−1Aacc). It turns out that, thus
far, there is no formal guarantee that this index will be no
greater, since the accelerated convergence number s can be
smaller than t but the matrix Aacc can be larger than A.
Thus, one cannot say in general that (λ−1Aacc)

s+1xic �
(λ−1A)t+1xic.

Despite the feedback appealing features in control theory,
note that Propositions 7 and 8 ensure that, in terms of con-
vergence number and size of the (A,B) max-plus geometrical
invariant, there is no loss, but maybe no gain either, when
this approach is used. In terms of elapsed time, however, the
approach can be detrimental. However, experimental results
in Section IX will show that, at least for a particular example
and under many difference choices of initial conditions, the
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proposed approach improves not only the convergence number
but also this index.

C. The algorithm

The algorithm will be presented in a succinct form below:

Algorithm 7.1: Periodic Synchronizer with Feedback Ac-
celerator

1) Compute F = Cp(B◦\(λ(λ−1A)∗));
2) Close the system loop with u[k + 1] = Fx[k] ⊕

g[k + 1];
3) Use the Periodic Synchronizer in the new system

using the input g[k].

It is very important to remark that if the Feedback Acceler-
ator technique is used, the spectral radius of the new system
matrix Aacc can be eventually the same as the λ used. Thus,
in this case it is indispensable to use h as in Equation (17)
(see the discussion at the end of Subsection VI-A).

D. Computational complexity

It is clear that the difference in computational complexity
between Algorithm 6.1 and Algorithm 7.1 is the computation
of the Feedback Accelerator, F . This requires the computation
of two scalings of a matrix, a Kleene Closure, a residuation
and a causal projection. If A ∈ Qn×nmax , B ∈ Qn×nmax , all of them
can be done in polynomial time. The two scalings by λ can be
done in time O(n2). The Kleene Closure can be computed in
time O(n3) using, for example, the Floyd-Warshall algorithm
[26], [28]. The residuation can be computed in O(nm2) and
the causal projection in O(nm). Thus, the final complexity
of computing F , provided that λ is given, is polynomial:
O(n(n2 +m2)).

VIII. THE CHEBYSHEV-OPTIMIZED FEEDBACK

Algorithm 6.1 requires a special class of (A,B) max-plus
geometrical invariant set as in Proposition 4: one composed
of scalar multiples of a vector q. The present section aims
to establish a more general approach which works with more
general (A,B) max-plus geometrical invariant sets generated
from the image of a matrix N . As it will be shown in Section
IX, even when applied to the same problem it can be more
efficient than Algorithm 6.1 and its improvement, Algorithm
7.1.

A. An inspiration from the traditional algebra

Suppose that one wishes to solve an analogue of Problem
1, but in the traditional linear time invariant system context.
More precisely, x is required to be in the left null space of a
matrix G ∈ Rq×n. Note that the max-plus equivalent to this
null space constraint is Equation (11).

Let N ∈ Rn×p be a generator matrix for a subset, not
necessarily the entire set, of the right null space of G, so
GN = 0. Thus, given the state x[k] at a given step k one can
design the controller u[k+1] in a way that at the next step k+1
the state x[k + 1] is as close as possible to the column span
of N . If the Euclidean metric is used to measure distance, the
controller comes as solution of the following convex quadratic

optimization problem (in which all the operators must be
considered as in the traditional algebra)

min
u[k+1],v[k+1]

‖(Ax[k] +Bu[k + 1])−Nv[k + 1]‖22.

Simple computations show that the solution2 is of the kind
u[k+1] = Fx[k], a linear feedback, for a constant matrix F .

B. Formalization

The discussed approach could be translated to the Max-plus
algebra, but the manipulations would be hard and cumbersome
since the Euclidean norm is not the most appropriate for
handling problems in this setting. A more appropriate measure
for algebraic manipulations is the ∞-norm ‖ · ‖∞, which
induces the Chebyshev distance between two vectors. Thus,
one approach to bring Ax[k]⊕Bu[k+1] to the span of N is
minimizing the Chebyshev distance

min
u[k+1],v[k+1]

‖(Ax[k]⊕Bu[k + 1])−Nv[k + 1]‖∞.

