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I  INTRODUCTION TO SIMULATION 

A large number of (real) systems are complex in the sense that they are very/too difficult/ to 

study via analytical models due to the lack of computable solution. Simulation is a technique 

to study the dynamic behavior of complex system based on the building and analyze of software 

model (‘modèle logiciel’) of the system. 

Simulation is a process that consists of:   

- build a model of the (real) system to study, 

- conduct experiments on the model (no calculation), 

- interpret the observations provided by the model execution and make decisions about 

the system. 

The goal can be to understand the dynamic behavior of a system, to compare configurations, to 

evaluate different control strategies, to analyze and optimize performances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fields of application are various. some examples of classic problems related to these fields are 

listed below.   

▪ Workflow systems 

- balancing of assembly lines, 

- design of transfer systems between stations, 

- sizing (‘dimensionnement’) of workshop stock, 

- comparison between production line managements. 

▪ Logistics flows and transport systems 

- design and sizing of warehouse, 

- sizing of trucks fleet, 

- study of controlling procedures for the flow of vehicles in circulation. 

▪ Production of services 

- study of banking transactions, 
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- management of fast-food restaurant, 

- comparison between aircrafts maintenance policies. 

▪ Computer systems and telecommunications 

- study of server memory queue, 

- study of behavior of users, 

- design and sizing of hub. 

▪ Other classes of applications 

- military field (logistical support, coordination of operations, etc.), 

- hospital management (staff, beds, emergency department, etc.), 

- nuclear, weather forecasting, games, etc. 

 

General methodology 

 

Four phases are classically considered during the simulation process: Analysis and modeling of 

the system (leading to a conceptual model, this model being also conditioned by the given 

objective), implementing a computer program equivalent to the conceptual model (leading to a 

software model, also called simulation model), experimentation and interpretation of the results 

leading to decisions or actions on the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(*) Experimentation: It is about building theories, putting forward hypotheses (‘d’avancer des 

hypothèses’), based on observed behavior of simulation model. 

 

Here we will represent conceptual models by using Petri nets, cf. Chp. VI; simulation model, 

as well as experiments, will be realized by using ARENA software, cf. Chp. VII. 

 

I.1  MODEL BUILDING 
 

Model building is an essential step during simulation process in the sense that the quality of the 

results obtained at the end of experiments is mainly dependent on the quality of the modeling. 

Different points need to be considered: 

• Define the objective of the modeling (related to the specifications): Why do we model? What 

are we studying? What do we want to do or improve? 

Figure 1: Simulation methodology. 
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• Define the limits of the system (identify inputs and outputs) and the elements (via the 

realization of function or process) composing the system. 

• Define the interactions between these elements (hierarchy). 

 

I.2  LIMITS OF SIMULATION 
 

Simulation is not an optimization technique in the literal sense, it can only establish the 

performance of a solution designed and imagined by the simulation designer. Simulation is an 

iterative technique that does not propose final solution but only allows the designer to consider 

possible choices. In any case, it is the designer who will have to decide what is the best answer 

to the given problems. 

Simulation results are often complex to interpret. Random phenomena are studied, and analysis 

techniques require rigor; it is often difficult to distinguish between the crucial and the anecdotal 

(model must be neither too coarse nor too precise), all this to be done in an often constraining 

deadline. 

 

I.3  DISCRETE EVENT SYSTEMS 

 

The systems we will consider are discrete event systems which means that they are represented 

by discrete event models. The state space is governed by discrete events in the sense that 

transitions between states are associated with the occurrence of asynchronous discrete events. 

The changes of state of these systems (occurring at discrete moments over time) are 

instantaneous. For example, if a variable represents the number of workpieces in a stock, its 

value only changes when workpieces enter or leave the stock. 

 

Production systems, traffic systems (air, rail, naval, etc.), communication systems, computer 

systems are examples of discrete event systems, that is, are governed by discrete events, some 

of one being caused voluntarily (departure of a train, pressing a key on a keyboard) and others 

not (breakdown of equipment). 

 

Model reproduces the evolution over time of the state1 of system under the effect of activities 

that are realized. The evolution of event-driven simulation is done through the management of 

a schedule: the model of system goes from one state to another state following the triggering 

(‘déclenchement’) of an event. Each event is associated with a function to be executed which 

can modify the state of the system through the triggering of one or more events. 

  

 
1 The evolution of state is governed by discrete events unlike continuous systems (governed by differential 

equations) where state evolves continuously over time. 
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I.4  SIMULATION OF PRODUCTION SYSTEMS 

 

Production system consists of an operating system (physical), a control system (control part) 

and an information system linking the latter two. It is crossed by a flow of information (presence 

of workpiece, state of machine) and a physical flow (raw material, workpiece). The system to 

simulate can be existing, to be modified or not yet built. 

 

Automated production systems are characterized by high complexity and flexibility. The 

simulation of these systems often requires global approach considering at the same time 

technical aspects (characteristics of production resources, storage capacities, geometry of 

transport network, etc.) and human aspects (social constraints, teamwork, overtime, etc.). 

 

 

 

 

 

 

 

 

 

Model describes the functioning of system (its structure, its dynamic behavior) with the degree 

of detail necessary to solve the given problem. It allows a representation of product flows 

knowing that flow is: 

- slowed down by activities mobilizing resources (after waiting for their availability) 

during a certain time (operating times, transfer time, etc.), 

- constrained by operating rules (ranges, technological constraints), 

- directed by the rules of conduct (‘règles de conduite’) given by the control system. 

 

Historical and statistics concern information about transportation (transport time of workpieces 

from one place to another, etc.), resource commitment rates (‘taux d’engagement des 

ressources’), queue lengths, etc. 

 

Performance evaluation, in terms of product flows, exploits this data for: 
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- determine absolute performance (production volume, maximum cycle time), 

- predict performance under certain conditions (presence of failures), 

- do a sensitivity analysis (among similar choices), 

- compare alternatives (among possible choices). 

 

Performance evaluation is often based on production rate (average number of workpieces per 

unit of time), WIP (Work In Progress/Process, total number of workpieces in system at any 

given time), makespan (time interval between the start and end of workpieces production). 

 

These performance indicators are then aggregated for decision-making related to design 

assistance (‘aide à la conception’), system control, etc. 

 

I.5  USE OF COMPUTER TECHNOLOGY 

 

Three approaches are usually used to perform a simulation: 

 

1. Write from scratch the program corresponding to the given problem and system by using 

standard computer languages such as Python, Java, C#. Implementation is often time 

consuming, but there is a lot of flexibility. 

 

2. Development of simulation model is realized through a program written by the simulation 

designer from modeling primitives provided by the simulation languages. Such languages 

offer great flexibility during model development phase. For example, ARENA (one of the 

main standard simulation software in France) offers modeling primitives particularly adapted 

to production systems (resource modeling and transport primitives). 

 

3. Use a simulator dedicated to a particular type of system and problem. Model is given, and it 

is enough to parameterize it to adapt it to the studied case. This alternative has the advantage 

that no programming is required (only parameters must be entered), but it is not always easy 

to find the right software for the system and problem. 

 

II  ELEMENTS OF PROBABILITY AND STATISTICS 

Many real-life systems exhibit behavior with random phenomena. Whatever the power of 

computers, all possible deviations of such systems cannot be simulated, the statistical tool is an 

alternative to study and control the consequences of these random variations on system 

behavior.   

 

Modeling of random discrete event systems simply means that randomness (‘l’imprévu’) is 

introduced into events through two basic ways: event occurrence times or event state transitions 

may be random. 

 

Probability theory makes it possible to model and study random phenomena, we speak about 

random events, random variables, probability distributions, etc. 

 

For example, in a production system, many phenomena are random such as: 

- operating time of manual operation, 

- life time of tool, 
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- absenteeism of operators, 

- period of arrival of production orders starting the production. 

 

Statistics are based on the observation of concrete phenomena. Purpose is to collect, process 

and interpret observational data, we speak about population of individuals, characteristic 

variables, samples (‘échantillons’), averages, etc. 

Probabilistic models make it possible to approximate the observed data (imprecision, errors, 

distribution in the population) as random variables according to a certain probability 

distribution → simplifying models. 

 

As the sample is drawn at random (‘tiré au hasard’), the characteristics of the data to be 

processed are random variables → application of probability theorems such as the central limit 

theorem2. 

 

Simulation uses the results of probability-statistics essentially to: 

- approach empirical data through probability distributions 

→ functions integrated into simulation model (probability distributions), 

- statistically interpret the data generated by model 

→ mean, standard deviation, confidence interval, etc. 
 

Definition of probability 

 

We consider the set Ω of all possible eventualities of the considered random phenomena 

resulting from a test (experiment, observation, or simulation), each of these eventualities is 

called an elementary event. Any event is defined as a subset 𝐴 of Ω containing all the elementary 

events of Ω composing the event 𝐴. The probability attached to an event 𝐴 is a number 𝑃(𝐴), 
probability satisfies the following postulates: 

- ∀ 𝐴 ⊆  Ω , we have 0 ≤ 𝑃(𝐴) ≤ 1, in particular 𝑃(∅) = 0 (probability of empty set) 

and 𝑃(Ω) = 1 (probability of event Ω), 

- ∀ 𝐴, 𝐵 ⊆  Ω  satisfying 𝐴 ∩ 𝐵 = ∅ (disjoint events), we have 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) +
𝑃(𝐵) (in other words, the probability of a set is equal to the sum of the probability of 

its disjoint subsets) which is a particular case of the equality 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) +
𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵). 

 

The problem of assigning probabilities to a set of events can be solved in several cases as 

follows: 

- if elementary events are finite, a series of repetitions of test can be realized: The 

frequency of occurrence of each event provides an estimate of its probability, 

- if events are in infinite number, we can define on this set a probability distribution. 

  

 
2 The mean of a sample size 𝑛 extracted from any population of mean 𝜇 and standard deviation 𝜎 is distributed 

according to a practically normal distribution of mean 𝜇 and standard deviation 
𝜎

√𝑛
 when the sample size is large 

enough. For a population coming from a normal distribution, the central limit theorem is valid for all 𝑛. For other 

distributions, the larger the sample size, the closer the distribution is to the normal distribution. It can be considered 

that from 𝑛 equal to 30, the mean of a sample is distributed in a substantially normal way.    
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II.1  CONTINUOUS RANDOM VARIABLES 

 

A continuous random variable 𝑋 is a real-valued function defined on a set Ω (set of possible 

events) such that the set of values taken by 𝑋, denoted 𝑋(Ω), is a finite or infinite interval. For 

example, let be Ω equal to an interval [𝑎, 𝑏] representing all the possible values of the diameter 

of the workpieces manufactured by a turning machine (‘tour d’usinage’). 

