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On the alignment of a tool attached to a UR3e cobot  

by using RoboDK software 

Jean-Louis Boimond 

University of Angers 

This tutorial deals with the alignment of a tool attached to a UR3e cobot (built by Universal Robots) by 

using the simulation software RoboDK. Most industrial robot manufacturers propose such a 

functionality under the form of a software instruction: tool alignment consists of orienting the Tool 

frame, denoted Tool Center Point (TCP) hereafter, so that each of its axes is aligned with one of the 

axes of the base frame (denoted 𝑅0) of the cobot. More precisely, each axis is aligned with the nearest 

to one of the axes of 𝑅0, whether in its positive or negative direction. Note that only the orientation of 

the TCP can change during an alignment, unlike its position (in space 𝑅3) which remains unchanged. 

An example realized with RoboDK is shown in Figure 2 (where 𝑋, 𝑌, 𝑍  axes are drawn in red, green, 

blue, respectively) with an arbitrary TCP orientation (before its alignment) at the left of the figure and 

the TCP orientation after its alignment at the right. 

To simplify (but without losing generality), we consider in the following that the TCP corresponds 

directly to the frame associated with the flange (denoted 𝑅6) of the cobot (it is not equipped with a 

tool), see Figure 1 (knowing that 𝑋, 𝑌, 𝑍  axes are drawn in red, green, blue, respectively): 

 

Figure 1: Representation of frames 𝑅0 and 𝑅6 when the UR3e cobot is 

in its initial configuration (obtained when 𝜃1 = ⋯ = 𝜃6 = 0). 
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Figure 2: On the left, an arbitrary TCP (corresponding to 𝑅6 frame) situation  before its alignment; 

on the right, TCP situation after its alignment (we see that axes 𝑋6, 𝑌6, 𝑍6 are aligned to 

the axes −𝑌0, 𝑋0, 𝑍0 respectively). 

Let us reproduce as an example the alignment of the TCP considered in Figure 2. First, let us give some 

basics of RoboDK software: 

- the import of the UR3e cobot is done through the File>Open robot library menu, which allows to 

select the cobot and then, by directing the mouse over the image of the cobot, to click on the Open 

key to realize the import (authorize, if necessary, the request to open the link robodk); 

- the View menu allows to optimize the display of the cobot, for example: 

- the cobot can be zoomed in or out by pressing and moving the left mouse button or by rolling 

the mouse wheel; 

- the orientation of the cobot can be changed by pressing and moving the right mouse button; 

- the cobot can be translated by pressing the mouse wheel. 

Note the existence of items Isometric, Top, Front, Right, Left, Back to view in different ways the 

cobot; 

- the UR3e panel window that appears (to the right of the main window) by double-clicking on one 

of the cobot bodies allows to: 

- access (to read or write) the joint values (𝜃1,⋯ , 𝜃6) of the cobot in the box 'Joint axis jog', as 

well as the TCP situation (𝑋, 𝑌, 𝑍, 𝑢, 𝑣, 𝑤) in the 'Tool Frame with respect to Reference Frame' 

box (knowing that, by default, the Reference Frame corresponds to the cobot base as indicated 

in the ‘Reference Frame with respect to robot base’) box; 

- display the different frames associated with the cobot in the 'Show Frames' box, in particular 

via the checkboxes: 'Base' to represent the base frame (i.e., 𝑅0) and 'Tool Frame' to represent 

the TCP frame (i.e., 𝑅6). 

Remember that we consider that the cobot is not equipped with a tool, as indicated in the ‘Tool 

Frame with respect to robot flange’ box. 

✓ Open the 'Alignement.rdk' script available <here> in order to visualize (with an isometric view) the 

cobot as described in Figure 2 on the left. The point reached (denoted TCP in the script) 

corresponds to the TCP before the alignment and has the following joint coordinates:  

http://perso-laris.univ-angers.fr/~boimond/Alignement.zip
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𝜃1 = 17, 𝜃2 = −182, 𝜃3 = 127, 𝜃4 = −27, 𝜃5 = 65, 𝜃6 = 8    (°), 

which gives rise to the following coordinates of the TCP situation: 

𝑋 = 73.583, 𝑌 = −155.243, 𝑍 = 388.824  (𝑚𝑚)

𝑢 = 23.345, 𝑣 = 14.584,𝑤 = −62.075  (°) .
 