This can be seen as the problem of computing the distance
between the max-plus affine space Ax[k]⊕ImB and the max-
plus affine space (which is, in fact, a semimodule) ImN .
This problem, Problem 4, was already discussed in Subsection
IV-C. In this case, using Equation (7)

G[k] =

(
Ax[k] B ⊥
⊥ ⊥ N

)
, (23)

H[k] =

(
⊥ ⊥ N

Ax[k] B ⊥

)
.

It remains to show that the function fk(w) = G[k]◦\(H[k]w)
is non-degenerate. Indeed, in the context of control, it can be
assumed without loss of generality that both vectors Ax[k]
and the matrix N are lower bounded. The former represents
a firing time and hence cannot have ⊥ entries. The same also
holds for the latter because a ⊥ row on N , say the ith one,
implies that the desired constraint set requires that the ith state
xi[k] must be always ⊥ (since any vector in ImN will have
this property), a highly implausible demand. Hence, it is clear
that if w is lower bounded, so is Hw. Now, it can also be
assumed without loss of generality that no column of B is ⊥,
since otherwise the corresponding control entry plays no role
in the system and then can be removed. This, together with
the fact that Ax[k] and matrices N are lower bounded, implies
that the matrix G[k] has no column composed entirely of ⊥.
Hence, G[k]◦\(H[k]w) is lower bounded as long as w is lower
bounded. Thus, the methodology discussed in Subsection IV-C
can be used.

2There may be infinitely many solutions if there is a huge freedom in both
the choice of u[k+1] and v[k] (assuming all columns of the matrix (B −
N) ∈ Rn×(m+p) linearly independent, if and only if m + p > n). In this
case, it is necessary to introduce a weighting factor α‖u[k+1]‖22+β‖v[k]‖22,
α, β > 0 to ensure uniqueness.
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C. The algorithm

Algorithm 8.1: Chebyshev-Optimized Feedback
1) With the current state x[k], create the matrices G[k]

and H[k] as presented in Equation (23);
2) Let fk(w) = G[k]◦\(H[k]w), compute δ =

χ0(fk)
−1 (Problem 4, see Subsection IV-C);

3) Solve the max-plus linear equation

(δAx[k])t⊕ δBr � Ns; (24)
δNs � (Ax[k])t⊕Br

for the unknowns t, r and s, with t 6=⊥ (Sugges-
tion: use the iterative procedure given by Equation
(9), with the initial t[0] = 0 and r[0] and s[0]
as vectors with sufficiently large entries, so when
convergence is achieved one has t = 0);

4) Compute u[k + 1] = t−1r;
5) Take the control input of the system as u[k];
6) Set k to k + 1 and go to Step 1.

Note that, as opposed to the Periodic Synchronizer, the
Chebyshev-Optimized Feedback operates in closed-loop at
each step. Further, that it can be the case that the control
actions u[k] generated by the algorithm are not non-decreasing
(that is, u[k + 1] � u[k] may not hold), but the causalisation
procedure discussed in Subsection III-B implies that this is
not a problem, since the causalised control action u′[k] =⊕k

i=0 u[i] can be used instead.

D. Computational complexity

Disregarding the complexity of computing the generator
matrix N , the two most critical parts of Algorithm 8.1 are
the computation of the spectral radius of fk(w) at Step 1 and
the computation of a solution to Equation (24) at Step 2.

The first problem, in Step 1, can be solved by computing
the value of the associated mean-payoff game, for which
there are pseudo-polynomial algorithms (see [30]). Indeed,
let MPG(s, t, U, V ) be the complexity of computing the
values of the mean-payoff game associated to Uy � V y,
U, V ∈ Qs×tmax , a complexity for which the exact expression can
be found in [30]. Then at each time in Step 1 it is necessary to
solve a mean-payoff game associated with G[k]w � H[k]w,
with G[k], H[k] ∈ Q2n×(n+m+p)

max as presented in Equation
(23) (remember that A ∈ Qn×nmax , B ∈ Qn×mmax and N ∈ Qn×pmax ).
This implies the complexity MPG(2n, n+m+p,G[k], H[k])
at each step, which is pseudo-polynomial.

