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Abstract: This paper deals with controller synthesis for (max,+) linear system. It
aims at comparing the performances and the robustness of two control strategies
introduced in (Cottenceau et al., 2001) and (Maia et al., 2003) respectively. In
both strategies, the influences of the possible mismatches between the system
and its model are analyzed. This work shows that the control strategy using
simultaneously a precompensator and a feedback controller (introduced in (Maia
et al., 2003)) gives better performances.
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1. INTRODUCTION

Timed Event Graphs (TEG) constitute a subclass
of timed Petri nets in which each place has ex-
actly one upstream and one downstream transi-
tion. It is well known that the timed/event be-
havior of a TEG, under earliest functioning rule 1 ,
can be expressed by linear relations over some
dioids, namely idempotent semiring (Baccelli et
al., 1992). Strong analogies then appear be-
tween the classical linear system theory and the
(max, +)-linear system theory. In particular, the
concept of control is well defined in the context
of TEG study. It refers to the firing-control of
the TEG input transitions in order to reach the
desired performance. In the literature, an optimal
control for TEG exists and is proposed in (Cohen

1 i.e. a transition is fired as soon as it is enabled

et al., 1989). For a given reference input, this
open-loop structure control yields the latest input
firing date in order to obtain the output before
the desired date. One possible approach for the
control of TEG is the model reference technique
in which a given model describes the desired per-
formance and the design goal is achieved through
the calculation of a precompensator or a feed-
back controller (Cottenceau et al., 2001; Luders
and Santos-Mendes, 2002). The control strategies
based on feedback control, although favoring sta-
bility, are limited in the sense that the reference
model must satisfy certain restrictive conditions.
Lately, a new technique for the design of con-
trollers in which a precompensator and a feedback
controllers are calculated simultaneously was in-
troduced by (Maia et al., 2003). This paper aims
at comparing the performances and robustness



of the above mentioned control methods. More
precisely, we will compare performances regarding
the just-in-time criterion and we will compare ro-
bustness, regarding possible mismatches between
the system and its model. The paper is organized
as follows. Section 2 introduces some algebraic
tools concerning the dioid and residuation theo-
ries. Section 3 is devoted to recall some elements of
DES representation over particular dioids and this
section presents three control strategies. Section
4 is dedicated to the analysis of the performances
and the robustness of these control strategies.

2. ALGEBRAIC PRELIMINARIES

A dioid D is an idempotent semiring, that is an
algebraic structure with two internal operations
denoted by ⊕ and ⊗. The neutral elements of ⊕
and ⊗ are represented by ε and e respectively. In a
dioid, a partial order relation is defined by a º b
iff a = a⊕ b and x∧ y denotes the greatest lower
bound between x and y. A dioid D is said to be
complete if it is closed for infinite ⊕-sums and if ⊗
distributes over infinite ⊕-sums. Most of the time
the symbol ⊗ will be omitted as in conventional
algebra.

Theorem 1. ((Baccelli et al., 1992), th. 4.75). The
implicit equation x = ax ⊕ b defined over a com-
plete dioid D, admits x = a∗b as least solution,
where a∗ =

⊕
i∈N ai (Kleene star operator). It

will be sometimes represented by the following
mapping : K : D → D, x 7→ ⊕

i∈N xi.

TEG control problems (Cohen et al., 1989), stated
in a just-in-time context, usually involves the in-
version of isotone mappings 2 , that is, one must
find x such that f(x) = y (where f is isotone).
Residuation Theory (Blyth and Janowitz, 1972)
deals with such problems stated in partially or-
dered sets.

Definition 2. (Residual and residuated mapping).
A mapping f : D → E between two ordered
sets is residuated if it is isotone, and if, for all
y ∈ E , the subset {x ∈ D | f(x) ¹ y} admits
a maximal element, denoted f ](y). The isotone
mapping f ] : E → D is called the residual of
f . The residual f ] is the only isotone mapping
satisfying the following properties :

f ◦ f ] ¹ Id and f ] ◦ f º Id, (1)

where Id is the identity mapping respectively on
D and E .

Lemma 3. ((Cohen, 1998)).

2 f is an isotone mapping if it preserves order, that is,
a ¹ b =⇒ f(a) ¹ f(b).

