
1/23

Getting Started with the TX2-40/Cs9 Stäubli Robot
SP2 Teach Pendant, VAL 3 Programming

Jean-Louis Boimond
University of Angers

Keywords: Stäubli robot, TX2-40 arm, Cs9 controller, SP2 teach pendant, VAL 3 programming.

This document provides an introduction to the Stäubli TX2-40 robot, equipped with a Cs9
controller, using the SP2 teach pendant (and not the Stäubli Robotics Suite (SRS) software), by
covering the following topics: manual arm movement; access to the Tool Center Point
coordinates; use of a VAL 3 application (VAL 3 being the programming language used by Stäubli)
for automatic arm movement with a brief presentation of the variables (standard types, their
creations and initializations); manual arm movement towards a given joint or Cartesian point.

Table of Contents
1) Getting started with the robot ... 2

1.1) Starting up the Cs9 controller .. 2
1.2) Arm power with a manual Working Mode .. 2
1.3) Manual movement of the arm .. 4

1.3.a) In the joint space .. 4

1.3.b) In the Cartesian space .. 5

1.3.c) In the tool space ... 5

1.4) Access to Tool Center Point coordinates ... 5
2) Programming a VAL 3 application ... 5

2.1) Creation of the First_steps application and editing of its start() program 6
2.2) Variables ... 8

2.2.1) Variable types ... 8

2.2.2) Variables display of the First_steps application, declaration of a new variable 8

2.2.3) Initializing a variable .. 11

2.3) Coding the start() program ... 12
2.4) Running the application ... 13
2.5) Closing the application .. 13

3) Manual movement to a given point ... 13

3.1) Manual movement to jDpt joint point ... 15
3.2) Manual Movement to pExamplePoint Cartesian Point ... 16

ANNEX .. 17

A.1) Loading an application stored in the controller into RAM ... 17
A.2) Reading, initializing a variable using the VAL3 menu ... 18
A.3) Reading, initializing a variable using the JOG menu ... 19

2/23

1) Getting started with the robot
1.1) Starting up the Cs9 controller
The Cs9 controller (used with the robot arm) is started up by switching the main switch on the
front of the controller, circled in red in the figure below, to position ‘1’.

Figure 1: Front of the Cs9 controller.

Wait about 2 𝑚𝑛 for the main menu to appear on the teach pendant, as shown in the figure below.

Figure 2: Teach pendant main menu.

N.B.:

- The Home key , at the top left of the teach pendant, takes you back to the main menu,

- The Back key , near the top left of the teach pendant, takes you back to the previously visited

page.

1.2) Arm power with a manual Working Mode
Assumption: The Cs9 controller is in operation (see 1.1).

The arm power on, which is required to set it in motion, with a manual Working Mode is done
through the following two steps:
a) On the Working Mode Selector (WMS9), located near the controller, make sure that the switch

(equipped with a key) is set to manual as shown in the figure below.

3/23

Figure 3: Working Mode Selector (WMS9) panel.

As a result, the icon in the bottom right of the Teach Pendant appears, indicating the
selection of the manual Working Mode. In this mode, robot speed is limited to 250 𝑚𝑚/𝑠,
allowing the operator to stand close to the robot arm.

Note: An alternative to using the WMS9 is to select the manual slow item from the drop-

down menu at the bottom right of the teach pendant, rather than the auto item (given by
default), see the figure below:

Figure 4: Selecting the Working Mode from the teach pendant.

b) Press Power key at the top right of the teach pendant to switch the arm power on. This

action is only taken into account if the enabling device, located on the back of the teach pendant
(circled in red in the figure below), has been put into its middle position (by pressing the button
neither too weakly nor too strongly) in the last 15 seconds (note that the button must be released
and pressed again if the arm has not been powered up within 15 seconds). A light around the
Power key appears (flashing for a few seconds before being steadily) to indicate that the arm
power is on.

Figure 5: Back of the teach pendant.

N.B.: The arm power is cut off if the enabling device is released while the arm is in manual
movement. To put the power back on the arm, press the blue Restart button located on the WMS9
(see figure 3) to acknowledge the restart before pressing the Power key.

N.B.: The Emergency Stop button, at the top right of the teach pendant, immediately cuts arm
power and thus stops the arm from moving (if it was moving).

4/23

1.3) Manual movement of the arm
Assumption: The arm is powered up in a manual Working Mode (see 1.2).