✓ Check the validity of this information through the UR3e panel window. 

✓ Align the TCP by right-clicking on TCP (located at the top left in the tree ) to 

select 'Align Target orientation' item. Double-click (again) on TCP so that the cobot arm 

adopts a posture corresponding to the TCP once aligned, as shown in Figure 2 on the right. 

✓ Verify that only TCP orientation has changed, note the 𝑢, 𝑣, 𝑤 values obtained as a result of the TCP 

alignment (we will use them later). 

 

Now, let us look at the calculation allowing the alignment of the TCP. 

 

1) Orientation: quaternion, rotation matrix    

Before performing a TCP alignment on the UR3e cobot, note that the Universal Robots (UR) company 

(as well as ABB) uses quaternions, rather than the usual (3 × 3) rotation matrices, to represent the 

orientation of a point, such as the TCP, defined in task space. So, let us quickly describe quaternions. 

Let us first express the expression for the (3 × 3) rotation matrix, denoted 𝑅(𝑈, 𝜃), by an angle 𝜃 

about an arbitrary axis carried by a unit vector 𝑈 defined by coordinates (𝑢𝑥, 𝑢𝑦 , 𝑢𝑧) in the base frame 

𝑅0, see Figure 3 which follows: 

 
Figure 3: Definitions of vector 𝑈 and angle 𝜃. 

The matrix 𝑅(𝑈, 𝜃) is equal to: 

(

𝑢𝑥
2(1 − cos(𝜃)) + cos(𝜃) 𝑢𝑥𝑢𝑦(1 − cos(𝜃)) − 𝑢𝑧  sin(𝜃) 𝑢𝑥𝑢𝑧(1 − cos(𝜃)) + 𝑢𝑦  sin(𝜃)

𝑢𝑥𝑢𝑦(1 − cos(𝜃)) + 𝑢𝑧  sin(𝜃) 𝑢𝑦
2(1 − cos(𝜃)) + cos(𝜃) 𝑢𝑦𝑢𝑧(1 − cos(𝜃)) − 𝑢𝑥  sin(𝜃)

𝑢𝑥𝑢𝑧(1 − cos(𝜃)) − 𝑢𝑦  sin(𝜃) 𝑢𝑦𝑢𝑧(1 − cos(𝜃)) + 𝑢𝑥  sin(𝜃) 𝑢𝑧
2(1 − cos(𝜃)) + cos(𝜃)

).     (eq. 1) 
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Note: We use the following relation to calculate this matrix: 

𝑅(𝑈, 𝜃) = 𝑅(𝑧, 𝛼) 𝑅(𝑥, 𝛽) 𝑅(𝑧, 𝜃) 𝑅(𝑥, −𝛽) 𝑅(𝑧, −𝛼), 

knowing that: 

- 𝑅(𝑥,−𝛽) 𝑅(𝑧, −𝛼) enables the frame (𝑥′, 𝑦′, 𝑧′(= 𝑈)) to be confused with the base frame 𝑅0, 

- thus 𝑅(𝑧, 𝜃) enables the rotation by an angle 𝜃 around the axis 𝑧0, 

 - then, 𝑅(𝑧, 𝛼) 𝑅(𝑥, 𝛽) enables the modification of the frame (𝑥′, 𝑦′, 𝑧′) such that 𝑧′ returns to its 

initial position (𝑈). 

The details of the calculation are given in TP 4 'Génération de trajectoires rectilignes du Tool Center 

Point dans l’espace des tâches – Application au robot KUKA KR3' accessible on my website. 

