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Abstract

We review a set of recent multiscale imaging techniques, producing high-resolution images of interest for plant
sciences. These techniques are promising because they match the multiscale structure of plants. However, the use of
such high-resolution images is challenging in the perspective of their application to high-throughput phenotyping
on large populations of plants, because of the memory cost for their data storage and the computational cost for their
processing to extract information. We discuss how this renews the interest for multiscale image processing tools such
as wavelets, fractals and recent variants to analyse such high-resolution images.
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Introduction
Finding the good practices to perform high-throughput
phenotyping of large populations of plants is a current
challenge to meet the high-throughput capacity of geno-
typing and push forward the knowledge on the develop-
ment of plants in different environments. Because they
allow contactless and noninvasivemeasurements, imaging
techniques are regarded as tools of highest interest in this
context, to provide anatomical or physiological objective
traits and outperform the limit of human vision either in
terms of sensitivity, accuracy or throughput. Conversely,
plant sciences constitute a new field of application for
computer vision which traditionally, when applied in life
sciences, used to focus more on biomedical imaging.
Among the specificities of computer vision for plant sci-
ences that are not found in biomedical imaging, is the
possibility to monitor, continuously over the whole life
cycle, the process of growth on structures possessing com-
plex 3D multiscale organisation with a part visible in the
air (shoot) and a part hidden in the soil (root).
There has been a significant increase in interest in plant

imaging and image analysis methods in recent years, but
most of the techniques proposed focus on measurements
at a single scale - cell, organ, whole plant, etc. This is in
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contrast to modelling efforts which have stressed mul-
tiscale approaches. Such numerical models have been
proposed at the scale of the entire structure of plants from
iterated replication processes using L-systems (see [1,2]
for reviews). Such replication processes have been shown
able to reproduce the fractal organization of plant struc-
tures as measured on entire real plants. These can also
serve to model the root systems [3] and have recently
been used to validate image processing algorithms for
root segmentation [4]. Multiple plant modeling coupled
to agronomical models have also been developed [5] and
allow the numerical validation of image processing algo-
rithms at the scale of canopy. Replication processes have
also been modeled at the cellular scale with possibili-
ties of explanatory physical mechanisms for the shape of
the plant at higher scales [6]. As another instance, the
so-called dead leaves model takes inspiration from the
foliage of plants, with leaves of different sizes and illu-
mination which are reproduced at various scales with
occlusions [7-9]. Such models have been shown to pro-
duce fractal patterns with controllable properties, and in
return they offer models for the multiscale constitution of
plants.
Due to the increase in size and resolution of the imaging

sensors and to the development of efficient registration
methods, the number of scales accessible in imaging is
now ready to meet the multiscale structure of plants.
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In this review article, we present a set of recent high-
resolution imaging techniques which cover the plant
scales from molecules in the cell up to the field, and we
detail how this renews the interest of scale-analysis tools
for image processing.

Multiscale high-resolution imaging in plant
sciences
We give in Table 1 a list of imaging techniques which
have been shown in the recent literature to cover mul-
tiple scales of interest for plant sciences. At the small-
est scales, single molecules up to the the entire cell
are now also accessible for plants [10] with super-
resolution imaging techniques [11] outperforming the
classical diffraction limits such as photoactivated local-
ization microscopy (PALM), stochastic optical resolution
microscopy (STORM) [12], stimulated-emission deple-
tion microscopy (STED) [13], three-dimensional struc-
tured illumation microscopy (3D-SIM) [14] and total
internal reflection fluorescence microscopy (TIRF) [15].
At a higher range of scales, some recent microscopic
imaging techniques now allow to discriminate cells of an
entire organ. This is illustrated in Figure 1 with an exam-
ple of optical coherence tomography (OCT) of a seedling
of Arabidopsis thaliana during elongation with a reso-
lution enabling to discriminate the cells of the seedling
and the entire seedling. Other microscopic imaging tech-
niques also have this capability and have been applied to
plants like X-ray phase contrast imaging (X-ray PCT) [16]
for microstructure analysis of the voids in an entire seed,
light sheet fluorescence microscopy (LSFM) [17], mul-
tiangles confocal microscopy [18] to observe the entire
seedling growth cell by cell, or optical projection tomog-
raphy (OPT) [19] to image an entire leaf with possibility
of cell resolution. At larger scales, inside the soil, imaging
techniques give access to nodules on the root system up

Table 1 Multiple scale high-resolution imaging in plant
sciences

Biological scales Metric scales Imaging techniques

From molecule to cell 10 nm to 10 μm PALM-STORM [12],
STED [13], 3DSIM [14]