Note: It is possible to adjust the speed of the Tool Center Point (TCP) by pressing the Jog key

, in the right vertical banner of the teach pendant. Its percentage value appears at

bottom left, with a maximum speed (100%) equal to 250 𝑚𝑚/𝑠.

Press the JOG button on the teach pendant main menu (accessed - if you are not already

there - by pressing the Home key , at the top left) to access the window for manual arm

movement.

Once the JOG menu has appeared, select one of the three buttons represented in the horizontal

banner , at the top of the window, to indicate the space in which

you wish to perform the movement:
- the Joint button to access the joint space,
- the Frame button to access the Cartesian space associated with the reference frame 𝑅0 of

the robot arm,
- the Tool button to access the tool space associated with the frame 𝑅𝑇𝑜𝑜𝑙 associated with the

tool (attached to the robot arm flange).

1.3.a) In the joint space
Pressing the Joint button moves the arm through the joint space by using angles J1, J2, ..., J6, see
the figure below.

Figure 6: Description of the six joints of the TX2-40 arm.

Press the Jog key (in the right vertical banner of the teach pendant), for example,

relative to joint J1 to rotate the arm around the axis of J1, either in the negative or positive direction.

N.B.: About the information displayed, by default, in the main window:

5/23

 - flange (equivalent to flange[0]) indicates that no tool is selected, so the tool frame 𝑅𝑇𝑜𝑜𝑙
coincides with the frame associated with the flange of the robot arm,

 - world (equivalent to world[0]) indicates that the reference frame (used for situating points,
frames, etc.) is the world frame (which coincides with the reference frame 𝑅0 of the robot
arm.

1.3.b) In the Cartesian space
Pressing the Frame button moves the arm through the Cartesian space by using X, Y, Z (in mm),

RX, RY, RZ (in degree). Press the Jog key (in the right vertical banner of the teach

pendant), for example, in relation to the X-axis so that the arm performs a translation of the TCP
along the 𝑥0 axis of the reference frame 𝑅0 of the robot arm. When the Jog key is relative to RX,
RY, or RZ, the TCP rotates around the axes 𝑥0, 𝑦0 or 𝑧0.

1.3.c) In the tool space
Pressing the Tool button moves the arm through the tool space by using X, Y, Z (in mm), RX, RY,

RZ (in degree). Press the Jog key (in the right vertical banner of the teach pendant), for

example, relative to the Y-axis so that the arm performs a translation of the TCP along the 𝑦𝑇𝑜𝑜𝑙
axis of the frame 𝑅𝑇𝑜𝑜𝑙 associated with the tool (or with the flange if there is no tool). When the Jog
key is relative to RX, RY, or RZ, the TCP rotates around the axes 𝑥𝑇𝑜𝑜𝑙 , 𝑦𝑇𝑜𝑜𝑙 or 𝑧𝑇𝑜𝑜𝑙.

1.4) Access to Tool Center Point coordinates
The TCP corresponds to the origin of the frame 𝑅𝑇𝑜𝑜𝑙 associated with the tool. Note that the
flange tool is used by default (in other words, no tool is attached to the flange), which means
that the tool frame is confused with the flange frame (by default).
In the JOG menu (accessible through the Teach Pendant main menu), simply go:

- in the joint space (using Joint button) to access the TCP angular coordinates (in degree) listed
in front of J1, ..., J6 buttons,

- in the Cartesian space (using Frame button) to access the TCP Cartesian coordinates in the
reference frame 𝑅0 of the robot arm listed in front of X, Y, Z (in mm), RX, RY, RZ (in degree)
buttons,

- or in the tool space (using the Tool button) to access the TCP Cartesian coordinates in the
tool frame 𝑅𝑇𝑜𝑜𝑙 (whose origin corresponds to the TCP) listed in front of X, Y, Z (in mm), RX,
RY, RZ (in degree) buttons.

2) Programming a VAL 3 application
We see in 2.1 how to create a VAL 3 application, entitled First_steps, and view the VAL3 code
of its start() program.
After a brief presentation of standard variables in 2.2, a first application is performed in 2.3 to
move the arm to a vertical posture (defined by a joint variable entitled jDpt) during two seconds,
then the arm moves so that the TCP reaches a point defined by a Cartesian variable entitled
pExamplePoint with values equal to 𝑋 = 400, 𝑌 = 70, 𝑍 = 275 (mm), 𝑅𝑋 = 25, 𝑅𝑌 =

100, 𝑅𝑍 = −25 (degree).
The way to run an application is described in 2.4; that for closing an application (deleting it from
the controller's RAM) is described in 2.5.