• If f : D → E and g : E → F are residuated
mappings, then f ◦ g is also residuated and
(f ◦ g)] = g] ◦ f ].

• If f is a residuated mapping from D → E ,
then f ◦ f ] ◦ f = f .

The mappings La : x 7→ a⊗ x and Ra : x 7→ x⊗ a
defined over a complete dioid D are both residu-
ated ((Baccelli et al., 1992), p. 181). Their residu-
als are isotone mappings denoted respectively by
L]

a(x) = a◦\x and R]
a(x) = x◦/a. Some useful dioid

formulæ involving these residuals are given below.

a(a◦\x) ¹ x and (x◦/a)a ¹ x (2)

a(a◦\(ax)) = ax (3)

a◦\a = (a◦\a)∗ (4)

(a∗)2 = a∗ (5)

x◦\ (a∗x) = (a∗x) ◦\ (a∗x) (6)

Definition 4. (Restricted mapping). Let f : D →
E be a mapping and B ⊂ E with f(D) ⊂ B. We
will denote B|f : D → B the mapping defined by
f = iB ◦B| f , where iB : B → E , x 7→ x is the
canonical injection.

Definition 5. (Closure mapping). An isotone map-
ping f : D → D defined on an ordered set D is a
closure mapping if f º Id and f ◦ f = f .

Remark 6. According to (5), the Kleene star op-
erator is a closure mapping since a∗ º a and
(a∗)∗ = a∗.

Theorem 7. ((Cottenceau et al., 2001)). Let f :
D → D be a closure mapping. Then, Imf |f is a
residuated mapping whose residual is the canoni-
cal injection iImf : Imf → D, x 7→ x.

Example 8. Mapping ImK|K : D → ImK is a

residuated mapping whose residual is
(
ImK|K

)] =
iImK. This means that x = a∗ is the greatest
solution to inequality x∗ ¹ a∗. Actually, this
greatest solution achieves equality.

Theorem 9. ((Gaubert, 1992)). Let f : D → D be
a residuated closure mapping, we have f = f ] ◦ f
and f = f ◦ f ].

3. CONTROL METHOD

Firstly, let us consider the following (max,+)-
linear system

x(k) = Ax(k − 1)⊕Bu(k), y(k) = Cx(k),
(7)

where x(k) ∈ Zn×1

max , u(k) ∈ Zp×1

max and y(k) ∈
Zm×1

max are respectively the state, input and output



vectors of the system. The matrices A,B and
C are of proper sizes and have entries ranging
over Zmax. We know from (Baccelli et al., 1992)
that (7) represents the behavior of a class of dis-
crete event systems called Timed Event Graphs
(TEG). In the case of a TEG, x (resp. u and y)
is a vector associated to the internal (resp. input
and output) transitions, and xi(k) represents the
kth firing dates of the internal transitions which
are labelled xi. Following the conventional ap-
proach, it is possible to define the transformation
x(γ) =

⊕
k∈Z x(k)γk where γ is a backward shift

operator in event domain (that is y(γ) = γx(γ) ⇔
{y(k)} = {x(k − 1),∀k} , see (Baccelli et al., 1992),
p. 228). This transformation is analogous to the
Z-transform used in discrete-time classical con-
trol theory and the formal series x(γ) is a syn-
thetic representation of the trajectory x(k). The
set of the formal series in γ is a dioid denoted
by Zmax[[γ]]. By using γ-transform, we obtain the
following representation of (7) :

X(γ) = AγX(γ)⊕BU(γ), Y (γ) = CX(γ),

where U(γ), X(γ) and Y (γ) are the γ-transform
of u, x and y respectively. The implicit equation
for the vector X, namely X = AγX ⊕ BU which
is solved (thanks to theorem 1) by X = (Aγ)∗BU .
Finally, we obtain the input-output representation
(transfer matrix)

Y = HU with H(γ) = C(Aγ)∗B. (8)

Herein, three control strategies for the systems are
presented, and their performances are compared
in section 4. They are based on the Just-in-Time
criterion and on the model reference approach
(Cottenceau et al., 2001). They can be described
as follows : let H ∈ (Zmax[[γ]])m×p be the transfer
matrix of the plant, given by (8), and Gref ∈
(Zmax[[γ]])m×p be the reference model, i.e., the
desired transfer matrix for the controlled system,
what are the controllers leading to the greatest
controlled system lower than the reference model.