The second problem, in Step 2, of solving Equation (24)
can also be solved in pseudo-polynomial time using, for
example, the algorithm presented in [14]. In the same way,
if SMA(s, t, U, V ) is the complexity of solving the equation
Uy � V y, which is pseudo-polynomial, then the complexity
of Step 2, solving δG[k]w � H[k], is SMA(2n, n + m +
p, δG[k], H[k]) which is also pseudo-polynomial.

Hence, at each k, the complexity of computing the control
input u[k] is pseudo-polynomial in Algorithm 8.1.

E. Lyapunov stability

The main concern about Algorithm 8.1 is the convergence
for the desired set ImN . It turns out that, if N is an
(A,B) max-plus geometrical invariant, at least the Lyapunov
stability can be guaranteed. This is because the error, measured
using the Chebyshev distance between the actual state and the
desired set, does not increase.

In order to prove this, it is necessary to show a preliminary
proposition.

Proposition 9: (Inequality in the Chebyshev distance) Let
ImN be an (A,B) max-plus geometrical invariant set. Then,
for all x ∈ Qnmax there exists u ∈ Qmmax such that

d(Ax⊕Bu, ImN) ≤ d(x, ImN). (25)

�
Proof: Let N ∈ Qn×kmax . According to Property 1, for a

given pair (x, u), d(Ax⊕Bu, ImN) is the smallest ξ of the set
of all pairs {ξ, v} (with v ∈ Qkmax), denoted by L(S, N, x, u),
such that

ξ(Ax⊕Bu) � Nv;
ξNv � (Ax⊕Bu).

The proof relies in showing that, for all x, there exist
suitable parameters u, z, dependent on x, such that the
pair {d(x, ImN), z} ∈ L(S, N, x, u). This implies directly
Equation (25), since the left member of Equation (25) is the
smallest ξ in L(S, N, x, u).

For simplicity, define ζ ≡ d(x, ImN). Thus, also according
to Property 1, there exists a w, dependent on x, such that

ζx � Nw; (26)
ζNw � x. (27)

The proof starts with Equation (26). Since ImN is an
(A,B) max-plus geometrical invariant semimodule, there ex-
ists a matrix U ∈ Qm×kmax such that Im (AN ⊕ BU) ⊆ ImN
and hence AN ⊕BU = NP for a matrix P . Pre-multiplying
Equation (26) by A and summing up BUw in both sides, one
obtains

ζAx⊕BUw � (AN ⊕BU)w = Nz. (28)

In the last step, one uses the fact that AN ⊕ BU = NP ,
and thus z = Pw ∈ Qkmax is suitable. Note that z depends
on x, since w does. Now, clearly ζ ≥ 0 because it is a
Chebyshev distance, which is always non-negative. Therefore
ζAx ⊕ ζBUw = ζ(Ax ⊕ BUw) � ζAx ⊕ BUw � Nz and
thus

ζ(Ax⊕BUw) � Nz. (29)

Now, it is necessary to work with Equation (27). Again,
one proceeds by pre-multiplying by A, but now summing up
ζBUw in both sides, obtaining

ζANw ⊕ ζBUw = ζNz � Ax⊕ ζBUw (30)
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again using the fact that Im (AN ⊕ BU) ⊆ ImN , with the
same z = Pw as in Equation (28). Now, again it is necessary
to use the fact that ζ ≥ 0. Then Ax⊕ ζBUw � Ax⊕BUw.
Therefore, using this together with Equation (30)

ζNz � Ax⊕BUw. (31)

With u = Uw, which depends on x, since w does, Equations
(29) and (31) prove the claim that {ζ, z} ∈ L(S, N, x, u). This
concludes the proof.

The proof of the Lyapunov stability of Algorithm 8.1
proceeds then as a corollary of this proposition.

Corollary 3: of Proposition 9: (Lyapunov Stability) If ImN
is an (A,B) max-plus geometrical invariant set, the use of the
control input u[k + 1] designed using Algorithm 8.1 induces
a closed-loop dynamical system which is Lyapunov stable on
the Chebyshev distance, for all initial conditions.