6/23

2.1) Creation of the First_steps application and editing of its
start() program

An application is composed of programs, by default start() (called by the system when the
application starts) and stop() (called by the system when the application is quit). In the
following, the application code will be placed only in the start() program (the stop()
program, initially empty, will not be modified).

Creation of the First_steps application

From the home page (accessible via the Home key , at the top left of the teach pendant), the

creation of an application, entitled First_steps, requires the following steps:

- Select the Val3 menu to access the window shown in the following figure:

Figure 7: VAL3 applications window with the default selection of the Storages tab.

- Select the Memory tab (rather than Storages), circled in red in the previous figure, to access
the controller's RAM. No application is present in the controller's RAM as shown in the
following figure:

Figure 8: VAL3 applications window when the Memory tab is selected.

- Press the button, circled in red in the previous figure, to create an application. In the

window that appears, see the following figure, type First_steps in the Name field, and
then click the OK button to confirm.

7/23

Figure 9: Creation of the First_steps application.

This results in the creation of the First_steps application in the controller's RAM as shown
in the figure below where the First_steps application appears in the Memory tab of the
VAL3 applications window:

Figure 10: Display of the First_steps application in the Memory tab of the VAL3

applications window.

This application is also saved on the controller's hard drive, as can be checked in the VAL3
applications window by selecting the Storages tab.

Thereafter, be careful to work only on the First_steps application, so as not to disturb the
contents of the controller's hard drive.

Editing of start() program
To edit the code of the start() program of the First_steps application:

- Press the button, at the top of the menu bar shown in the previous figure. The application

programs, that is start() and stop(), are listed in the Programs tab (selected by default)
of the window that appears, as shown in the figure below.

Figure 11: Listing of start() and stop()) programs of the First_steps application.

- Select the start() program to display its contents, which are currently empty except for the
begin and end tags delimiting the program's code:

8/23

Figure 12: Code of the start() program.

2.2) Variables
The main types of VAL3 variables, including those specific to robotics, are briefly described in
2.2.1. The process for visualizing the variables of an application and declaring a new variable (with
values given by default) is described in 2.2.2, while the method for initializing the variable values
is described in 2.2.3.

2.2.1) Variable types
Several variable types are available in VAL3. There are the classic variables of a programming
language such as Boolean (bool), numeric (num), string (string) variables. Some variables are
specific to robotics, for example: variables points defined in the joint space (later called joint
points (jointRx)) or defined in the Cartesian space (later called Cartesian points (pointRx));
tools variables (tool); variables for defining Cartesian frames (frame); variables for defining
changes in position and/or orientation (trsf).
To make it easier to recognize the type of a variable, it is assumed that the first letters of its name
indicate its type, i.e., concerning the types described above:

bVariable for a variable of bool type,
nVariable for a variable of num type,
sVariable for a variable of string type,
jVariable for a variable of jointRx type,
pVariable for a variable of pointRx type,
tVariable for a variable of tool type,
fVariable for a variable of frame type,
trVariable for a variable of trsf type.

2.2.2) Variables display of the First_steps application, declaration of a
new variable

Assumption: The First_steps application is loaded in the controller’s RAM (see figure 10),
which gives access to the menu described in the figure below.

Variables display of First_steps application
Press the button, circled in red in the menu bar shown in the figure below, to view the
application's variables.

9/23

Figure 13: Button allowing access to the variables of the First_steps application.

The result is the window, shown in the figure below, listing variables of all types in alphabetical
order when the Data tab is selected (which is the default case). Variables are listed in a
hierarchical manner when the Geometry tab is selected.
By default, the mNomSpeed1 variable, of mdesc type, is set to indicate the speed of the TCP as the
robot arm moves.

Figure 14: Variables display (using Data tab) of First_steps application.

Note that the presence of a padlock icon in front of a variable indicates that it is private (which is
the case with the mSpeedName variable), it is public otherwise.

Declaring a new variable
For example, let us define two variables: a joint variable called jDpt (of jointRX type) and a
Cartesian variable called pExamplePoint (of pointRx type).

The button, at the bottom right of the previous figure, allows the creation of new variables

whose type, name, container, etc. are to be declared in the window that appears after pressing

the button.

1 mSpeedName if you use the English language.