 

Example of the Uniform distribution (UNIF) continuous: Let be 𝑋 a random variable that 

can take all values of a finite interval [𝑎, 𝑏], without privileging any region of [𝑎, 𝑏] (we talk 

about equiprobable events). Also, probability that 𝑋 takes a value belonging to the interval 
[𝑢, 𝑣] (⊂ [𝑎, 𝑏]) is proportional to its length, that is, 

 𝑃(𝑢 ≤ 𝑋 ≤ 𝑣) = (𝑣 − 𝑢)/(𝑏 − 𝑎), 

that is 𝑃(𝑢 ≤ 𝑋 ≤ 𝑣) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
 𝑣

 𝑢
 where 𝑓𝑋(𝑥) = {

1/(𝑏 − 𝑎) if 𝑎 ≤ 𝑥 ≤ 𝑏
0 elseif

. 

 

 

 

 

 

 

 

𝑓𝑋(𝑥) is a probability density function, it defines the random (stochastic) behavior of the random 

variable 𝑋 and thus characterizes its probability distribution (often abbreviated to distribution). 

 

The Uniform distribution (distribution of maximum ignorance) is used when one has no 

information except domain knowledge [𝑎, 𝑏]. 
 

𝑓𝑋(𝑥) is a probability density function of the random variable 𝑋 if, and only if, 

∀ 𝑎, 𝑏 ∈ 𝑅2, 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓𝑋(𝑥)𝑑𝑥.
 𝑏

 𝑎

 

Remark: For continuous random variable, considering an event of the type ‘𝑋 = 𝑥’ does not 

make sense (indeed, we have: 𝑃(𝑥 ≤ 𝑋 ≤ 𝑥) = 0). 

 

Probability density function 𝑓𝑋(𝑥) is such that: 

 {
𝑓𝑋(𝑥) ≥ 0, ∀ 𝑥 ∈ 𝑅,

∫ 𝑓𝑋(𝑥) 𝑑𝑥
+∞

−∞
= 1 (corresponding to the probability of the sure event = 1).

 

Remark: 𝑓𝑋(𝑥) is continuous on ℝ except (possibly) in a finite number of points (for example, 

the density of the uniform distribution is continuous, except in 2 points). 

 

We define the mean 𝑀, also called mathematical expectation (‘espérance mathématique’) 

𝐸(𝑋), by: 

𝑀 = ∫ 𝑥 𝑓𝑋(𝑥) 𝑑𝑥
 +∞

 −∞
. 

We define the variance 𝜎2 (𝜎2 ≥ 0), also denoted 𝑉𝑎𝑟(𝑋), by: 

𝜎2 = (∫ 𝑥2𝑓𝑋(𝑥) 𝑑𝑥
 +∞

 −∞
) − 𝑀2, also equal to ∫ (𝑥 − 𝑀)2𝑓𝑋(𝑥) 𝑑𝑥

 +∞

 −∞
. 

 

 

1

𝑏 − 𝑎
 

𝑓𝑋(𝑥) 

0 
a       u      v               b           x 

area =𝑃(𝑢 ≤ 𝑋 ≤ 𝑣) 
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N.B.: The mean is a position parameter that provides information on the order of magnitude 

of the values taken by the random variable 𝑋. Variance is a measure of the dispersion of these 

values around their mean. The smaller the variance (≥ 0), the more the values taken by 𝑋 are 

concentrated around the mean. 

 

Example: In the case of the previous uniform distribution, we have: 

𝑀 = ∫  
𝑥

𝑏−𝑎
 𝑑𝑥 = 

𝑎+𝑏

2

 𝑏

 𝑎
  and  𝜎2 = ∫  

𝑥2

𝑏−𝑎

 𝑏

 𝑎
 𝑑𝑥  − (

𝑎+𝑏

2
)
2

=
(𝑏−𝑎)2

12
. 

 

The standard deviation (‘écart type’) is defined by 𝜎=√𝜎2. 

 

Most of the random phenomena encountered in practice can be studied via a limited number of 

distributions. Let us briefly recall the most commonly used ones. 

 

II.2  STANDARD PROBABILITY DISTRIBUTIONS 

 

 a) TRIANGULAR DISTRIBUTION  (TRIA) 

 

 

{
 
 

 
 𝑓𝑋(𝑥) =

2(𝑥−𝑎)

(𝑚−𝑎)(𝑏−𝑎)
 if 𝑎 ≤ 𝑥 ≤ 𝑚,

𝑓𝑋(𝑥) =
2(𝑏−𝑥)

(𝑏−𝑚)(𝑏−𝑎)
 if 𝑚 ≤ 𝑥 ≤ 𝑏,

𝑓𝑋(𝑥) = 0                   elseif.

 

 

 

 

𝐷 =  [𝑎, 𝑏] ;  𝑀 =
𝑎+𝑚+𝑏

3
 ; 𝜎2 = 

𝑎2+𝑚2+𝑏2−𝑎𝑚−𝑎𝑏−𝑚𝑏

18
. 

 

Application: This distribution is used when we have an estimate of minimum, maximum, and 

the most probable value. 

 

Exercise: Let 𝑎 = 0,𝑚 = 2, 𝑏 = 3, calculate 𝑃(1 ≤ 𝑋 ≤ 2,5). 
  

2

𝑏 − 𝑎
 

a           m                                   b      x 

𝑓𝑋(𝑥) 

area = 1 
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 b) EXPONENTIAL DISTRIBUTION  (EXPO) 

 

 

 

 

{
𝑓𝑋(𝑥) =

1

𝛽
𝑒−𝑥/𝛽  if 𝑥 > 0  (𝛽 > 0),

𝑓𝑋(𝑥) = 0             elseif.
 

 

 

 

 

 

𝐷 =  [0, + ∞ [ ;  𝑀 = 𝛽 ; 𝜎2 = 𝛽2. 

 

Application: This distribution is often used in practice. For example, in the case of time 

separating the arrivals of 2 successive ‘customers’ in the study of a waiting phenomenon, or in 

the case of the operating time of a technical equipment. 

 

The exponential distribution is the only continuous distribution that allows the consideration of 

phenomena without memory. Indeed, the probability that 𝑋 is greater than, or equal, to 𝑥 + 𝑥0, 

knowing that 𝑋 is greater than, or equal, to 𝑥0, depends on the value of 𝑥, and is independent 

of the value of 𝑥0, that is: 𝑃(𝑋 ≥ 𝑥 + 𝑥0 | 𝑋 ≥ 𝑥0) = 𝑃(𝑋 ≥ 𝑥). 
 

For example, it is often accepted that the lifetime 𝑇 of an electronic device is specified as an 

exponential distribution. Also the probability of correct functioning of the device in a time 

interval [Δ0, Δ0 + Δ], that is, 𝑃(𝑇 ≥ Δ + Δ0| 𝑇 ≥ Δ0), depends only on the length of this 

interval, and not on its position relative to the time axis, that is: 𝑃(𝑇 ≥ Δ + Δ0 | 𝑇 ≥ Δ0) =
𝑃(𝑇 ≥ Δ). 
 

Proof: Let be the event 𝐴 corresponding to the fact that 𝑋 ≥ 𝑥0 and the event 𝐵 corresponding 

to the fact that 𝑋 ≥ 𝑥0 + 𝑥. We have 𝑃(𝑋 ≥ 𝑥0) = ∫ 𝑓𝑋(𝑥) 𝑑𝑥
 +∞

 𝑥0
 and 𝑃(𝑋 ≥ 𝑥0 + 𝑥) =

∫ 𝑓𝑋(𝑥) 𝑑𝑥
 +∞

 𝑥0+𝑥
. Hence 𝑃(𝐵 | 𝐴) is equivalent to 𝑃(𝑋 ≥ 𝑥0 + 𝑥 | 𝑋 ≥ 𝑥0). 

Knowing that 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵 | 𝐴) = 𝑃(𝐵) × 𝑃(𝐴 | 𝐵) (conditional probability), 

we have 𝑃(𝐵 | 𝐴) =
𝑃(𝐵)×𝑃(𝐴 | 𝐵)

𝑃(𝐴)
. 

Knowing that 𝑃(𝐴 | 𝐵) is equivalent to 𝑃(𝑋 ≥ 𝑥0 | 𝑋 ≥ 𝑥0 + 𝑥) = 1, we have 𝑃(𝐵 | 𝐴) =
𝑃(𝐵)

𝑃(𝐴)
. 

Hence 𝑃(𝐵 | 𝐴) =
𝑃(𝐵)

𝑃(𝐴)
=

𝑃(𝑋≥𝑥0+𝑥)

𝑃(𝑋≥𝑥0)
=

∫
1

𝛽
 𝑒
− 
𝑢
𝛽 𝑑𝑢

 + ∞
 𝑥0+𝑥

∫
1

𝛽
 𝑒
− 
𝑢
𝛽 𝑑𝑢

 + ∞
 𝑥0

=

−  [𝑒
− 
𝑢
𝛽]
 𝑥0+𝑥

 + ∞

−  [𝑒
− 
𝑢
𝛽]
 𝑥0

 + ∞ =
𝑒
− 
(𝑥0+𝑥)
𝛽

𝑒
− 
𝑥0
𝛽

= 𝑒
− 
𝑥

𝛽 which 

is a function of 𝑥 only (independent of 𝑥0). 

  

𝑓𝑋(𝑥) 

0 x 

1

𝛽
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 c) NORMAL DISTRIBUTION  (NORM) 

 

 

 

 

 

 

 

 

 

 

 

 

𝐷 = ]−∞, +∞[; mean = 𝑀; variance = 𝜎2. 

 

Application: This distribution applies in the case of systems whose distribution is symmetrical 

and for which the mean and standard deviation are estimated (for example, the variations in the 

length of workpieces). 

This distribution also allows to model a data that is the sum of a large number of random data 

(central limit theorem). 

 

N.B.: Instead of probability density 𝑓𝑋(𝑥), one can use the distribution function 𝐹𝑋(𝑥) to 

characterize the distribution of a random variable 𝑋. 

 We have  𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫  𝑓𝑋(𝑢) 𝑑𝑢
 𝑥

 − ∞
  for  −∞ < 𝑥 < +∞. 