Proof: The proof uses a Lyapunov-like approach,
considering the positive semidefinite function V (x[k]) ≡
d(x[k], ImN) as a measure of distance between the current
state and the desired set. Now, it is always possible to (at least)
maintain the distance between one step to another, since the
u[k+1] generated by Algorithm 8.1 is at least not worse than
the particular choice u′ = Uw (with U and w = w(x[k]) as in
Proposition 9), which, according to Proposition 9, guarantees
that the distance V (x[k+1]) is less than or equal to the actual
one V (x[k]).

However, it is important to remark that, as mentioned in
Section I, thus far there is no formal guarantee that the input
generated by Algorithm 8.1 will guide the system to the
desired set, which would configure asymptotic stability.

The next section will present an illustrative example show-
ing the performance of the Algorithm 8.1 in a wide number
of situations, as well as comparisons with Algorithm 6.1 and
its improvement, Algorithm 7.1.

IX. ILLUSTRATIVE EXAMPLE

A. The Problem

The following example was inspired from the TEG model
present in Chapter 8 of [18]. It is of moderate complexity and
thus can illustrate well the proposed methodology.

Consider the sub-system of the Dutch railway system com-
posed of ten train stations: Amsterdam Central Station (Asd),
Groningen (Gr), Zwolle (Zl), Hertogenbosch (Ht), Utrecht
Central Station (Ut), Enschede (Es), Nijmegen (Nm), Amers-
foot (Amf), Deventer (Dv) and Arnhem (Ah). Four train lines
serve these stations, as shown in Figure 1, with the line written
in each arc. For instance, line 1 has the route Asd ⇒ Amf ⇒
Zl ⇒ Gr ⇒ Zl ⇒ Amf ⇒ Asd.

The TEG which models this problem can be seen in Figure 2
(see [18] for the details). Each transition represents a departure
for a given route. For instance, x1[k], relative to the 1st

transition, is the date of departure of the kth train to the
route Asd⇒ Amf, which has the sum between the dwell time
and run time equal to 34 minutes. x6[k], for instance, is the
opposite run Amf⇒ Asd, which takes 36 minutes. This shows

Asd

Ut

Amf

Zl

Gr

Dv
Es

Ah

Nm
Ht

1 1

1

2

3
3 2

4
4 2

2

3

Fig. 1. A sub-system of the Dutch railway with ten stations.

that the timings are not, generally, symmetric between two
given stations. Each token represents a group of passengers in
route, but not generally a physical train. For instance, from the
transition associated to x1 emerges two group of passengers,
all of them going on the same train: one that will pick the
route Amf ⇒ Zl at the current line 1 (the token in the place
pointing at the transition associated to x2) and the other group
that will pick a new line, 3, to the route Amf⇒ Dv (the token
in the place pointing at the transition associated to x16). The
initial marking is chosen in a way that it is possible to have
an arrival of train at each station from hour to hour.

Suppose that it is possible to delay all departures, that is,
all the 24 transitions are directly controllable. This means the
introduction of 24 new independent control inputs and the
addition, in each transition of the TEG in Figure 2, of a new
triple of arc, place and token. See Figure 3 for the example of
this addition applied only in the transitions of line 4, because
drawing the resulting TEG for the whole system would be too
cumbersome.

It is possible to write the recursive state space equations for
the firing dates x of this TEG, in the form of Equation (3).
Note that, as there are two tokens in the place between the
transitions associated to x3 and x4, it is necessary to add at
least a new state variable, namely, one representing the delayed
x3[k− 1]. However, due to the kind of constraint that will be
required further, it is necessary to consider one delay for all the
variables. Thus, the augmented state space has 48 variables.
Further, it is important to stress that, while all the transitions
are directly controllable, not all states of x[k] are: the ones
respective to the delayed firings, xi+24[k] = xi[k − 1] for
1 ≤ i ≤ 24, are not.