10/23

✓ Creating the jDpt joint variable

After pressing the button, the jDpt variable is created using the contents of the fields

described in the figure below:

Figure 15: Creation of the jDpt variable.

where it is indicated that the jDpt variable (Name field) is of type jointRX (Type field), it
corresponds to an array (Container field) of unit size (Size field) (which explains the name
jDpt[0]) and that its scope is private (Public button on off). Remember to validate your data
by clicking on the OK button. Note that the variable is initialized with default values, access to
these values being described in annex A.2.

The initialization of this variable is done in 2.2.3 in the start() program; note that it is also
possible to read, or initialize, a joint or Cartesian variable using the VAL3 menu, see Annex A.2.

✓ Creating the pExamplePoint Cartesian variable

After pressing the button, the pExamplePoint variable is created using the contents

of the fields described in the figure below:

11/23

Figure 16: Creation of the pExamplePoint variable.

where it is indicated that the pExamplePoint variable (Name field) is of type pointRX (Type
field), it corresponds to an array (Container field) of unit size (Size field), and that its scope is
private (Public button on off). The variable is defined relative to the world frame (Father field),
corresponding to the reference frame 𝑅0 of the robot. Note that it is possible to define points
relative to a frame (previously defined) other than the world frame. Remember to validate your
data by pressing the OK button. Note that the variable is initialized with default values, access to
these values being described in annex A.2.

Note: The variables are not saved if an asterisk appears in the floppy disk icon (), at top left of

the previous figure. Click on this icon to make the recording, the icon will no longer have an
asterisk.

2.2.3) Initializing a variable
It is possible to initialize in the start() program a variable such as, for example, jDpt (of
jointRX type) or pExamplePoint (of pointRX type). This is done simply through the following
instructions (of course, to be placed before their use in an instruction):

jDpt={0,0,0,0,0,0}

pExamplePoint={{400,70,275,25,100,-25},{ssame,esame,wsame}}

where:

- {400,70,275,25,100,-25} values are the x,y,z,Rx,Ry,Rz coordinates indicating
the location (i.e., the position and the orientation) of the pExamplePoint point,

- {ssame,esame,wsame} parameters (of type configuration) prohibit a change in the arm
configuration during the movement towards the pExamplePoint point. In the program
described in 2.3, the arm configuration is the one used to reach the jDpt joint point, i.e., left
shoulder, positive elbow and wrist.Note: Two other methods exist for initializing a variable.
Unlike the previous method, which initializes a variable directly in the program code, these
methods require manipulation of teach pendant.

The method, described in Annex A.2, is applied via the VAL3 menu and can be used to initialize
any type of variable, including variables: point of type jointRx or pointRx; frame of type
frame; tool of type tool.

12/23

The method, described in Annex A.3, is applied via the JOG menu (usually used to move the robot
arm manually towards a given point, see 3) and can be used to initialize point, frame and tool
variables.

2.3) Coding the start() program
Assumption: jDpt joint variable and pExamplePoint Cartesian variable are created, see the
procedure described in 2.2.2.

The first step is to edit the code of the start() program, see the procedure described in 2.1.
Complete the start() program, initially consisting of begin and end tags, as follows:

Figure 17: Code contained in the start() program.

The joint variable jDpt, of type JointRx (see 2.2.1 for more details), is such that 𝐽1 = ⋯ = 𝐽6 =

0 (see 2.2.3 for initialization of the variable).
The movej(jDpt,flange,mSpeedName) instruction moves from the current point (the point
reached just before the instruction is executed) to jDpt point (where the robot arm is vertically
extended). The flange parameter indicates that there is no tool attached to the robot arm, i.e.,
the frame associated with the TCP corresponds to the frame associated with the robot's flange.
The use of movej ensures that the trajectory optimizes movement speed (we speak about point-
to-point movement); note that there are other movement instructions for straight or circular
trajectories, but they do not guarantee an optimal movement speed.
The waitEndMove() instruction, located after movej(jDpt,flange,mSpeedName),
ensures to achieve the movement to jDpt point before continuing the execution of the program,
so there is no smoothing phenomenon of jDpt point with the next point (pExemplePoint).
The Delay(2) instruction causes a 2-second wait at the current point, i.e., jDpt.
See 2.2.3 for the initialization of the Cartesian variable pExamplePoint.
The movej(pExamplePoint,flange,mSpeedName) instruction performs a move to the
pExamplePoint point with a mode of operation similar to the move to jDpt point.
The waitEndMove() instruction, located just before the End instruction, ensures to achieve the
movement to pExamplePoint point before the program stops. Also, be sure to always place this
instruction just before the End instruction of your program.