𝐹𝑋(𝑥) is a continuous, monotonous increasing function, such that 𝐹𝑋(− ∞) = 0 et 𝐹𝑋(+ ∞) =
1, 𝐹𝑋

′ (𝑥) = 𝑓𝑋(𝑥). It allows to calculate probabilities of the form 𝑃(𝑎 < 𝑋 ≤ 𝑏) without 

performing an integration (which is the case by using 𝑓𝑋(𝑥)); indeed 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝐹𝑋(𝑏) −
𝐹𝑋(𝑎). 
 

II.3  DISCRETE RANDOM VARIABLES 

 

A random variable is discrete if it can only take a finite number of values (for example: 

Ω ={stack, face} in the case of throwing a coin). For each value 𝑥𝑖, we associate the probability 

𝑝(𝑥𝑖) of occurrence of this value. 

For 𝑁 values, the set of associated probabilities is such that: 

  ∑  𝑝(𝑥𝑖) 
𝑁
𝑖=1 =  1    if 𝑁 represents the set of values. 

Example: We define a system capable of producing four types of products denoted 1, 2, 3, 4. 

When the production orders arrive, we know that the probability of having a product 1 is equal 

to 1 6⁄ , that of having a product 2 is equal to 1 3⁄ , that of having a product 3 is equal to 1 3⁄  

and that of having a product 4 is equal to 1 6⁄ . 

  

𝑓𝑋(𝑥)=
1

𝜎√2𝜋
 𝑒− (𝑥−𝑀)

2/2𝜎2 

inflection points 

 

1

𝜎√2𝜋
 

𝑓𝑋(𝑥) 

0 
𝑥 𝑀 − 𝜎        𝑀        𝑀 + 𝜎 

𝑀 
𝑥 

𝑓𝑋(𝑥) 

68% of values 

𝜎2  small 

𝜎2  great 
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The distribution is represented either by the following bar graph (‘diagramme en bâtons’) 

indicating 𝑝(𝑥𝑖) as a function of 𝑥𝑖: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or by a histogram3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Définitions 

The mean (arithmetic) 𝑀 is equal to ∑ 𝑥𝑖𝑝(𝑥𝑖)
𝑁
𝑖=1 . 

Exercise: Calculate the average considered in the previous example. 

The variance 𝜎2 is equal to (∑ 𝑥𝑖
2𝑝(𝑥𝑖)) − 𝑀

2𝑁
𝑖=1 , also equal to ∑ (𝑥𝑖 −𝑀)

2𝑝(𝑥𝑖)
𝑁
𝑖=1 . 

The cumulative probability (a concept used in ARENA) is defined by 

𝑝𝑐(𝑥𝑖) = ∑  𝑝(𝑥𝑙)
𝑖
𝑙=1 . 

In the previous example, we have 𝑝𝑐(𝑥1) =
1

6
,  𝑝𝑐(𝑥2) =

1

2
,  𝑝𝑐(𝑥3) =

5

6
,  𝑝𝑐(𝑥4) = 1. 

 

Let be 𝑥1, ⋯ , 𝑥𝑛 a set of 𝑛 possible discrete values, the discrete empirical distribution 

DISC(𝑝𝑐(𝑥1), 𝑥1, ⋯ , 𝑝𝑐(𝑥𝑖), 𝑥𝑖 , ⋯ , 𝑝𝑐(𝑥𝑛), 𝑥𝑛)  is such that it returns the value 𝑥𝑖 with a 

cumulative probability equal to 𝑝𝑐(𝑥𝑖). By construction, we have: 𝑝𝑐(𝑥1) = 𝑝(𝑥1) and 

𝑝𝑐(𝑥𝑛) = 1. For example, the distribution DISC(0.3,1, 0.4,2, 1,4) returns: the value 1 with a 

 
3 A set of rectangles of the same width whose surfaces are proportional to probabilities 𝑝(𝑥𝑖). 

𝑝(𝑥𝑖) 

1/3 

1/6 

𝑥𝑖 0 1                  2                  3                  4 

   1/3 

   1/6 

   1          2         3         4 0 

𝑝(𝑥𝑖) 

𝑥𝑖 
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probability equal to 0.3; the value 2 with a probability equal to 0.1(= 0.4 − 0.3); the value 4 

with a probability equal to 0.6(= 1 − 0.4). 
 

Application: Discrete random variables apply in the case of direct injection of empirical data in 

model (for examples: type of workpieces, batch size). 

III  SOURCES OF INPUT DATA 

 

Data quality is as important as model quality (garbage in - garbage out); for example, in the 

case of production system, this can concern interarrival times of workpieces, processing times, 

travel times, scrap rates (‘taux de rebut’), demand rates. 

 

There are two main problems: 

 

P1) Data collection 

→ which? available? relevant? how to collect them? 

 

P2) Stochastic systems 

→ direct reading of empirical data or selection from an associated theoretical 

distribution? 

 

The possible origins of data are of different nature: 

 

- Historical records → databases to be request (update problems (‘pb de mise à jour’)), 

- Observational data → human resources (mistakes, neglect of extremes and forgetting the 

past), 

- Similar systems → pay attention to inferences, 

- Information given by the vendor/designer (often optimistic). 

 

Two cases are to be considered: the system data (average, minimum, maximum, etc.) are 

available/existing or partially known. 

 

III.1  EXISTING DATA 

 

Since the P2 problem does not have a clear answer, simulation software often offers both 

possibilities. 

 

It is often interesting for theoretical and practical reasons to be able to describe a probability 

distribution by a theoretical distribution, which amounts to analytically expressing the 

probabilities 𝑝(𝑥𝑘) as a function of the index 𝑘. Well-known methods of mathematical analysis 

can then be applied to the calculation of probabilities, thus avoiding tedious numerical 

calculations. 

 

- If empirical data are used directly, they are entered as cumulative empirical distributions 

(frequency histogram: grouping observations into classes, number of classes =

O√𝑛𝑏𝑟𝑒 𝑑′𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠), 

- If we want to draw from the theoretical distributions (‘faire des tirages à partir de distributions 

théoriques’), we need to: 

a) Choose distribution according to the shape of the data histogram, 
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b) Estimate its parameters, 

c) Test the hypothesis (does the distribution match the data?). 

 

Step a) is performed knowing the characteristics of standard distributions and visually 

comparing theoretical distribution and empirical distribution (frequency histogram). 

Step b) involves the use of conventional estimators. 

Step c) can be performed visually or using statistical tests of hypotheses (Khi-deux, 

Kolmogorov-Smirnov). 

 

Example: We are interested in the processing time of a machine. We have a set of 500 values 

representing the time interval (obtained using a stopwatch) between each appearance of a 

workpiece at machine output. The machine input is assumed to be always supplied. We consider 

21 classes (of identical width) to construct frequency histogram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

REAL data  Data pts =500  Intervals = 21  Range: -1 to 12 

Mean = 5,02  StdDev = 1,88  Min = -0,4531  Max = 11,3 
 

NORMAL DISTRIBUTION:    NORM(5,02; 1,88) 

Sq Error = 0,0008231 
 

(*) Hypotheses: 𝑀𝑖𝑛 et 𝑀𝑎𝑥 are finite values. 

A value 𝑥 ∈ 𝐶𝑙𝑎𝑠𝑠𝑒 𝑛 with 1 ≤ 𝑛 ≤ 21 if and only if 𝑀𝑖𝑛 + (𝑛 − 1)
𝑀𝑎𝑥−𝑀𝑖𝑛

21
≤ 𝑥 < 𝑀𝑖𝑛 +

𝑛
𝑀𝑎𝑥−𝑀𝑖𝑛

21
. 

 

 

 

 

 

We consider a class [−∞, real value[, resp. [real value, +∞[, if the value 𝑀𝑖𝑛 = −∞, resp. 

𝑀𝑎𝑥 = +∞. 

 

  

Number of values 

in classes 

n°1, n°2, ... (*) 

𝑀𝑖𝑛 

Cl. 1                ….            Cl. 21 

𝑀𝑎𝑥 
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III.2  PARTIALLY KNOWN DATA 

 

When systems do not yet exist, or their desired data (time, resources) are not available, we must 

use the estimation of operators, designers, equipment suppliers, etc to characterize the system 

variables. Three cases often arise: 

 

1. Only the mean 𝑴 is available 

We can use: 

- Directly 𝑀 as the constant value of the variable if the dispersion (standard deviation) is 

small, 

- An exponential distribution (large dispersion: high variability) of 𝑀 if the nature of the 

phenomenon justifies it. 

 

2. 𝑴𝒊𝒏 et 𝑴𝒂𝒙 are available 

We can use: 

- A uniform distribution of parameters 𝑀𝑖𝑛 and 𝑀𝑎𝑥, that is, the distribution of ignorance 

if there is no reason to think that probabilities are not equiprobable, 

- If the data are centered around mean 𝑀 = (𝑀𝑖𝑛 +𝑀𝑎𝑥) 2⁄ , one can apply a normal 

distribution centered around 𝑀 with a standard deviation 𝜎 = (𝑀𝑎𝑥 −𝑀𝑖𝑛 )/6 if the data 

are numerous, and 𝜎 = (𝑀𝑎𝑥 −𝑀𝑖𝑛 )/4 elseif. 

 

3. 𝑴𝒊𝒏, 𝑴𝒂𝒙 and the most probable value 𝒎 are available 

We can use a triangular distribution of parameters 𝑀𝑖𝑛,𝑚,𝑀𝑎𝑥. 

IV  MODEL VERIFICATION AND VALIDATION 

 

Simulation models can evolve significantly during their development (scenario testing, what 

happens if? …). The major difficulties are to know: 

• How to trust the model? 

• How to transmit it to the user? 

Before extracting inferences from statistical results of a simulation model, it is necessary to 

ensure that it represents the system, which usually involves two steps: verification and 

validation. 

 

IV.1  VERIFICATION 

 

Verification consists of ensuring that the model works as the designer expected (without logical 

errors), which requires being able to isolate errors (the most difficult step) in order to correct 

them. Verification is made easier if we start with a simple model that we improve gradually. 

The following techniques (or behavior to have) are used to isolate errors: 

 

1. Always consider that the model contains errors and look for them (destructive approach, 

rather than constructive one). 

 

2. Involve people not involved in design and implementation. 

 

3. Review the model and data with the help of at least one client and one language expert (in 

addition to the developer). 
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4. Perform tests: 

- Replace random times with constants, 

- Test only a part of the model, 

- Test the model under boundary conditions. To do this: 

- Increase the arrival rate and/or decrease the service rate to create congestion, or 

create phenomena of ‘famines’ of machines, 

- Reduce the size of stocks to create saturation phenomena, 

- Modify the distribution of workpiece types (job mix) to increase the arrival of 

workpieces of less frequent types, 

- Increase the occurrence rate of less frequent events (e.g., failure). 