Suppose that it is desirable that the trains arrive at each
station from hour to hour with at most 2 minutes of delay.
Note that, as mentioned previously, the initial marking of the
TEG permits that this hourly schedule is possible, but not
necessarily ensure it. This can be written as 58 ≤ xi[k] −
xi[k − 1] ≤ 62 for 1 ≤ i ≤ 24 or equivalently 58 ≤ xi[k] −
xi+24[k] ≤ 62 for 1 ≤ i ≤ 24.

Further, suppose that it is necessary to induce a connection
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Fig. 2. A TEG representing the sub-system of the Dutch railway system.
The units are described in minutes.
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Fig. 3. Line 4 with all the transitions directly controllable.

between line Line 3 and 4 to passengers arriving from Amf
in Ut desiring to go to Ah. To this, the date of departure to
the route Ut ⇒ Ah cannot be 3 minutes more than the date
of arrival of the train from the route Amf ⇒ Ut. The date
of the kth departure to the route Ut ⇒ Ah is x21[k]. The
date of the kth departure to the route Amf ⇒ Ut is x20[k].
The date of arrival of the kth train in Ut is 15 minutes after
its kth departure from Amf. Note that the total time, as seen
in Figure 2, is the sum of the run time - 15 minutes - plus
the dwell - 5 minutes. Thus, there must exist two k1, k2 such
that |x21[k1]− 15x20[k2]| ≤ 3. This means that the passenger
arriving from the kth1 from Amf will pick the kth2 train to Ah.
In order to deal with this constraint, one assumes that k1 = k2.
Thus |x21[k]−15x20[k]| ≤ 3 ⇐⇒ −3 ≤ x21[k]−15x20[k] ≤
3. In order to ensure that the problem is coupled, an innocuous
set of constraints −250 ≤ xi[k]−xj [k] ≤ 250 for all i, j, will
be posed to the system , see the discussion in Section III. Also,
see Figure 2 to check that the constraint is, indeed, innocuous.

Note that the resulting constraint set Xcons is max-plus
multiplicatively invariant. These constraints, in special, can be
written in the form Ex = Dx. Indeed, all of them can be

written as xi[k] ≥ Mxj [k] for an i, j and M . All of these
can be written matricially as x[k] � Qx[k] for a matrix Q or,
equivalently, x[k] = Q∗x[k]. The matrix Q has no ⊥ entries
and hence the resulting problem is coupled. See the discussion
in Section III. Therefore, E = I and D = Q∗ can be chosen
which results in 48 constraints (E,D ∈ Q48×48

max ) in the system.
Note also that one could try to use the approach for

generating timetables proposed in [18] and mentioned in
Subsection VI-B. However, it turns out that B 6= I and hence
the methodology cannot be applied.

Since A,B,E,D has only integers or ⊥ entries, the algo-
rithm described in Subsection IV-B can be used. The spectral
function s(λ) can be found to be the composition of three
pieces

s(λ) =


λ− 58 for ρ(A) = 54.25 ≤ λ < 58;

0 for 58 ≤ λ ≤ 62;
62−λ

3 for λ > 62;

which implies that any λ ∈ [58, 62] can be used. Using λ = 60
it is possible to solve Equation (13) and then obtain the pair
{q, w}.
B. Comparison of the approaches

Now, three approaches will be compared: Algorithm 6.1
(Periodic Synchronizer - PS, with h such that Equation (17)
holds), Algorithm 6.1 with the improvement proposed in
Algorithm 7.1 ( Feedback Accelerator - FA) and Algorithm 8.1
( Chebyshev Optimized Feedback - CO). For this purpose, 200
random initial conditions xic were generated, and each one of
the three algorithms was applied with these initial conditions.
In the Chebyshev Optimized Feedback N = q, with q as in
Equation (10), was used.

The convergence number of the system is κ(λ−1A) = 12.
With the acceleration proposed in Algorithm 7.1 this number
is reduced to κ(λ−1Aacc) = 4. Two indexes will be used
for comparison. The first one is the convergency step kcons,
which is the smallest step in which convergence is achieved.
The second one is the mean elapsed time, Tmean (in minutes),
as discussed in Subsection VII-B, which is the mean (in the
entries) of the elapsed time vector T ≡ x[kcons]−x[0] (as de-
fined in Subsection VII-B), which measures the time between
the first firing and the earliest firing in which convergence
is achieved, averaged in all entries. To each one of those
indexes, the mean value and standard deviation is computed.
For Algorithm 8.1, the mean and standard deviation of the
computation time, tcomp (in seconds), needed to compute the
spectral radius is also computed. The experiments were done
in an Intel Core I5 with 2.50 GHz and 4GB of RAM, coded
in ScicosLab 4.4.1 . The results are shown in Table I.