The precompensation problem is depicted Fig.
1.(a). It is an open-loop strategy. The relation
between the input V ∈ Zmax[[γ]]p, and the output
Y is denoted Gc and the relation between V and
U is denoted Guv. They are given by

Y = GcV = HPV and U = GuvV = PV.

The aim is to compute the greatest precompensator
P such that Gc ¹ Gref . The residual of mapping
LH gives the optimal solution, denoted by Pop

3 ,

Pop = H ◦\Gref . (9)

This means that, for a given external input 4 V ∈
(Zmax[[γ]])p, the control input, given by U = PopV ,
will be maximal. In fact, for any P such that

3 In a manufacturing context, control U = PopV will delay
as far as possible the input of raw material while ensuring
that output of manufacturing part Y be lower that Gref V
4 In a manufacturing context, V represents the available
catering of raw material and U represents the allowance of
the raw material into the system.

HP ¹ Gref , P ¹ Pop, therefore the isotony
property assures that U = PV ¹ PopV .

a) The output feedback control strategy is de-
picted Fig. 1.(b). It is obviously more robust than
the open-loop strategy. For a given feedback con-
troller F1, the closed-loop transfer relation, de-
noted G1c

, between Y and V , and the transfer
relation between U and V , denoted G1uv , are
given by

Y = G1cV = H(F1H)∗V and U = G1uv V = (F1H)∗V.

The problem is then to compute the greatest con-
troller F1 such that G1c ¹ Gref .

This problem can be solved via residuation the-
ory if some restrictions are imposed on the refer-
ence model. The two following results are due to
(Cottenceau et al., 2001).

Proposition 10. Let H ∈ (
Zmax[[γ]]

)m×p
be

the transfer function of a TEG. Let MH :
Zmax[[γ]]p×m → Zmax[[γ]]m×p, X 7→ H (XH)∗ be
a mapping. This mapping represents the influ-
ence of an output feedback x on the closed-loop
transfer dynamics. Consider G ∈ Zmax[[γ]]m×p,
D ∈ Zmax[[γ]]m×m and N ∈ Zmax[[γ]]p×p. Let us
consider the following sets :

G1 = {G | ∃D such that G = D∗H} ,
G2 = {G | ∃N such that G = HN∗} .

The mapping G1|MH and G2|MH are both residu-

ated. Their residuals are such that
(
G1|MH

)] (X) =(
G2|MH

)] (X) = H◦\X◦/H.

Proposition 11. If Gref ∈ G1 ∪ G2, there exists
a greatest realizable output feedback F1op such
that MH(F1op) ¹ Gref . This greatest controller is
given by

F1op = H ◦\Gref ◦/H. (10)

b) The model-reference control scheme proposed
in the following is a generalization of the two
strategies described above, that is, it uses both
a precompensator and feedback controller (Maia
et al., 2003). Fig. 1.(c) illustrates the approach.

Fig. 1. Control structures.

By using theorem 1, one can obtain the closed-
loop equations which relate U , V and Y :



Y = G2cV = HP (F2HP )∗V, (11)

U = G2uv V = P (F2HP )∗V. (12)

The problem can be stated as follows. Given a
reference model Gref , what are the controller ma-
trices P and F2 which assure the greatest transfer
function between U and V , i.e. G2uv , such that
G2c

¹ Gref? Again, considering the Just-in-Time
context, one seeks the controllers which satisfy the
reference specification G2c ¹ Gref while delaying
as much as possible the input trajectory (e.g. the
entrance of products to be processed). Formally,
the problem can be stated as follows:

⊕
P, F2

G2uv (P, F2) (13)

s.t. G2c = HP (F2HP )∗ ¹ Gref .

It is clear that P = [ε]p×p is always a subsolu-
tion to the problem independently of the choice
of F2, meaning that the subsolution set is not
empty. Furthermore, it is easy to notice that the
strategies using exclusively a precompensator (by
setting F2 = [ε]p×m) or exclusively a feedback
controller (by setting P = Ip×p, where Ip×p is
the identity matrix in dioid) are particular cases
of this problem.