 

5. Generate and analyze the trace of the model to check the path of the workpieces, the changes 

of state at the end of a wait (at the level of a queue, due to an activity, etc.). 

 

6. Use animation (powerful technique). 

 

7. Correct mistakes by identifying the real causes and not just treat the symptoms (logical 

reasoning remains the best approach). 

 

8. Avoid classic mistakes, especially about: 

 - Input data acquisition (units of measurement), 

 - Initialization of the simulation model, 

 - Arithmetic errors (parentheses, type conversion, etc.). 

 

IV.2  VALIDATION 

 

Three questions need to be asked: 

• Does the model correctly represent the (real) system? 

• Is the behavior data generated by the model characteristic of the (real) system? 

• Does the user trust the model results? 

 

Three points of view must be considered: 

- That of the developer, 

- That of a person evaluating the model (supervisor, client), 

- That of the end user (decision-maker). 

 

Three types of tests can be applied: 

 

1. Is the behavior reasonable? 

 

- Continuity: Small changes in input parameters 

→ small changes in state and output variables. 

 

- Consistency: Almost identical executions, for example, when random generator is changed 

→ almost identical results. 

 

- Degeneration: Removing a component (a ‘mode’) from the model, for example, a machine is 

deleted. 

→ effects on results 
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- Absurd conditions: Absurd input parameters, for example, increasing the marketing budget to 

infinity should not lead to infinite sales (‘ventes’) 

→ absurd results. 

 

2. Testing the data and the model structure 

 

Theories and assumptions must be correct, and the model representation must be adequate for 

the desired use. 

 

→ Validity of ‘façade’: The behavior seems correct for users familiar with the (real) system 

(logic, input-output). 

 

→ Verification of structure and boundaries: Correspondence between the conceptual model and 

the system of reference. 

 

3. Testing the model behavior 

 

It consists in studying the behavior of the model in relation to the system of reference. 

 

→ Comparison of behaviors: Statistical tests to compare results (Khi-deux, Kolmogorov-

Smirnov, etc.). 

 

→ Generate symptoms: 

 - Does the model generate difficulties already known in the system? 

 - Does the model produce known results for given inputs? 

 

→ Behavior anomaly: Anomaly in the model can lead to discovery of equivalent anomaly in 

the (real) system? 

 

→ Behavior prediction: Model prediction versus system tests. 

V  INTERPRETING SIMULATION OUTPUT 

 

Running a simulation model can generate: 

- A simulation report including the means, standard deviations, minimums, and maximums 

of the observed variables, etc. 

- A history of the evolution of these variables during the simulation. 

 

The quality of the mean (arithmetic) as an estimator of the true mean depends, among other 

things, on the number of observations. Similarly, the standard deviation is biased for a small 

number of observations. 

 

Such a simulation report is not enough to make credible conclusions about the performance of 

the system (changing the random number generator, without changing the model, is enough to 

generate different results). Graphic animation is also not enough. In fact, we are often satisfied 

with the simulation report and/or the animation, especially when the project is late. 
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The results generated by a model act as measurements on a sample (‘échantillon’). They must 

therefore be used to perform statistical procedures. Each (unknown) variable must be associated 

with a confidence interval. 

 

Recall on Confidence Interval: The confidence interval [𝑐1, 𝑐2] of the unknown parameter 𝜆 

is defined through 2 statistical values 𝐶1, 𝐶2 so that it covers the unknown (true) value of 𝜆 with 

a given probability 1 − 𝛼, that is: 

 

  𝑝(𝐶1 ≤ 𝜆 ≤ 𝐶2) = 1 − 𝛼. 

 

The probability 1 − 𝛼, associated with this interval estimation, is called a confidence level 

(‘niveau de confiance) or confidence threshold (‘seuil de confiance’). The most commonly used 

values for 1 − 𝛼 are 0.9; 0.95; 0.99 and 0.999. 

 

Each realization of the two statistics 𝐶1, 𝐶2 provides a numerical confidence interval [𝑐1, 𝑐2]. 
So, the notion of confidence level is to be interpreted as follows: if we perform a large number 

of realizations of the two statistics (𝐶1, 𝐶2), then the unknown value of the parameter will be 

covered by approximately 100(1 − 𝛼) % of the obtained intervals [𝑐1, 𝑐2]. 
 

The length of a confidence interval decreases by: 

• Increasing the size of the sample (‘échantillon’), 

• Reducing the dispersion of the considered random variable 𝜆, 

• Choosing a lower confidence level, for example by taking 0.9 instead of 0.95. In 

ARENA (when the number of replications is greater than 1), the half width (‘demi-largeur’) 

corresponds to a confidence interval with a threshold equal to 95%. 

 

There are two types of systems: 

- The terminating systems (‘systèmes finis’), that is, having an end event that determines the 

end of the simulation, for example, a shop that opens and closes at regular intervals, 

- The non-terminating systems, that is, having no end event of simulation, for example, a 

hospital where there is always at least one patient. 

 

V.1  ANALYSIS OF TERMINATING SYSTEMS 

 

Terminating systems are easier to analyze than the others. The number of repetitions/runs of 

the simulation model can be controlled allowing a different random number generator to be 

used for each repetition. 

 

Two sources of observation data: 

a) Individual observations in each repetition, for example, the processing time of each 

workpiece, 

b) Means, standard deviations, maximums, minimums of observations in each repetition, 

for example, the average processing time of the workpieces. 

 

If the random number generator changes from each repetition, observations of type b) of a set 

of repetitions can be considered such that: 

- Observations are independent, 

- Their means are normally distributed. 
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The latter property is due to the fact that the observations are derived from sums, or averages, 

of individual observations (central limit theorem). Hence, conventional statistical procedures 

can be applied for means. For minimums and maximums, certain statistical procedures still 

apply. 

From the observations of type b), one can calculate in particular: 

- Confidence intervals for mean, maximum and minimum, 

- Confidence intervals around the difference between the means, maximums, and 

minimums of two different systems. 

 

This comparison between two systems is useful to evaluate, for example, the difference between 

two sizings (‘dimensionnement’), two scheduling rules, etc. (knowing that two systems are 

different if the confidence interval does not contain 0). 

 

General procedure: 

 

- Simulate a large number of repetitions (minimum 20) and collect each time the desired 

observations (average, maximum, minimum, etc.); 

- Analyze system behavior based on the average value for each repetition: 

- Use of histogram, 

- Calculation of confidence interval. 

- Determine the number of repetitions using the analysis of the results according to the desired 

precisions for the confidence interval. Use the formula 𝑛2 = 𝑛1 (ℎ1/ℎ2)
2 where 

𝑛1 is the number of experiments already realized, 

𝑛2 is the total number of experiments, 

ℎ1 is the confidence interval already obtained, 

ℎ2 is the desired confidence interval. 

- Simulate again: Either start all over again, or add the results of the new simulations to those 

of the first, 

- Analyze: Confidence interval, histogram. 

 

V.2  ANALYSIS OF NON-TERMINATING SYSTEMS 

 

We are interested in the study of the stationary performance of a system in the sense that the 

transient regime/behavior is often favorable to system performance; this may be, for example, 

the case of an empty workshop at the simulation beginning. The steady state of the system 

corresponds to its behavior after a certain time and is independent of the starting state. 

The goal is to calculate a confidence interval for the mean. Two problems may arise: 

- No precise crossing point between the transient regime and the stationary regime, 

- Correlation between observations. 

 

Problem of the transient regime 

Three methods exist to deal with the problem of the transient regime: 

- Choose starting conditions that look like steady-state conditions, for example, by loading 

machines, by putting workpieces in queues, 

- Make simulations long enough to make the effect of the transient regime insignificant, 

- Exclude the values recorded during the transient regime for example, by using the sliding 

average filter (‘filtre de la moyenne glissante’) (arithmetic mean of k recent observations) 

to reduce the variability of the variable. 
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The latter method is commonly used. There are some rules for selecting the simulation part to 

truncate, but there is no completely satisfactory method. The most used is to evaluate (visually) 

the transient period using graphs (curves, histograms, moving averages). 

 

Confidence intervals 

Two methods are commonly used: 

- Repetition of independent experiments as for finite systems (with the transient regime 

problem raised at each time), 

- Long simulation and decomposition of data generated into subsets (batches). 

 

The latter method consists of: 

- Exclude the transient regime, 

- Decompose the remaining observations by considering 𝑛 batches of size 𝑚 and without 

overlap (‘chevauchement’), 

- Replace each batch 𝐵𝑗  (𝑗 = 1, 2,⋯ , 𝑛) by 𝑋𝑗, mean of the 𝑚 observations in 𝐵𝑗 , 

- Calculate the confidence interval from observations 𝑋𝑗 , 𝑗 = 1, 2,⋯ , 𝑛. 

 

The conditions of the central limit theorem are assumed verified, and the calculation of the 

confidence interval justified (independence and normality of observations 𝑋𝑗). 

Indications:  𝑛 = 10 𝑙𝑎𝑔∗, 
𝑚 between 10 and 20. 

Correlogram → 𝑙𝑎𝑔∗: The largest number of observations for which the correlation 

is still significant. 

This method (presented for non-time-dependent variables such as the number of finished 

workpieces) is obviously applicable for persistent (time-dependent) variables such as queue 

sizes. Simply define batches by regular time intervals instead of a fixed number of data. 
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VI  BASIC NOTIONS ON PETRI NETS 

VI.1  GENERALITIES 

 

Definition (Petri net) 

A Petri net is a graph with two types of nodes, namely places (represented by circles) and 

transitions (represented by bars). Places and transitions are connected by arcs. An arc is 

directed and runs from a place to a transition or vice versa (never between places or between 

transitions). See example in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

More formally, a Petri net can be defined by a 4-uplet < 𝑃, 𝑇, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡 > such that: 

- 𝑃 = {𝑃1,  𝑃2, ⋯ , 𝑃𝑛} is a finite (non-empty) set of places, 

- 𝑇 = {𝑇1, 𝑇2, ⋯ , 𝑇𝑚} is a finite (non-empty) set of transitions, 

- 𝑃𝑟𝑒:  𝑃 ×  𝑇  → {0,  1} is an application such that 𝑷𝒓𝒆(𝑷𝒊, 𝑻𝒋) is the weight of the arc 

running from the place 𝑷𝒊 to the transition 𝑻𝒋 (this weight is equal to 1 if the arc exists 

and to 0 elseif), 

- 𝑃𝑜𝑠𝑡:  𝑃 ×  𝑇  → {0,  1} is an application such that 𝑷𝒐𝒔𝒕(𝑷𝒊, 𝑻𝒋) is the weight of the arc 

running from the transition 𝑻𝒋 to the place 𝑷𝒊. 