This program is such that once the arm is vertically extended, 2 seconds elapse, and then the TCP
reaches the pExamplePoint point with coordinates 𝑋 = 400, 𝑌 = 70, 𝑍 = 275, 𝑅𝑋 = 25, 𝑅𝑌 =

100, 𝑅𝑍 = −25.

13/23

Note: The program is not saved if an asterisk appears in the floppy disk icon (), at top left of

the previous figure. Click on this icon to make the recording, the icon will no longer have an
asterisk.

2.4) Running the application
Assumptions:
- The Off mode is the one selected in the JOG menu (and not Joint, Frame or Tool) (see 1.3),
- The arm is powered up in a manual Working Mode (see 1.2),
- The First_steps application is loaded into RAM’s controller (see figure 10).

N.B.: The Move/Hold button , at the top right of the teach pendant, allows a soft and

immediate stop of the robot arm movement (which can be useful during a program development),
this type of stop does not cut arm power.

The First_steps application being loaded in the controller's RAM, go to the page described in

figure 10 (after 2 successive presses of the Back key if you come from the menu described

in the previous figure). The box corresponding to the application being checked (which sets the
application ‘at the top’ of the execution stack if several applications are loaded into RAM (which

is not the case here)), the application is launched by pressing the Run button (in the menu

bar), then by pressing: the Move/Hold button of the teach pendant once, then a second

time continuously, as well as on the enabling device (knowing that the arm movement stops as
soon as the Move/Hold button or the enabling device is released).

2.5) Closing the application
Be sure that the First_steps application is stopped as indicated by the message No
Application Running displayed on the teach pendant; if this is

not the case, the application can be stopped by pressing the stop button
, at the top right of the teach pendant. Once the box corresponding

to the First_steps application has been checked (see figure 10), it is closed by pressing the

Close button , at the top right of the teach pendant, which removes it from the RAM (Memory).

3) Manual movement to a given point
During trajectory setting, it may be useful to manually move the robot arm to test access to certain
points. Such movements are made from the JOG menu, accessible via the main menu of the teach

pendant (press the Home key to go there).

Assumptions:
- The arm is powered up in a manual Working Mode (see 1.2),
- The First_steps application is loaded into RAM’s controller (see figure 10).

From the JOG menu described in the figure below:

14/23

Figure 18: JOG menu.

- Press the button circled in red in the figure below to access the First_steps application
(located at the bottom of the figure below):

Figure 19: Access the First_steps application in the JOG menu.

- Select the First_steps application to open the window shown in the figure below, where the
tool and the base frame used in the application are the default ones, i.e.: flange
(corresponding to the case where there is no tool attached to the robot arm) and world (which
means that the points considered below are defined in the reference frame 𝑅0 of the robot (and
not another frame that may have been defined previously)).

15/23

Figure 20: Selecting First_steps application in the JOG menu.

- Press the button circled in red in the previous figure to view the joint variables (due to the
selection, by default, of Joint in the field circled in red in the figure below) associated with the
application: the jDpt variable, in the present case, as shown in the figure below:

Figure 21: Display of the joint variables (jDpt in the present case) in the JOG menu.

3.1) Manual movement to jDpt joint point
In the window described in the previous figure, check the box corresponding to jDpt variable to

indicate that you want the TCP to move to jDpt point. Press the Joint button , which

appears at top right of the window shown in the previous figure, to indicate that the movement will
be calculated in the joint space, leading to the window shown in the figure below:

16/23

Figure 22: Window showing the jDpt variable data before the robot arm moves.

which indicates the distance between the current point and the jDpt point and mentions that

the arm will be set in motion by pressing the Move/Hold key .

3.2) Manual Movement to pExamplePoint Cartesian Point
In the window described in figure 21, select Point (instead of joint selected by default) from the
drop-down menu circled in green in figure 21 to view the Cartesian variables associated with the
application: the variable pExamplePoint, in the present case, as shown in the figure below:

Figure 23: Display of the point variables (pExamplePoint in the present case) in the JOG

menu.

Check the box corresponding to pExamplePoint variable to indicate that you want the TCP to
move to pExamplePoint point. Two ways to set the robot arm in motion are proposed:

17/23

- by pressing the Joint button , which appears at top right of the window shown in the

previous figure, to indicate that the movement will be calculated in the joint space, leading to
the window shown in the figure below:

Figure 24: Window showing the pExamplePoint variable data before the robot arm moves.

which indicates the distance between the current point and the pExamplePoint point and

mentions that the arm will be set in motion by pressing the Move/Hold key .