Proposition 12. ((Maia et al., 2003)). For the pro-
posed control scheme shown in Fig. 1.(c), the three
following inequalities are equivalent:

HP (F2HP )∗ ¹ Gref

P (F2HP )∗ ¹ H ◦\Gref

HP (F2HP )∗ ¹ H(H ◦\Gref ).

Lemma 13. ((Maia et al., 2003)). A solution to
problem 13 must satisfy P ¹ G2uv ¹ H◦\Gref .

Proposition 14. ((Maia et al., 2003)). A solution
to the optimization problem proposed in (13) is
given by :

Pop = H ◦\Gref . (14)

F2op = (HPop) ◦\(HPop)◦/(HPop). (15)

PROOF.

From lemma 13, G2uv is maximum (it is equal
to the upper bound) if P = H◦\Gref and
F2 = ε. Then, the greatest F2 for this value
of P is given by the greatest subsolution of
inequality Pop(F2HPop)∗ ¹ H◦\Gref , which
in turn (by proposition 12) is equivalent to
HPop(F2HPop)∗ ¹ H(H◦\Gref ) = HPop.
Moreover, from the residuation defi-
nition this inequality is equivalent to
(F2HPop)∗ ¹ (HPop)◦\(HPop). Equation (4)
yields ((HPop)◦\(HPop))∗ = (HPop)◦\(HPop) then,
thanks to corollary 8, F2HPop ¹ (HPop)◦\(HPop).
Finally, by solving this last inequality one obtains
F2op = (HPop)◦\(HPop)◦/(HPop).

4. PERFORMANCES AND ROBUSTNESS
ANALYSIS OF CONTROL METHODS

We will compare below the performances and the
robustness of the control strategy given by propo-
sition 11 and the one given by proposition 14.
First, we must observe that unlike the first strat-
egy, the second one does not restrict the reference
model choice. Nevertheless, in order to compare
performances of these strategies, we assume below
that the controller F1op

exists and then that the
reference model is such that Gref ∈ G1 ∪ G2 (see
proposition 11).

4.1 Performance Comparison

Proposition 15. The control strategy given in
proposition 14 leads to the same performances
than the one obtained with the open-loop strat-
egy, i.e., the greatest closed-loop transfer func-
tions G2uv and G2c are equal to their upper
bounds, that is, Pop and HPop respectively. For-
mally, this means that

G2c = HPop(F2opHPop)∗ = HPop

G2uv = Pop(F2opHPop)∗ = Pop.

PROOF. This proposition follows directly from
proposition 14, lemma 13 and from the observa-
tion that G2c = HG2uv (see (11) and (12)).

Proposition 16. Let Gref ∈ G1∪G2 be a reference
model. The transfer relation between U and V are
such that

G1uv = (F1opH)∗ ¹ G2uv = Pop(F2opHPop)∗ = Pop.

PROOF. We suppose that Gref ∈ G1, that is
Gref = D∗H. Then, we have

G1uv = (F1opH)∗ = ((H ◦\(D∗H)◦/H) H)∗ ¹ (H ◦\ (D∗H))∗

which follows from (2). But we also have that

G1uv ¹ (H ◦\ (D∗H))∗ = H ◦\(D∗H) = Pop = G2uv

by making use of (6) and (4).

Proposition 17. Let Gref ∈ G1∪G2 be a reference
model. The controlled system transfer G1c =
H(F1opH)∗ ¹ G2c = HPop(F2opHPop)∗ = HPop.

PROOF. From proposition 16, we have G1uv =

(F1opH)∗ ¹ G2uv = Pop(F2opHPop)∗ = Pop and by
isotony of product we obtain G1c = HG1uv =
H(F1opH)∗ ¹ G2c = HG2uv = HPop(F2opHPop)∗ =
HPop.

4.1.1. Summary These results mean that the
pair of controllers (Pop, F2op) :

- allows to obtain the same performances than
the one obtained with the open-loop control ;



- generates a control law greater than the one
obtained by F1op ;

- leads to a controlled system transfer closer
to the reference model Gref than the one
obtained by the controller F1op

.