 

𝑃𝑖 is said to be an input place of a transition 𝑇𝑗 if an arc runs from place 𝑃𝑖 to transition 𝑇𝑗. 

𝑃𝑖 is said to be an output place of a transition 𝑇𝑗 if an arc runs from transition 𝑇𝑗 to place 𝑃𝑖. 

In a similar way, a transition is said to be an input or an output transition of a place. 

 

A transition without input place is a source transition, a transition without output place is a sink 

transition. 

 

Marking 

Places are marked with tokens (black dots). The tokens circulate in the places due to the firing 

of transitions following rule defined below. The state of the net at a time 𝑡 is defined by the 

number of tokens contained in each place at time 𝑡. Circulation of tokens represents the 

dynamic evolution of the state of the net. The initial marking corresponds to the initial position 

of the tokens, that is, the one represented in the figure. 

 

Firing of transitions, circulation of tokens in places 

A transition is enabled if all its input places contain at least one token. Let us note that a 

source transition is always enabled. 

An enabled transition can be fired. Firing of a transition consists of withdrawing one token 

from each of its input places and of adding one token to each of its output places. 

𝑃6 

𝑃7 

𝑃5 

𝑃4 

𝑃3 

𝑇2 

𝑇3 

𝑇4 

𝑇6 

𝑇5 
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More formally, the firing of transition 𝑇𝑗 consists of withdrawing 𝑃𝑟𝑒(𝑃𝑖, 𝑇𝑗) tokens in each of 

the places (𝑃𝑖) and of adding 𝑃𝑜𝑠𝑡(𝑃𝑘, 𝑇𝑗) tokens in each of the place (𝑃𝑘) of the Petri net 

knowing that the firing of transition 𝑇𝑗 is possible only if the marking of each place 𝑃𝑖 of the 

Petri net is such that: 

    𝑚(𝑃𝑖) ≥  𝑃𝑟𝑒(𝑃𝑖 , 𝑇𝑗). 

 

Exercise: Give a matrix expression of the applications 𝑃𝑟𝑒 et 𝑃𝑜𝑠𝑡 of the previous Petri net. 

Validate through some examples the correct functioning of the evolution of the marking 

equation: 𝑀𝑘 = 𝑀𝑙 + (𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒) 𝑇𝑘 𝑙, 
where 𝑇𝑘 𝑙 is the firing vector allowing an evolution of the marking vector from 𝑀𝑙 to 𝑀𝑘. 

 

Modeling of competition (OR logic) and synchronization (AND logic) 

- Competition/conflict for the supply of tokens in a place due to the convergence of arcs on 

the place (see figure a below). 

- Competition/conflict to the consumption of tokens from a place due to the divergence of arcs 

from the place (see figure b below). This structural conflict must be arbitrated by some 

priority rule when the conflict is effective, that is, when several output transitions of the place 

could be fired. The behavior of the net is not fully specified when a conflict is effective. 

- Synchronization in the consumption of tokens of several places due to the convergence of 

several arcs on a transition (see figure c below). 

- Synchronization in the provision of tokens of several places due to the divergence of arcs 

from a transition (see figure d below). 

 

 

 

 

 

 

 

Association of time with places and/or with transitions 

Petri nets are said timed (‘RdP temporisés’) when time is associated with places and/or 

transitions. The activation of a transition can be interpreted as the execution of a task which is 

a reason for associate a time with transitions. On the other hand, if a place is perceived as a 

place where a resource must stay while waiting to continue his progression in the Petri net, there 

may be a minimum duration of sojourn to respect: For example consider the sojourn of a biscuit 

in an oven (the resource) to reach a desired temperature. 

So, we are tempted to put both: 

- a time associated with transitions: The time during which a token located in each input 

place of the fired transition is ‘reserved’ for this transition (before disappearing), and 

beyond which a token appears in each output place, 

- a minimum time of token sojourn in places: The time during which any token that has just 

been introduced in a place cannot be used to fire an output transition. 

In fact, there is no loss of generality in associating time only on transitions, or only on places. 

The following figure shows the transformation of a Δ timed transition into 2 instantaneous 

transitions separated by a Δ timed place. 

 

 

 

 

a                                   b                                   c                                         d 

Δ Δ 
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VI.2  EVENT GRAPHS 

 

Constraints and modeling capabilities 

Event graphs are a subclass of Petri nets for which every place has exactly one input and one 

output transition (the situations represented in previous figures c and d are possible contrary to 

the ones represented in figures a and b). So, event graphs can model synchronization 

phenomena but not competition/conflict (“concurrence”). 

 

Dually, state graphs are a subclass of Petri nets for which every transition has exactly one input 

and one output place (the situations represented in figures a and b are possible contrary to the 

ones represented in figures c and d). So, such graphs can model competition/conflict phenomena 

but not synchronization. 

 

A fundamental property of event graphs 

The total number of tokens along any circuit of an event graph remains constant (which is not 

always verified in a Petri net). 

 

VI.3  EXAMPLES 

 

Consider the machine depicted in the following figure. Each workpiece that arrives at the stock 

input is either processed immediately by the resource machine or put on hold (‘en attente’) in 

the stock until the availability of the resource machine. The processing time of the resource 

machine is 3 units of time. After treatment, each workpiece comes out of the machine. 

 

 

 

 

 

 

 

 

The following Petri net models this process. 
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Modifications 

 

a) The following Petri net limits the storage capacity of the stock to 5 workpieces. 

 

 

 

 

 

 

 

 

 

 

b) The stock is replaced by a conveyor corresponding to a queue composed of 5 compartments 

(with First-In, First-Out rule). The travel time of the conveyor is equal to 6 units of time. 

The process is represented by the following Petri net. 

 

 

 

 

 

 

 

c) The machine has a processing capacity of 2 which allows the processing of 2 workpieces 

simultaneously. The process is represented by the following Petri net. 

 

 

 

 

 

 

 

 

 

 

d) The machine has a setup time equal to 1,5 units of time. The process is represented by the 

following Petri net. 

 

 

 

 

 

 

 

 

 

VI.4  OTHER CLASSES OF PETRI NETS 

 

Many extensions of Petri nets are possible, let us briefly present some of them. 
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Time Petri nets (‘RdP temporels’) 

Time Petri nets allow the analysis of time-constrained systems. An interval (rather than a simple 

scalar value) is associated with places and/or transitions. Associating interval [𝑎, 𝑏] with a place 

means that a token present in that place will have to stay at least 𝑎 units of time. It can contribute 

to the enabling of an output transition if its residence time is less than 𝑏 units of time, beyond 

this time the token ‘dies’ and therefore will no longer contribute to the enabling of an output 

transition. Such nets are called P-time Petri nets knowing that Petri nets with interval associated 

with transitions (called T-time Petri nets) have a different functioning mode. 

Synchronized Petri nets 

A set of external events is associated with Petri net; these events allow the firing of certain 

transitions. Such nets are called synchronized Petri nets. 

Consider for example the Petri net modeling the machine described in VI.3. Set of events 
{𝐴, 𝐷, 𝑆} is associated with the Petri net where 𝐴 designates the event ‘Workpiece arrival’, 𝐷 

the event ‘Service start’, and 𝑆 the event ‘Workpiece exit’. The following figure shows the 

system modeled by a synchronized Petri net. 

 

 

 

 

 

 

 

 

 

Firing of the source transition 𝑇1 depends on the occurrence of the event 𝐴. 

Firing of the transition 𝑇2 is linked to: 

- its validation, materialized by the presence of one token in its two input places, 

- the occurrence of the event 𝐷. 

Firing of the transition 𝑇3 depends on the occurrence of the event 𝑆 and the presence of one 

token during 3 units of time in its input place. 

Generalized Petri nets 

A generalized Petri net is a Petri net in which weights associated with arcs are strictly positive 

integers (not only equal to 0 or 1 as previously) knowing that (as previously) the weight of an 

arc equal to 1 is not explicitly specified. 

Let be an arc running from a transition 𝑇𝑗 to a place 𝑃𝑖 with a weight equal to 𝑝, then the firing 

of this transition means that 𝑝 tokens will be added to the place 𝑃𝑖. 
Let be an arc running from a place 𝑃𝑖 to a transition 𝑇𝑗 with a weight equal to 𝑝, then the 

transition 𝑇𝑗 is enabled only if the place 𝑃𝑖 contains at least 𝑝 tokens. The firing of this transition 

means that 𝑝 tokens will be removed from the place 𝑃𝑖. 
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VII  SIMULATION USING ARENA 

 

SIMAN was a simulation software designed in 1982 by C.D. Pedgen. ARENA4 represents the 

graphical version of SIMAN and was acquired by Rockwell Automation in 2000, it was based 

on the use of blocks provided by libraries, also called templates. The construction of a block 

diagram/flowchart allows the description of the logic of the process to modelize, it corresponds 

to the static component of the simulation model. The dynamic behavior of the simulation model 

is described by the flows of ‘entities’ moving through the block diagram. 

 

VII.1  BASIC NOTIONS 

 

Entity: An entity is an object of interest in the system whose movement in the model may cause 

the occurrence of events, similarly to the movement of a token in a Petri net. An entity 

flows through the different blocks of the block diagram by potentially using some 

resources of the system. It usually corresponds to a concrete object, for example, a 

workpiece in a workshop, a patient in a hospital or a customer in a restaurant. 

 

Attribut: An attribute is a variable individually associated to an entity, so its value is specific 

to the entity. For example, an entity considered as a product may have attributes serial 

number, weight, and price. All products have these attributes, but they do not necessarily 

have the same values for each attribute. As a second example, consider a workpiece 

circulating in a workshop as an entity with 2 attributes: type_of_workpiece to designate 

its type (A or B) and index_of_priority to designate its priority (low or high) of passage 

on the machines that will process it. 

 

Resource: A resource is a limited quantity of identical resource units used by entities. Each 

resource unit has a busy or idle status (busy when the resource is seized, idle when it is 

released). An entity must wait in a queue if it attempts to seize a resource while all its 

resource units are seized. For example, consider a machine as a resource with a capacity 

of 3 resource units which allows the processing of 3 workpieces simultaneously or an 

airport counter with 2 employees (corresponding to 2 identical resource units) which 

allows to satisfy two customers simultaneously. 

 

Queue: A queue is a location that holds entities when their movement is constrained within the 

block diagram. 