The quaternions 𝑄1, 𝑄2, 𝑄3, 𝑄4 that describe the orientation resulting from rotation by an angle 𝜃 

about the axis carried by the (unit) vector 𝑈, are given by the following relations: 

𝑄1 = 𝐶𝑜𝑠(𝜃 2⁄ ),

𝑄2 = 𝑢𝑥  𝑆𝑖𝑛(𝜃 2⁄ ),

𝑄3 = 𝑢𝑦 𝑆𝑖𝑛(𝜃 2⁄ ),

𝑄4 = 𝑢𝑧 𝑆𝑖𝑛(𝜃 2⁄ ).

 

Note: It is possible to do the sum, the product of quaternions; for example, the quaternion 

(𝑄1, 𝑄2, 𝑄3, 𝑄4) = (1,0,0,0) corresponds to a rotation by zero angle about any axis. 

▪ Rotation matrix corresponding to a quaternion: 

The tool alignment method presented here - applied to the UR3e cobot - is based on rotation matrices 

to represent the orientation of points located in task space, so it is first necessary to establish the 

rotation matrix corresponding to a quaternion. 

To do this, consider a rotation matrix, denoted 𝐴, that defines the orientation of a point 𝑃 in task space, 

such that: 

𝐴 = (𝑠 𝑛 𝑎) = (

𝑠𝑥 𝑛𝑥 𝑎𝑥
𝑠𝑦 𝑛𝑦 𝑎𝑦
𝑠𝑧 𝑛𝑧 𝑎𝑧

), 

where 𝑠, 𝑛, 𝑎 represent the orientation vectors of the point 𝑃 (𝑠𝑥 , 𝑠𝑦, 𝑠𝑧 being the projections of the 

vector 𝑠 in the base frame 𝑅0, and the same for the vectors 𝑛 and 𝑎). 

Question 1: Consider that the rotation matrix 𝐴 corresponds to the quaternion defined earlier, i.e., 

𝐴 = 𝑅(𝑈, 𝜃). Knowing that 𝐶𝑜𝑠(𝜃) = 𝐶𝑜𝑠2 (
𝜃

2
) − 𝑆𝑖𝑛2 (

𝜃

2
), show that: 

𝑄1
2 =

1

2
(1 + 𝐶𝑜𝑠(𝜃)), 

𝑄2
2 =

1

2
𝑢𝑥
2(1 − 𝐶𝑜𝑠(𝜃)), 

𝑄3
2 =

1

2
𝑢𝑦
2(1 − 𝐶𝑜𝑠(𝜃)), 

𝑄4
2 =

1

2
𝑢𝑧
2(1 − 𝐶𝑜𝑠(𝜃)). 

From equation 1, we can deduce the following expression for the rotation matrix 𝐴: 

𝐴 =

(

 
 
2 (𝑄1

2 +𝑄2
2)− 1 2(𝑄2𝑄3 −𝑄1𝑄4) 2(𝑄2𝑄4 +𝑄1𝑄3)

2(𝑄2𝑄3 +𝑄1𝑄4) 2 (𝑄1
2 +𝑄3

2)− 1 2(𝑄3𝑄4 −𝑄1𝑄2)

2(𝑄2𝑄4 −𝑄1𝑄3) 2(𝑄3𝑄4 +𝑄1𝑄2) 2 (𝑄1
2 +𝑄4

2)− 1
)

 
 

. 

Question 2: Verify that this expression is correct for the elements 𝐴(1,1) and 𝐴(2,1) (given that the 

other elements of the matrix 𝐴 are calculated in a similar way). 

https://perso-laris.univ-angers.fr/~boimond/TP_4_Kuka_KR3_Generation_trajectoires_TCP_espace_des_taches.pdf
https://perso-laris.univ-angers.fr/~boimond/TP_4_Kuka_KR3_Generation_trajectoires_TCP_espace_des_taches.pdf
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▪ Special case of quaternion representation for Universal Robots: 

In fact, Universal Robots represents a quaternion, corresponding to the matrix 𝑅(𝑈, 𝜃), using only 

three values, denoted 𝑢, 𝑣, 𝑤 (instead of four, i.e., 𝑄1, 𝑄2, 𝑄3, 𝑄4). To do this, the magnitude of the 

vector 𝑈 = (𝑢, 𝑣, 𝑤) is equal to the value of the angle 𝜃 (it is no longer necessarily unitary), i.e.: 

𝜃 = ‖𝑈‖, 

which leads to the following values of 𝑢𝑥, 𝑢𝑦, 𝑢𝑧: 

𝑢𝑥 = 𝑢 ‖𝑈‖,⁄ 𝑢𝑦 = 𝑣 ‖𝑈‖,⁄ 𝑢𝑧 = 𝑤 ‖𝑈‖⁄ . 