4.2 Robustness analysis

a) In this section the aim is to analyse the
robustness of the closed-loop control methods
introduced previously.

First, we study the robustness of the controller
given by proposition 11 (Fig. 1.(b)). We are look-
ing for an upper bound denoted by H1sup

to the
set of systems which preserves the optimal closed-
loop control objective, that is,

H1sup = sup
{

X|X(F1opX)∗ = H(F1opH)∗
}

.

Then we characterize the set of systems which
preserves the input output behavior. It means that
the system can evolve in this set without alter
the input-output performances of the closed-loop
system.

Lemma 18. Let QA : D → D, X 7→ X(AX)∗

be a mapping defined over a complete dioid.
Then ImQA|QA is a residuated mapping and the
residual is (ImQA|QA)] = iImQA

, where iImQA
is

the canonical injection.

PROOF.

The mapping QA is a closure mapping, in-
deed QA ◦ QA(X) = X (AX)∗ (AX (AX)∗)∗ =

X (AX)∗
(
(AX)+

)∗
= X (AX)∗ (AX)∗ = X (AX)∗ .

Then proposition 7 gives the result.

Proposition 19. The system H1sup = H(F1opH)∗

is the greatest system which does not alter the
closed-loop transfer relation, i.e., H1sup(F1opH1sup)∗ =
H(F1opH)∗.

PROOF.

According to lemma 18, we seek the greatest
X such that QF1op

(X) ¹ H(F1opH)∗. Lemma
18 yields (ImQF1op

|QF1op
)] = iImQF1op

, and since
H(F1opH)∗ ∈ ImQF1op

, we have directly H1sup =
H(F1opH)∗. Furthermore according to theorem
9, we have QF1op

= QF1op
◦ Q]

F1op
, which leads

to equality H1sup(F1opH1sup)∗ = H(F1opH)∗ =
H1sup .

Corollary 20. Whatever be the system behavior
X such that H ¹ X ¹ H1sup the closed-loop
transfer relation is equal to H(F1opH)∗, i.e., the
input-output performances are not altered.

PROOF. Let X be a transfer relation such that
H ¹ X ¹ H1sup . Since the product and star
operators are isotone, we have H(F1op

H)∗ ¹
X(F1opX)∗ ¹ H1sup(F1opH1sup)∗, and proposition
19 leads to equality H(F1op

H)∗ = X(F1op
X)∗ =

H1sup
(F1op

H1sup
)∗.

b) We are now interested in the robustness anal-
ysis of the control method which equations are
given in proposition 14. We are looking for an
upper bound, denoted H2sup

, to the set of systems
which preserves the optimal closed-loop control
objective, that is

H2sup = sup
{

X | XPop(F2opXPop)∗ = HPop(F2opHPop)∗
}

.

(16)

Proposition 21. The system H2sup =
HPop(F2op

HPop)∗◦/Pop is the greatest which
satisfies (16), i.e., H2supPop(F2opH2supPop)∗ =
HPop(F2op

HPop)∗.

PROOF.

According to definition of the mappings QF2op

and RPop , we first seek the greatest X such that
XPop(F2opXPop)∗ ¹ HPop(F2opHPop)∗, that is,
(QF2op

◦ RPop)(X) ¹ (QF2op
◦ RPop)(H). Since

(QF2op
◦RPop)(H) ∈ ImQF2op

and as ImQF2op
|QF2op

is a residuated mapping (see lemma 18), X ¹
(ImQF2op

|QF2op
◦ RPop)] ◦ (QF2op

◦ RPop)(H), and

thanks to lemma 3, it follows X ¹ R]
Pop

◦
(ImQF2op

|QF2op
)] ◦ (QF2op

◦RPop)(H).

By recalling that (ImQF2op
|QF2op

)] = iImQF2op
,

we have X ¹ R]
Pop

◦ (QF2op
◦ RPop)(H) =

HPop(F2opHPop)∗◦/Pop.

Now, we will show that this upper bound is
solution of (16). From proposition 15 it fol-
lows HPop

(
F2opHPop

)∗ ◦/Pop = HPop◦/Pop, i.e.,
R]

Pop
◦QF2op

◦RPop(H) = R]
Pop

◦RPop(H). Then,

from lemma 3 it follows QF2op
◦ RPop ◦ R]

Pop
◦

RPop(H) = QF2op
◦ RPop(H), which yields to

H2supPop(F2opH2supPop)∗ = HPop(F2opHPop)∗.