 

Variable: The value of a variable is available for all the blocks of the model and can be shared 

between all the entities within the model. For example, TNOW is a variable predefined 

in ARENA that refers to the date in which the simulation is located, it is the current time 

(updated with each advance in the schedule of events) that elapses during a run of the 

model. 

 

The aim is to allow the evolution of each entity within the block diagram from one block to the 

following one, from its creation to its destruction. The scheduling over time (‘ordonnancement 

dans le temps’) of the different events related to the evolution of the entities in the blocks 

(composing the block diagram) is done through a schedule (‘échéancier’). 

 
4Electronic documentation is provided with the ARENA software through various files (Getting Started with 

Arena.pdf, OptQuest for Arena User's Guide.pdf, Packaging Template User's Guide.pdf, Variables and Functions 

Guide.pdf) available in the \Rockwell Software\Arena\Online Books directory. 
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A simulation model is composed of two parts: 

 

▪ The first part is the ‘model part’ of the simulation and is built in the model window, it 

describes the logic of the process to modelize through the assembly (in series, in parallel or 

in feedback) of different blocks to form a block diagram. The dynamic behavior of the 

simulation model is represented by moving entities from block to block through the block 

diagram, thus activating the function/service associated with each of these blocks. A 

function/service can act on: 

- the attribute of the entity (the one activating the function/service). For example, the entry 

of an entity (considered as a workpiece) in an Assign block allows to fix a value to its 

serial number attribute, 

- a variable of the simulation model. For example, the entry of an entity in a Delay block 

causes a pure delay of the entity which will affect the TNOW variable. 

 

▪ The second part is the ‘experiment part’ and deals with the experimental conditions of the 

simulation. Blocks used, called data blocks, concern for example the replication length, the 

number of replications, the characteristics of resources and queues used in the block 

diagram. Blocks are edited via spreadsheet interface (‘feuille de calcul’) to display their 

model data. 

 

N.B.: Only blocks used to construct the block diagram can be activated by entities. Entities 

never pass through the blocks belonging to the experiment part (note that these blocks are 

graphically represented by a kind of spreadsheet  to distinguish them from those used to 

build the block diagram). 

 

Consider a simple conveyor with a transport time equal to 3 units of time represented by the 

simulation model (Example.doe) described as follows: 

 
The Create block (from the Discrete Processing template) is such that an entity is created every 

2 units of time from time 0. 

The Delay block (from the Discrete Processing template) forces an entity to stay 3 units of time 

in the block. 

The Dispose block (from the Discrete Processing template) destroys all entities entering the 

block. 

 

We can fix through the menu Run/Setup…/Replication Parameters: 

- the number of replications (Number of Replications field), 

- the length of the replication (Replication Length field). 
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We can fix through the menu Run/Setup…/Project Parameters: 

- a title to the project (Project Title field), 

- the name of the analyst (Analyst Name field), 

- a comment about the project (Project Description field). 
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The two txt files relative to model part and experiment part are accessible through the menu 

Run/SIMAN/View, see below an extract of these files. 

 

• file Example.mod corresponding to the model part of file Example.doe: 

 
; Model statements for module:  Create 

2$ CREATE,  1,HoursToBaseTime(0.0),Entity 1:HoursToBaseTime(2):NEXT(0$); 

; 

; Model statements for module:  Delay 

0$ DELAY: 3,,Other:NEXT(1$); 

; 

; Model statements for module:  Dispose 

1$ DISPOSE: Yes; 

 

0$, 1$, 2$ are labels. 

 

• file Example.exp corresponding to the experiment part of file Example.doe: 

 
PROJECT, "Premier exemple","",,,No,Yes,Yes,Yes,No,No,No,No,No,No; 

REPLICATE, 1,,HoursToBaseTime(10),Yes,Yes,,,,24,Hours,No,No,,,Yes; 

 

The Petri net corresponding to the model part, that is, 

 
is described in the following figure: 

 

 

 

 

 

 

 

Blocks of the block diagram are joined in series, in parallel, or in feedback by connectors. A 

connector transfers an entity in zero time from the output point of a block (graphically 

represented by a small arrow) to the input point of the next block (represented by a small 

rectangle). An example of such block assemblies is given in the following figure with its 

equivalent Petri net. 

 

3 

2 
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VII.2  BLOCKS TO BUILT MODEL 

 

a) Create (from the template Discrete Processing, belonging to the model part): A Create block 

is used to enter entities in the model. 

 

For example, the Create block shown in the following figure is entitled Create 1 

(Create 1 → Name field). Entities enter the model sequentially according to a pattern specified 

in the Time Between Arrivals frame: 

- the interarrival time, that is, the delay between two successive batch creations of entities 

(‘création de lots d’entités’), is equal to 2 (Constant → Type field and 2 → Value field) (it 

be would be specified as an exponential distribution with a mean of 1 if Expression → Type 

field and EXPO(1) → Value field); 

- the batch size to specify the number of entities in each batch creation is equal to 1 

(1 → Entities per Arrival field); 

- the total number of batches to be created is infinite (Infinite → Max Arrivals field); 

- the date of creation of the first batch is equal to 0 (0 → First Creation field). 

 

In other words, the values considered in the figure are such that one entity is created an infinite 

number of times every 2 units of time from time 0. 
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The following Petri net describes the behavior of the Create block. 

 

 

 

 

 

 

 

 

 

 

 

The number of firings of the output transition of this Petri net at a time t corresponds to the 

number of entities output from the Create block at the same time t. Note that a Create block 

has no input. 

 

b) Dispose (from the template Discrete Processing, belonging to the model part): A Dispose 

block is used to remove entities from the model. 

 

The Dispose block shown in the following figure is entitled Dispose 1 (Dispose 1 → Name 

field), an entity entering this block is immediately removed from the model. 

 

 
 

In Petri net terms, this block, which has no output, is equivalent to a sink transition, that is, a 

transition without output place. 
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c) Delay (from the template Discrete Processing, belonging to the model part): Once the 

required number of resource units has been assigned to an entity, it generally engages in time-

consuming activities, such activities can be modelled by using a Delay block. 

 

The Delay block shown in the following figure is entitled Delay 1 (Delay 1 → Name field). 

When an entity enters this block, it remains there unconditionally for a duration equal to 3 units 

of time (3 → Delay Time field). 

 

 
 

The following Petri net describes the behavior of the Delay block. 

 

 

 

 

 

 

The number of tokens in the place at a time t corresponds to the number of entities in the Delay 

block at the same time t. 

 

d) Seize (from the template Discrete Processing, belonging to the model part): A Seize block 

allows the allocation of idle resource units to entities entering this block. An entity waits in the 

internal queue of the block until it can seize the required number of idle resource units. When 

they are seized, their status becomes busy (they cannot be allocated for other entities as long as 

their status does not change) and the entity exits the Seize block. 

 

For example, the block shown in the following figure is entitled Seize 1 (Seize 1 → Name field). 

To simplify consider that only one resource is required by an entity present in the block, then: 

- the name of the resource, that is Resource 1, is specified in the Resource Name field 

(Resource 1 → Resource Name field). Note that the addition of another resource would 

produce an extra line in the list Resources; 

- the number of idle resource units (of Resource 1) required by an entity, that is 1, is specified 

in the Units to Seize field (1 → Units to Seize field). 

The entities waiting for the required number of idle resource units are put in a queue associated 

with the Seize block. Its name, that is Seize 1.Queue (name by default), is indicated in the 

Queue Name field (Seize 1.Queue → Queue Name field). 
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The following Petri net describes the behavior of the Seize block using the resource Resource 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The transition T is enabled if: 

- at least one token is in the place P1 which means that at least one entity is in the queue 

associated with the block Seize, 

- at least Units to Seize tokens are in the place P2 which means that at least Units to Seize 

resource units (of Resource 1) are idle. 

Firing of the transition T both removes one token in the place P1 and removes Units to Seize 

tokens in the place P2 which means that Units to Seize resource units (of Resource 1) are seized 

when the entity exits the block. 

 

The number of tokens in the place P1 at a time t corresponds to the number of entities waiting 

in the queue associated with the block Seize at the same time t. 

 

1. Each queue used in the simulation model is defined in a Queue block (from template Data 

Definition, belonging to the experiment part). 

 

For example, see the block Queue described in the following figure in which: 

- the Name field gives a name to the queue, that is Seize 1.Queue (Seize 1.Queue → Name 

field), 
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- the Type field indicates the ranking (‘classement’) rule establishing the relative position 

of each waiting entity in the queue, that is First In, First Out (First In, First Out → Type 

field). This option (FIFO) is the rule by default, the other options are: Last In, First Out 

(LIFO), Lowest Attribute Value (LAV), Highest Attribute Value (HAV). These last two 

options allow to prioritize the entities present in the queue by considering the lowest (or 

the highest) value of an attribute specified in the Attribute Name field attached to the used 

rule. 

 

The Queue block allows the definition of several queues in a same model. 

 

 
2. The name and the capacity (that is, the number of resource units) of each resource are 

defined in a Resource block  (from template Data Definition, belonging to the experiment 

part). 

 

For example, see the block Resource described in the following figure in which: 

- the Name field gives the resource name, that is Resource 1 (Resource 1 → Name field), 

- the Capacity field gives the number of resource units, that is 1 (1 → Capacity field). 

 

The Resource block allows to define several resources in a same model. 

 
 

e) Release (from template Discrete Processing, belonging to the model part): When an activity 

requiring resource units is completed, the entity that possesses the resource units usually 

releases them so that they can be allocated to other entities. An entity in a Release block releases 

a quantity of resource units specified in the Units to Release field. When the resource units are 

released, their status change to idle (so they can be allocated for other entities) and the entity 

exits the Release block. 

 

For example, the block shown in the following figure is entitled Release 1 (Release 1 → Name 

field). To simplify only one resource is released by an entity present in the block, then: 

- the name of the released resource is specified in the Resource Name field, that is Resource 1 

(Resource 1 → Resource Name field). Note that the addition of another resource would 

produce an extra line in the Resources list; 

- the number of resource units (of Resource 1) released by an entity is specified in the 

Units to Release field, that is 1 (1 → Units to Release field). 
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The following Petri net describes the behavior of the Release block using the Resource 1 

resource. 

 

 

 

 

 

 

 

 

 

 

 

The firing of the transition T' adds Units to Release tokens in the place P1 which means that 

Units to Release resource units (of Resource 1) are released when the entity exits the Release 

block. 

 

f) Assign (from template Discrete Processing, belonging to the model part): An Assign block 

is used to assign a value to an attribute or a variable during model execution. When an entity 

enters in an Assign block, the logical, or mathematical, expression specified in the New Value 

field is assigned to an attribute if Attribute → Type field or to a variable if Variable → Type 

field. Note that the value can be any valid ARENA expression, moreover multiple assignments 

can be made at a single Assign block. 