You will notice that the button corresponding to the Move-in-line field

 is set to off, which means that the active mode is indeed the

point-to-point mode (and not the straight line mode).

- or by pressing the Line button , which appears at top right of the window shown in the

figure 23, so that the TCP joins pExamplePoint point in a straight line. Note that the
calculation of the movement is done in Cartesian space, so the movement is not always
possible!

ANNEX
A.1) Loading an application stored in the controller into RAM
The following procedure is used to load an application located on the controller's hard disk into
RAM, by example, for its execution.

From the home page (accessible via the Home key , at the top left of the teach pendant):

- Access the list of applications located on the controller's hard disk by selecting the Storages

tab in the VAL3 menu , then pressing the button on the line corresponding to

Disk, circled in red in the figure below:

18/23

Figure 25: Selecting the controller’s hard disk.

- In the window that appears, check the box corresponding to the application you want to load
into RAM, which causes it to appear in the Memory tab, like the window described in figure
10.

A.2) Reading, initializing a variable using the VAL3 menu
As seen in 2.2.2, the VAL3 menu allows the display of all the variables (of all types) declared in an
application. We’ll see that the VAL3 menu can also be used to initialize the contents of a variable,
such as the joint variable jDpt used in the First_steps application.

Assumption: The First_steps application is loaded into the RAM’s controller (see figure 10).

Go to the page for viewing variables of the First_steps application (for this, see the procedure
described in 2.2.2), which gives rise to the page shown in the figure below:

Figure 26: Display of the variables via the Data tab.

By pressing the button corresponding to jDpt variable, then checking the corresponding box

in the window that appears, it is possible to read the contents of the variable, but also to initialize

its values by pressing the Edit button (at the top of the menu bar), see the figure below:

19/23

Figure 27: Reading, initializing the contents of jDpt variable.

Don’t forget to validate with the OK button if you modify the variable contents!

A.3) Reading, initializing a variable using the JOG menu
The JOG menu is usually used to manually move the robot arm to a given point (see 3), but it is
also possible to use this menu to create a variable of type: point (jointRX, pointRX), frame
or tool, and to read or initialized its contents.

As an example, let's read the contents of the jDpt joint variable used in the First_steps
application. Then create a new Cartesian variable called pOtherPoint.

Assumption: The application to be edited, in the present case First_steps, is in RAM (see
figure 10).

✓ Reading, initializing the jDpt joint variable (of type jointRx)
Go to the JOG menu to view the joint variables of the First_steps application, as shown in 3
and 3.1, resulting in the page shown in the figure below (identical to figure 21):

20/23

Figure 28: Display of the joint variables (of jointRX type), in the present case jDpt, in the JOG

menu.

- Check the box for jDpt variable, then press the Edit button at the top of the menu bar to

access the window described in the figure below, which allows you to read or initialize the
contents of jDpt variable.

Figure 29: Reading, initializing the contents of the jDpt variable.

✓ Creating a Cartesian variable pOtherPoint (of type pointRx)
Go to the JOG menu to view the Cartesian variables of the First_steps application, as
described in 3.2, resulting in the page shown in the figure below (identical to figure 23):

21/23

Figure 30: Display of the Cartesian variables (of pointRX type), in the present case

pExamplePoint, in the JOG menu.

✓ Note that the point that will be created is defined in the frame world (i.e., the reference
frame 𝑅0 of the robot), as shown in the figure below.

- Then press the button circled in red (bottom right) in the previous figure. Select the

contents of the fields in the window that appears:
- Name to declare a Cartesian variable (Type pointRx), named pOtherPoint,
- Container to indicate that the variable corresponds to an array (array) of dimension 1

(Size field),
specify that its scope is private (Public field to off, selected by default), as shown in the figure
below.

22/23

Figure 31: Creating the pOtherPoint variable.

which gives (after validation via the OK button) the result described in the figure below where the
pOtherPoint variable appears.

Figure 32: Display of the Cartesian variables (of pointRX type), in the present case

pExamplePoint and pOtherPoint, in the JOG menu.

- Check the box for pOtherPoint variable, then press the Edit button at top of the menu

bar to access the window described in the figure below, which allows you to read or initialize the
contents of pOtherPoint variable through the field values 𝑋, 𝑌, 𝑍, 𝑅𝑋, 𝑅𝑌, 𝑅𝑍.

23/23

Figure 33: Read, write/initialize the contents of the pOtherPoint variable.