Corollary 22. Whatever be the system behavior
X such that H ¹ X ¹ H2sup the closed-loop
transfer relation is equal to HPop(F2opHPop)∗,
i.e., the input-output performances are not al-
tered.

PROOF.

Let X be a transfer relation such that
H ¹ X ¹ H2sup . Since the product
and star operators are isotone, we have
HPop(F2opHPop)∗ ¹ XPop(F2opXPop)∗ ¹
H2supPop(F2opH2supPop)∗, and proposition



21 leads to equality HPop(F2opHPop)∗ =
XPop(F2op

XPop)∗ = H2sup
Pop(F2op

H2sup
Pop)∗.

4.3 Robustness evaluation

In the previous section, the upper bound of the
system set which achieve the control objective is
given for the both closed-loop control strategy.
In order to compare these bounds we assume
below that the optimal controller F1opt exists, i.e.
Gref ∈ G1 ∪ G2. Nevertheless, we recall that this
restriction is not useful to ensure the existence of
F2op

.

Lemma 23. Consider a reference model Gref ∈
G1 ∪ G2. Let F1op be the greatest controller such
that H(F1opH)∗ ¹ Gref and Pop the greatest
precompensator such that HPop ¹ Gref . Then

H(F1opH)∗ ¹ HPop ¹ Gref .

PROOF.

Since LH is a residuated mapping (see defi-
nition 2), we have the following equivalences
H(F1opH)∗ ¹ Gref ⇐⇒ (F1opH)∗ ¹
H◦\Gref . Furthermore, by isotony of ⊗, we obtain
H(F1opH)∗ ¹ H(H◦\Gref ) = HPop ¹ Gref in
which the latter inequality follows from (14) and
(2).

Lemma 24. If Gref ∈ G1 ∪ G2 the upper bound
H2sup is equal to HPop, that is

H2sup = HPop(F2HPop)∗◦/Pop = HPop◦/Pop = HPop.

PROOF. First assume that Gref ∈ G1, i.e., it
exists D such that Gref = D∗H. Then, thanks to
(6),(3) and (4), it follows that Pop = H◦\(D∗H) =
(D∗H)◦\(D∗H) = ((D∗H)◦\(D∗H))∗ = P ∗op. Then,
we have HPop◦/Pop = HP ∗op◦/P ∗op = R]

P∗op
◦ RP∗op

.
By recalling that RP∗op

is a closure mapping
(i.e., RP∗op

◦ RP∗op
(x) = xP ∗opP

∗
op = RP∗op

(x) and
RP∗op

º Id ) and by using proposition 9 we have
HPop◦/Pop = RP∗op

(H) = HP ∗op = HPop. The
proof, if Gref ∈ G2 can be given in a similar way.

Proposition 25. If Gref ∈ G1 ∪ G2 then
H1sup ¹ H2sup .

This means that the pair of controllers (Pop, F2op)
is more robust with regard to the system varia-
tions.

PROOF. Thanks to lemma 24, we have

H2sup = HPop = HP ∗op = H
(
H ◦\Gref

)∗
.

From (2), we have H◦\Gref º ((H◦\Gref )◦/H)H,
then by isotony of the laws ⊗ and ⊕ it follows
that
H2sup = H

(
H ◦\Gref

)∗ º H
(
(H ◦\Gref ◦/H)H

)∗
= H1sup .

5. CONCLUSION

This paper compares the robustness and the per-
formances of two control strategies for (max,+)-
linear systems. More precisely, we show that the
control proposed by (Maia et al., 2003) gives a
greatest control and ensures a greatest insensitiv-
ity to the mismatch between the system and the
model used for the controller synthesis. The next
step for the control proposed by (Maia et al., 2003)
aims at designing robust feedback controller when
the system includes some parametric uncertainties
which can be described by intervals (Lhommeau
et al., 2003).
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In: Algèbres Max-Plus et applications en in-
formatique et automatique, Ecole de print-
emps d’informatique théorique. Noirmoutier,
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