Question 3: Program a MatLab function called 'CosinusDirecteur_a_partir_des_ 
quaternions_uvw' with the following header: 

function A = CosinusDirecteur_a_partir_des_quaternions_uvw(u,v,w), 

that calculates the rotation matrix 𝐴 corresponding to the quaternion 𝑢, 𝑣, 𝑤. 

Verify that you obtain 𝐴 = (
   0.4499 0.8931    0.0029
−0.8010 0.4049 −0.4410
−0.3951 0.1961    0.8975

) when (𝑢, 𝑣, 𝑤) =

(23.345, 14.584,−62.075) in degree, which corresponds to TCP orientation considered in the 

example corresponding to Figure 2 on the left. 

2) Tool alignment procedure 

Two steps are considered: 

2.1) Calculation of the TCP orientation matrix after alignment from an arbitrary (unaligned) TCP 

orientation 

To simplify the notations, the point representing the TCP before its alignment is denoted 'initial point', 

it is denoted 'final point' after its alignment. Let 𝐴𝑖𝑛𝑖, 𝐴𝑓𝑖𝑛 be the orientation matrices of the initial and 

final points, respectively. 

The calculation of the orientation matrix 𝐴𝑓𝑖𝑛 is done by considering each of its three columns 

separately. Consider, for example, the first column of the matrix 𝐴𝑖𝑛𝑖 (the reasoning being the same 

for the other two columns): let 𝑖 (between 1 and 3) be the number of the row whose content (a real 

number between −1 and 1) has the largest absolute value, then the matrix 𝐴𝑓𝑖𝑛 is such that: 

• 𝐴𝑓𝑖𝑛(𝑖, 1) = {
   1 if the real number is positive,
−1 otherwise,

 

• The value of the content of the 2 other rows (in the first column of 𝐴𝑓𝑖𝑛) is equal to 0. 

Thus the matrix 𝐴𝑓𝑖𝑛 is composed of −1, 0 or +1. 

Question 4: Program a MatLab function called 'Orientation_finale' with the following header: 

function A_finale = Orientation_finale(A_initiale), 

that calculates matrix 𝐴𝑓𝑖𝑛 from a matrix 𝐴𝑖𝑛𝑖. Take care in the function to test if the matrix 𝐴𝑓𝑖𝑛 
represents a rotation matrix (i.e., is orthogonal and has a determinant equal to 1). 

In relation to the example shown in Figure 2, verify that the TCP orientation after alignment 

corresponds to the matrix 𝐴𝑓𝑖𝑛 = (
   0 1 0
−1 0 0
0 0  1

) when 𝐴𝑖𝑛𝑖 = (
   0.4499 0.8931    0.0029
−0.8010 0.4049 −0.4410
−0.3951 0.1961    0.8975

). 

Check that the values 𝑢, 𝑣, 𝑤 obtained after the TCP alignment (using the 'Alignment.rdk' script, see 

pages 2, 3) match the matrix 𝐴𝑓𝑖𝑛. 
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2.2) Calculation of the rotation matrix used to move from the orientation matrix of the initial point 

to that of the end point 

The aim is to determine the rotation matrix, denoted 𝑅(𝑉, 𝛾), by an angle 𝛾 about an axis carried by a 

unit vector 𝑉 of coordinates (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) in 𝑅0 (like the matrix 𝑅(𝑈, 𝜃) described by eq. 1) which allows 

the transition from the matrix 𝐴𝑖𝑛𝑖 to the matrix 𝐴𝑓𝑖𝑛, i.e., from the frame representing the initial 

orientation of the TCP to the one representing its final orientation. 