 

In the following figure, the block untitled Assign 1 (Assign 1 → Name field) sequentially 

assigns the values: 

- 1 to the Variable 1 variable, 

- TNOW to the Attribute 1 attribute, 

- STATE(resource 1) to the Variable 2 variable knowing that STATE(resource 1) is an 

ARENA expression that gives the current state of the mentioned resource (that is 

resource 1). The possible values of this state are: -1(=Idle); -2(=Busy); -3(=Inactive); -

4=(Failed), 

- Attribute 1 to the Variable 3 variable. 

This example is provided in \Examples\Assign\Assign.doe. 
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The following Petri net describes the behavior of the Assign block Assign 1. 

 

 

 

 

 

 

 

 

 

 

A Variable block (from template Data Definition, belonging to the experiment part) is used to 

declare variables, that is Variable 1, Variable 2, and Variable 3 in the previous example as 

described in the following figure. 
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g) Decide (from template Decisions, belonging to the model part): An entity that enters in the 

(single) input port of a Decide block can take different paths out of the block. The path can be 

chosen based on a condition or set of conditions or based on a probability distribution according 

to the Type field. 

 

When an entity enters in a Decide block, each branching condition is tested sequentially. The 

branch selected by an entity is the first branch for which the branching condition is satisfied. If 

no branch is satisfied, the entity is pointed to the Else branch. 

 

For example, a Decide block, entitled Decide 1 (Decide 1 → Name field), is described in the 

following figure. The branching condition towards the 2 possible outputs depends on the 

condition: If Variable 1 >= 1 (with a result True or False). 

 

 
 

The branching condition used in the Decide 2 block, described in the following figure, is a 

probability law, there are 2 outputs with a probability equal to 0.5 for each of one. 
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The following Petri net describes the behavior of the Decide block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that all outputs of a Decide block must be connected to a block (possibly a Dispose block 

if the branch is not used). 

 

h) Match (from template Grouping, belonging to the model part): A Match block is used to 

match/synchronize entities each located in different matching queues associated with the block. 

To each of these matching queues corresponds an output which allows each entity contained in 

a queue to exit by the corresponding output. When all these queues contain at least one entity, 

these entities are released simultaneously and routed to their corresponding outputs. 

 

For example, the Match 1 block (Match 1 → Name field) described in the following figure 

executes a match between its two matching queues, that is, Match 1.Queue1 and 

Match 1.Queue2, represented by two blue lines located above the block. A synchronization 

occurs when at least one entity is present in each of these two queues (Any Entities → Type 

field) (note that the synchronization would be realized according to the value of an attribute 

(attached to the entities) if Based on Attribute → Type field). The entities at the origin of the 

synchronization are then routed to their corresponding outputs 

(No Batch → Batch Action after Matching field). 
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The Queue block (from template Data Definition, belonging to the experiment part) described 

below defines the queues Match 1.Queue1 and Match 1.Queue2. 

 

 
 

The following Petri net describes the behavior of the Match block Match 1. 

 

 

 

 

 

 

 

 

 

 

 

Note that all outputs of a Match block must be connected to a block (possibly a Dispose block 

if the output is not used). 

 

i) Batch (from template Grouping, belonging to the model part): A Batch block allows entities 

to be grouped together into a representative entity. A representative entity is an entity that 

consists of a group of entities that can travel together and be processed as if there was only one 

entity (e.g., a pallet of products); it can have a new Entity Type (see Representative Entity Type 

field). 

The representative entity can be temporary or permanent (it depends on the value (Temporary 

or Permanent) of the Type field). In the case of a temporary representative entity, the Separate 

block provides the functionality to split/separate apart the representative entity into the 

individual entities which is not possible for a permanent representative entity. 

The number of entities needed to form a group is specified in the Batch Size field. An entity 

arriving in a Batch block is held in a queue (associated with the block) as long as the number 

of entities accumulated in the queue is not sufficient to perform a grouping before they continue 

their movement with the representative entity in the model. 

In addition, batches might be formed based on entities that have the same attribute when the 

Rule field is assigned to the By Attribute value, otherwise (that is, when batches are made 

without considering an attribute) the Rule field is assigned to the value Any Entity (which is the 

case by default). 

 

For example, the Batch 1 block (Batch 1 → Name field) described in the following figure 

allows two entities to be grouped together into a permanent representative entity:  
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The following Petri net describes the behavior of the Batch block Batch 1. 

 

 

 

 

 

 

j) Separate (from template Grouping, belonging to the model part): A Separate block is used 

to clone/duplicate entities when Duplicate Original → Type field, the number of created 

entities is then specified in the ‘# of Duplicates’ field. When an entity enters this block and has 

attributes, the attributes of all duplicate entities are the same as the current values of the 

attributes of the entity to be duplicated. The original entity exits through the Original output, 

the # of Duplicates entities (the duplicated ones) exit through the Duplicate output. 

Note that a Separate block also allows the splitting of existing batch when 

Split Existing Batch → Type field. 

 

For example, a Separate block, entitled Separate 1 (Separate 1 → Name field), is described in 

the following figure. Do not worry about the text field in the dialog box relating to cost 

attributes. 

 

 
 

Entity input 

of the Batch 

block 

Entity output 

of the Batch 

block Batch Size 
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The following Petri net describes the behavior of the Separate block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another example is given in \Examples\Separate\Separate.doe. 

 

k) Process (from template Discrete Processing, belonging to the model part): A Process block 

is used to simulate the behavior of basic processes such as a machine or a bank counter, knowing 

that different modes of functioning are possible depending on the content of the Action field 

(located in the Logic frame) when Standard → Type field. 

 

When the Action field contains the value: 

 

i) Seize Delay Release, the Process block corresponds to the blocks Seize, Delay, Release 

put in series (see VII.2.c,d,e). It allows the simulation of a process (machine, bank counter) 

requiring one, or more, resource(s) (see the Resources frame to assign the type, or the 

number, of resources concerned) during a minimum time (relative to the processing time) 

indicated in the Delay frame. Beyond this time the seized resource(s) are released 

(operation done in the Release block). 

The equivalent Petri net corresponds to a concatenation of the ones described in VII.2.c,d,e. 

 

2i) Delay, the Process block is simply a Delay block which allows the simulation of a 

processing time (see the Delay Type frame to assign a processing time), for example, of a 

machine. Note that with such a simplification the number of resources of the process is 

assumed to be infinite. 

The equivalent Petri net corresponds to the one described in VII.2.c. 

 

3i) Seize Delay, the Process block is reduced to the blocks Seize and Delay put in series. It 

allows the simulation of a process requiring one, or more, resource(s) (see the Resources 

frame to assign the type, or the number, of resources concerned) during a minimum time 

(relative to the processing time) indicated in the Delay frame. Note that the behavior of this 

block corresponds to the one of the previous case i) without the release of the resource(s) 

assumed to be realized downstream. 

The equivalent Petri net corresponds to a concatenation of the ones described in VII.2.c,d. 

 

4i) Delay Release, the Process block is reduced to the blocks Delay and Release put in series. 

It allows the simulation of a process requiring one, or more, resource(s) (see the Resources 

frame to assign the type, or the number, of resources concerned) during a minimum time 

(relative to the processing time) indicated in the Delay frame. Note that the behavior of this 
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block corresponds to the one of the previous case i) without the seize of the resource(s) 

assumed to be realized upstream. 

The equivalent Petri net corresponds to a concatenation of the ones described in VII.2.c,e. 

 

N.B.: The use of actions Seize or Release needs to also manage the Queue and Resource blocks 

(these blocks belonging to the experiment part). 

 

For example, a Process block, entitled Process 1 (Process 1 → Name field) with 

Seize Delay Release → Action field, is described in the following figure. 

 

 
 

The following Petri net describes the behavior of the Process 1 block. 
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VII.3  BLOCKS TO ANALYZE MODEL 

 

The blocks described in VII.2 allow the modeling of real-life systems by providing information 

given by default in the final report at the end of a simulation. The collection of extra information 

is done using additional blocks. Some of these blocks are described below, namely Record, 

Counter, Tally and Time Persistent. An example is given in the \Examples\Record_Statistic\ 

Stat_File.doe file. 

 

The Record, Counter and Tally blocks, described in a first part, are used to extract information 

located at particular points of the block diagram. The Time Persistent block, described in a 

second part, is used to collect statistics provided by ARENA variables. 

 

1) Block Record (from template Input Output, belonging to the model part) allow, according 

to the content of the Type field, to collect statistics (as average, minimum, maximum) on: 

- the number of entities crossing the Record block when Count → Type field, the use of a 

Counter block (from template Input Output, belonging to the experiment part) allows the 

recording along the simulation time of these data in a file, see 1.a; 

- the time lapse between the successive passage of 2 entities in the Record block when 

Time Between → Type field, the use of a Tally block (from template Input Output, 

belonging to the experiment part) allows the recording along the simulation time of these 

data in a file, see 1.b; 

- the times taken by the entities to cross a part (or the whole) of the simulation model when 

Time Interval → Type field, the use of a Tally block allows the recording along the 

simulation time of these data in a file, see 1.c. 

 

1.a) When Count → Type field, the Record block allows the counting of the number of entities 

passing through the block: the name of the counter is specified in the Counter Name field; the 

counter increments by a value (1 by default) specified in the Value field each time an entity 

passes through the block. 

 

The block Counter (from template Input Output, belonging to the experiment part) allows the 

recording during the simulation of the occurrence numbers and the passing times of entities 

going in each counter defined in a Record block used in the simulation model. To do this, 

complete the Counter block by indicating the name of the counter concerned and the name of 

the file (with its directory) in which the data will be saved. 

N.B.: To save the data in a csv file (comma-separated-value ‘valeur séparée par une virgule’), 

recognized in particular by MatLab (through the instruction CSVREAD) and Excel, you 

counter = + 1 

transition 
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should: put the extension .csv to the file and indicate that the file is in text format by checking 

the Write Statistics Output Files as Text box (accessible in the Run/Setup.../RunControl/ 

Advanced menu). 

For example, in the following figure, the compteur 1.csv file contains the data collected by the 

compteur counter defined in the Record 1 block. 

 

1.b) When Time Between → Type field, the Record block allows to collect the time lapse 

between the successive passage of 2 entities in the block. The name of the tally5 (in charge of 

identifying this data) is specified in the Tally Name field. 