The computation of the value of the mean payoff game were
done using the algorithm proposed in [14]. For the solution
of max-plus linear equations, the iterative procedure given by
Equation (9) was used.

From Table I, the following can be concluded:
1) The Feedback Accelerator successfully improved not

only the convergence number of the system, but also
greatly reduced the elapsed time;
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TABLE I
MEAN (µ) AND STANDARD DEVIATION (σ) OF DIFFERENT INDEXES OVER

200 SAMPLES

PS FA CO
µ(kcons) 12.94 4 3
σ(kcons) 0.75 0 0
µ(Tmean) 739.51 229.28 169.28
σ(Tmean) 23.73 13.24 13.12
µ(tcomp) X X 0.0271
σ(tcomp) X X 0.0091

2) In the Periodic Synchronizer, of the 200 samples only
12 did not converge exactly in 13 = κ(λ−1A)+1 steps,
which is the bound in Proposition 6. The other ones con-
verged in 12 steps. This substantiate the claim in Sub-
section I-B that the proposed bound is not conservative.
Further, all the experiments for the Feedback Accelerator
converged in less than this bound (κ(λ−1Aacc)+1 = 5),
but still very close to it;

3) Computing the spectral radius was done extremely
quickly, which corroborates with the claim that the
Chebyshev Optimization approach can be used effi-
ciently even in relatively large problems.

Finally, for the sake of illustration, Figure 4 shows the
simulation of the system, with the Periodic Synchronizer with-
out feedback acceleration (blue) and the Chebyshev-Optimized
Feedback (red), under perturbations. The initial condition to
both simulations is the same. The perturbation is done at each
step with 40% of chance, in which independent and uniform
distributed integer delays between 0 and 4 minutes are added
do each entry of the unperturbed x[k]. The Periodic Synchro-
nizer with Feedback Accelerator was not tested because in this
case ρ(Aacc) = λ, and thus a rescheduling of the parameter h
would be necessary. This discussion will be made in a future
work.

By Figure 4, it is possible to conclude that the Periodic
Synchronizer - even with its open loop nature - is capable of
rejecting perturbations. However, it was again outperformed by
the Chebyshev-Optimized Feedback, which operates in closed-
loop, because it provides a smaller error overall.

X. CONCLUSION

This paper proposes two algorithms (and an improvement
for one of them) for solving, in steady state, a specific control
problem in the context of TEGs. As mentioned in Section I, by
the author’s knowledge no previous published work handles
the exact form of the proposed problem. Simulations show that
the approaches are capable of handling a problem of moderate
complexity in a very reasonable amount of time.

The major direction for a future work is proving asymptotic
stability for Algorithm 8.1. The authors would like to formal-
ize this idea in a future work. Another important step is how
to consider perturbations in the Periodic Synchronizer in the
case λ = ρ(A), in which a rescheduling of h, depending on the
current state, may be necessary. The authors also believe the
methodology can be modified and applied to the problem of
tracking of signals. There is also the fundamental discussion
of how to properly implement those controllers in practice
when state feedback is needed, since the controllers are in the

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

Steps

C
he

by
sh

ev
 d

is
ta

nc
e 

to
 th

e 
de

si
re

d 
se

t

Fig. 4. Performance of the Periodic Synchronizer (blue) and Chebyshev-
Optimized Feedback (red) under perturbations. The distance to the desired
set at each step is computed as ‖x[k]− (q ◦\x[k])q‖∞.

event domain but must be implemented in the time domain. In
this case, important questions of causality arises. The authors
are also interested in developing more applications of the
Chebyshev distance optimization approach for other problems
in control of TEGs. Finally, the authors believe, and are
currently working, that there is still room for generalizations
of the proposed algorithms on many different perspectives.
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