Question 5: Determine the matrix 𝑅(𝑉, 𝛾). To do this, let us recall the difference in interpretation 

between 𝑅 × 𝐴 and 𝐴 × 𝑅 when 𝑅 is a rotation matrix and 𝐴 is a matrix representing the orientation 

of a frame: 

- concerning the expression 𝑅 × 𝐴, for example, 𝑅0,1 × (𝑠 𝑛 𝑎) allows to make a change of frame 

in the sense that it allows to calculate in the frame 𝑅0 the coordinates of the vectors 𝑠, 𝑛, 𝑎 expressed 

in the frame 𝑅1 (in my course, 𝑅0,1 × 𝑂1𝑃⃗⃗⃗⃗ ⃗⃗  ⃗ is used to express in the frame 𝑅0 the coordinates of the 

vector 𝑂1𝑃⃗⃗⃗⃗ ⃗⃗  ⃗ expressed in the frame 𝑅1 (denoted vector 𝑂1𝑃⃗⃗⃗⃗ ⃗⃗  ⃗ |𝑅1 in my course)); 

- concerning the expression 𝐴 × 𝑅, for example, (𝑠 𝑛 𝑎) × 𝑅(𝑈, 𝜃) allows the vectors 𝑠, 𝑛, 𝑎 to be 

rotated by an angle 𝜃 about the axis carried by the vector 𝑈 (unlike the previous case, the vectors 

𝑠, 𝑛, 𝑎 and 𝑝, 𝑞, 𝑟 with (𝑝 𝑞 𝑟) = (𝑠 𝑛 𝑎) × 𝑅(𝑈, 𝜃) are expressed in the same frame). 
 

Question 6: Program a MatLab function called 'Rotation_V_gamma' with the following header: 

R_V_gamma = Rotation_V_gamma(A_initiale,A_finale), 

that calculates matrix 𝑅(𝑉, 𝛾) from matrices 𝐴𝑖𝑛𝑖 and 𝐴𝑓𝑖𝑛. 

In relation to the example shown in Figure 2, calculate the rotation matrix 𝑅(𝑉, 𝛾) from matrices 

𝐴𝑖𝑛𝑖 = (
   0.4499 0.8931    0.0029
−0.8010 0.4049 −0.4410
−0.3951 0.1961    0.8975

) and 𝐴𝑓𝑖𝑛 = (
   0 1 0
−1 0 0
0 0  1

). Verify that the matrix after the 

rotation by 𝑅(𝑉, 𝛾) corresponds to the matrix 𝐴𝑓𝑖𝑛 = (
   0 1 0
−1 0 0
0 0  1

) when matrix 𝐴𝑖𝑛𝑖 =

(
   0.4499 0.8931    0.0029
−0.8010 0.4049 −0.4410
−0.3951 0.1961    0.8975

). 

 

To go further regarding the generation of the trajectory between the initial point and the end point 

(reached at the instant 𝑡𝑓𝑖𝑛𝑎𝑙), it would be necessary to have the matrices 𝐴(𝑡) corresponding to the 

TCP situation at the instant 𝑡 with 𝐴(0) = 𝐴𝑖𝑛𝑖 (for the initial point) and 𝐴(𝑡𝑓𝑖𝑛𝑎𝑙) = 𝐴
𝑓𝑖𝑛 (for the final 

point). To do this, it is necessary to compute the vector 𝑉 and the angle 𝛾 (using equation 1 and the 

matrix expression 𝑅(𝑉, 𝛾) from question 5) in order to perform an interpolation based on the variation 

of the angle 𝛾 over time, i.e., 𝛾(𝑡); refer to TP 4 'Génération de trajectoires rectilignes du Tool Center 

Point dans l’espace des tâches – Application au robot KUKA KR3' (accessible on my web page) for 

calculation details. 

http://perso-laris.univ-angers.fr/~boimond/Robotics_course.pdf
https://perso-laris.univ-angers.fr/~boimond/TP_4_Kuka_KR3_Generation_trajectoires_TCP_espace_des_taches.pdf
https://perso-laris.univ-angers.fr/~boimond/TP_4_Kuka_KR3_Generation_trajectoires_TCP_espace_des_taches.pdf