 

The block Tally (from template Input Output, belonging to the experiment part) allows the 

recording during the simulation of the values of a tally (defined in a Record block). To do this, 

complete the Tally block by indicating the name of the tally concerned and the name of the file 

(with its directory) in which the data will be saved. 

N.B.: To save the data in a csv file (comma-separated-value ‘valeur séparée par une virgule’), 

recognized in particular by MatLab (through the instruction CSVREAD) and Excel, you 

should: put the extension .csv to the file and indicate that the file is in text format by checking 

the Write Statistics Output Files as Text box (accessible in the Run/Setup.../RunControl/ 

Advanced menu). 

For example, in the following figure, the tally1.csv file contains the data collected in the 

tally_between tally defined in the Record 1 block. 

 
5 ‘To keep a tally of …’  means  ‘tenir le compte de …’. 

transition 
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1.c) When Time Interval → Type field, the Record block allows to collect the times taken by 

the entities to cross a part (to define), or the whole, of the model. The name of the tally (in 

charge of identifying this data) is specified in the Tally Name field. 

 

For example, suppose that we want to collect for each entity the difference between its output 

time from block M and its output time from block N (located upstream). Let )(),( itit MN  be the 

output times of entity labelled i of blocks N and M respectively, see the following diagram. 

 

 

 

 

 

 

To do this, we include in the model: 

- An Assign block (cf. VII.2.f) situated just after the output of the N block in order to define 

an attribute, noted for example Attribute 1, with the value TNOW to have the output time 

of the N block for each entity, 

- A Record 1 block with Time Interval → Type field situated just after the output of the M 

block in order to have the travel time between the output of the N block and the output of 

the M block, the relation between this block and the Attribute 1 attribute (defined in the 

previous Assign block) is realized through the Attribute Name field. 

See the following diagram to have a schematic view of the blocks N, Assign, M, Record and 

the following figure where is described the Record 1 block. 
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The block Tally (from template Input Output, belonging to the experiment part) allows the 

recording during the simulation of the values of a tally (defined in a Record block). To do this, 

complete the Tally block by indicating the name of the tally concerned and the name of the file 

(with its directory) in which the data will be saved. 

N.B.: To save the data in a csv file (comma-separated-value ‘valeur séparée par une virgule’), 

recognized in particular by MatLab (through the instruction CSVREAD) and Excel, you 

should: put the extension .csv to the file and indicate that the file is in text format by checking 

the Write Statistics Output Files as Text box (accessible in the Run/Setup.../RunControl/ 

Advanced menu). 

For example, in the following figure, the tally2.csv file contains the data collected in the 

tally_intervalle tally defined in the Record 1 block. 

 

2) The block Time Persistent (from template Input Output, belonging to the experiment part) 

allows to collect statistics provided by ARENA variables (automatically updated) such as the 

number of entities in a queue or the occupancy rate of a resource. 

The variable NQ (NQ for Number in Queue) allows to have the number of entities in a queue. 

For example, the variable NQ(Process 1.Queue) allows to have the number of entities in the 

queue Process 1.Queue. 

The variable NR (NR for Number of busy Resource units) allows to have the occupancy rate of 

a resource. Consider a machine with a processing capacity of n (that is, it can process n 

workpieces simultaneously) knowing that a resource can be busy. For example, consider a 

machine modeled by a Process block named Process 1, the machine has a resource named 

Resource 1 with a processing capacity of 3 (data defined in a Resource block), then the 

NR(Resource 1) variable allows to have the occupancy rate of the resource, that is, the number 

0, 1, 2 or 3 of busy resources Resource 1. 
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For example, by setting in the Time Persistent block: 

2.a) A statistic, named Etat_file_attente, we can collect in the SIMAN Summary Report file 

(available at the end of the simulation) the average, the minimum, the maximum number of 

entities in the queue Process 1.Queue by setting: 

Etat_file_attente → Name/Report Label field, 

NQ(Process 1.Queue)  → Expression field, see the following figure. 

2.b) A statistic, named Etat_ressource, we can collect in the SIMAN Summary Report file 

the average, the minimum, the maximum number of busy resources Resource 1 by setting: 

Etat_ressource → Name/Report Label field, 

NR(Resource 1)  → Expression field, see the following figure. 

In the same way, we can save this observation data, recorded during the simulation, by setting 

in the Output File field the name of the file (with its directory) in which data will be recorded. 

In the previous example, the statistics data Etat_file_attente and Etat_ressource are saved in 

the files NQ.csv and NR.csv respectively. 

N.B.: To save the data in a csv file (comma-separated-value ‘valeur séparée par une virgule’), 

recognized in particular by MatLab (through the instruction CSVREAD) and Excel, you 

should: put the extension .csv to the file and indicate that the file is in text format by checking 

the Write Statistics Output Files as Text box (accessible in the Run/Setup.../RunControl/ 

Advanced menu). 

 

 
 

VII.4  GRAPHIC ANIMATION 

 

Animation is a effective way of communication, it brings a simulation model to life by 

generating a moving picture of model functioning, we can see the execution of the model, the 

entities as they wait in queues, occupy resources, travel between blocks, and so on. Easy to use, 

especially for decision-makers who are not necessarily initiated to technical aspects, the 

animation allows (provided that the simulation conditions are credible) to highlight the studied 

phenomena. 

Use of animation during the building of a simulation model is also interesting to verify its 

functioning through a step-by-step visualization (see command Step ►| ) of the entities flow in 

the simulation model. 

 

The objects available in ARENA allow the construction of a detailed graphical representation 

of the simulated system. This representation changes during simulation execution to reflect the 

movement of entities through the model (for example, the workpieces circulating through a 

production line) and the corresponding changes in the state of the system, in particular through 

a visualization of: 

- the status of resources, for example, the idle or busy state of a machine or a robot, 
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- the status of queues, for example, the buffer of a machine, 

- the evolution of the values of variables or attributes, for example, a variable indicating 

the processing time of a machine. 

 

There are two types of objects: 

- static objects as lines, boxes, circles, they don’t change during simulation execution and are 

typically used to represent the physical structure or background environment of the system, 

- dynamic objects change shape, color, or position during the simulation execution, for 

example, workpieces, workers, machines are represented as dynamic objects. Such objects 

also include the graphical representation of the values of system variables and summary 

statistics. 

 

An example is given in the file \Examples\Animation_Un_exemple\Animation.Doe. 

 

 

1. Animation of entities 

 

An animation allows the visualization of the flow of entities along the connectors linking the 

modules between them: 

 

 

 

 

 

 

Note that the movement of the entities along the connectors has no impact on the simulation 

time (TNOW). The simulation of transport times requires the use of the block STATION of 

Discrete Processing template. 

 

The initial image used to represent an entity is defined in the Entity block (from template Data 

Definition, belonging to the experiment part). The image is by default the one noted 

Picture.Report and is indicated in the Initial Picture field of the Entity block. The change of 

the image associated to an entity is done via its passage in an Assign block by assigning a new 

image to the Entity Picture attribute (for example, Entity Picture → Type field, 

Picture.Truck → Entity Picture field). 

The Animate/Edit Entity Pictures menu provides access to other images (included in .plb files). 

The Open button opens a particular .plb file, for example, the Equipment.plb file provides 

images of various machines. 

It is also possible to create your own images (saved in a .plb file). Click on the Add button on 

the right to create an image, which makes a gray box appear. Double-clicking in this box opens 

a window (Picture Editor) where it is possible to design an image. Close the window once the 

image is designed; it will then appear instead of the grey box. The Save button allows the 

recording of created image(s) in a .plb file of your choice. 

 

➢ The Animate toolbar 

 

The Animate toolbar provides an interface with the basic objects of the animation. 

 

 

Create 

Process 
0 

0 

connector 
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Some of these objects are described below: 

- Status views: 

- Clock displays the simulation time in hours, minutes, and seconds, 

- Date displays the simulation time (TNOW) in days, months, and years, 

- Variable displays the numerical value of a mathematical or logical expression, 

- Histogram displays the distribution of the value of an expression in a specified range, 

- Level displays the value of an expression relative to specified minimum and maximum 

values, 

- Plot displays the past values of an expression over a specified time range. 

 

- Waiting area: 

- Queue displays entities waiting for a specified event, for example, the availability of a 

resource. 

 

- Pictures: 

- Resource allows to have an object (for example, a machine) with limited capacity that 

can be allocated to entities. A resource can be in an idle or busy state, the image 

associated with a resource during the simulation depends on its state, 

- Global allows the association of images to an expression (variable, attribute). The image 

associated with the expression during the simulation changes according to its value 

relative to a specified value. 

 

➢ The Draw toolbar 

 

The objects of the Draw toolbar allow the addition of static drawings or text: 

 

 

 
 

VII.5  INPUT ANALYZER 

 

The Input Analyzer included with ARENA allows the exploitation of input data by determining 

the most representative probability distribution of the empirical distribution obtained from the 

input data. 

The input data is contained in a .dst file in which each row contains a number. In fact, such file 

is a text file (readable, for example, by using WordPad). See, for example, the test1.dst, or 

test2.dst files accessible in the \Examples\Distribution directory. To analyze such a data file, 

select the Tools/Input Analyzer menu to open the Input Analyzer application. Once the 

application is opened, select File/New to open a window named Input1. After clicking in the 
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gray window, select File/Data File/Use Existing…6 to select the .dst file containing the data to 

be converted into a distribution law, which leads to the display of a histogram of the data. 

 

 
 

Information about the data (number of data, minimum and maximum values, mean, standard 

deviation) and the histogram (range (‘portée’) (smallest value and largest value considered in 

the histogram), the number of intervals (in )( ptsdenbreO , between 5 and 40 intervals)) are 

described in the gray window. 

Select Options/Parameters/Histogram... to change the parameters of the histogram, namely the 

number of intervals, the lower bound (data with lower values are ignored), and the upper bound 

(data with upper values are ignored). 

 

Select Fit/Fit All (‘Ajuster’) to find the best distribution corresponding to this histogram. 

 

 
6 It is also possible to create a data file (.dst) corresponding to a certain distribution by selecting 

Generate New.... 
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VII.6  OUTPUT ANALYZER 

 

Once the simulation execution finished, the Output Analyzer included with ARENA allows the 

calculation of statistical results as mean, standard deviation, minimum value, maximum value. 

It is also possible to collect the complete history of the values obtained during the simulation 

execution in files (usable for example by using the Excel software). In addition to being able to 

draw curves and histograms, the Output Analyzer offers different statistical functions as 

calculation of confidence intervals, construction of correlograms, comparison and analysis of 

means, analysis of variances, hypothesis testing. 