From cell to organs 0.1 μm to dcm OCT [30], LSFM [17],
X-ray PCT [16],
confocal [18], OPT [19]

From nodules to root system μm to m Rhizotron [24,25],
X-ray μCT [20-22]

From leaf to entire shoot mm to 10 m depth-imaging,
LIDAR [26,27]

From shoot to canopy m to hm remote sensing,
UAV imaging [28,29]

Acronyms are explicated in Section “Multiscale high-resolution imaging in plant
sciences”.

to the entire root system. This has been recently demon-
strated in 3D in soil with absorption-based micro X-ray
computed tomography [20-22], and with high-resolution
imaging in 2D with rhizotron using reflectance imag-
ing [23], or with bioluminescence imaging [24,25]. At the
same metric scales but in the air, imaging techniques give
access to a leaf in the shoot up to the entire shoot. This has
been recently demonstrated with a variety of 3D imaging
systems (see [26,27] for a recent reviews). At still larger
metric scales, in field conditions, one can capture with
high-resolution imaging setups embedded on an airplane
or unmanned aerial vehicle (UAV) [28,29] the entire shoot
from top view up to the canopy constituted by assemblies
of shoots.
The list of imaging techniques given in Table 1 is not

exhaustive (see [32-34] for recent reviews). This familly of
new imaging systems bring some challenges that would be
interesting to be discussed in the field of instrumentation
when applied to plants. To point only one, the new micro-
scopies of Table 1 have been introduced for applications
of broad interest in life sciences and often demonstrated
on organisms which serve as models for biology, such
as C-elegans, zebra fish, mice, Drosophilae fly or Ara-
bidopsis thaliana... Consequently, the non-invasiveness
property of the light used to acquire images of such a vari-
ety of organisms is mainly expressed as nonphototoxic if
it does not kill the organism on a time scale linked with
the time required by instrumentation for image acquisi-
tion. For specific applications on plants however, imaging
the development can necessitate long time-lapsed acqui-
sitions. For instance, imbibition and germination of a seed
take hours while elongation of a seedling several days. At
these stages of development illustrated in Figure 1, plants
are supposed to grow in dark conditions in the soil with no
light exposure, as light strongly modifies the physiology
of seedlings since it activates the process of photosynthe-
sis. It would therefore be important to revisit, as recently
done for seedling in [35], the concept of phototoxicity, by
adapting wavelength, energy and duration of the light used
by the family of mutiscale microscopies when applied to
plants.
In this review, we rather put the stress on current

approaches and challenges brought by new imaging sys-
tems at the level of image processing. The point here
is that techniques of Table 1 have in common, although
working at very different metric and biological scales, to
produce images requiring a huge capacity of data storage.
This is due to the increasing size, resolution and dynamic
of imaging sensors, but also to the coupling of imaging
systems with motorized scanning systems. By this cou-
pling, multiple views can be acquired and registered to
produce high-resolution imaging. Multiview imaging is
common practice in remote sensing. This is now extend-
ing to the scale of a single plant with rotating plates, or
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Figure 1 Images of a seedling of Arabidopsis thaliana acquired with optical coherence tomography (see [31] for another illustration of
OCT with plants). Panel A: 3D view of an entire seedling. Panel B: 2D view in XY. Panel C: zoom in the solid rectangle of the 2D view of panel B.

at the scale of the cells with microscope scanners. For
instance, the OCT system used to produce Figure 1 is
associated to microstage translation systems, in such a
way that the imaging technique can, after registration,
capture in 3D and at the cell resolution, hundreds of such
entire seedlings in a single run, resulting in some Giga
bytes of data. This is 106 more than what has to be stored
for one single plant imaged with a standard imaging reso-
lution. Such large images can still be opened by a software
like ImageJ but image processing, even some basic ones,
can become very slow. This highmemory cost, specially in
the perspective of high-througput phenotyping for large
population of plants, calls for adapted approaches. We
propose a review of the most prominent of them in the
following.

Image processing tools for multiscale imaging
Combiningmodalities with different scales
A problematic of current interest in multiscale imaging is
to combine imaging modalities providing different scales
and contrasts. This association has for instance been illus-
trated in plant sciences with electron microscopy com-
bined with confocal microscopy [36], or magnetic res-
onance imaging (MRI) combined with positon emission
tomography (PET) [37] or again depth imaging com-
bined with thermal imaging [26]. In these examples one
of the modality has a relative high spatial resolution (elec-
tron microscopy, MRI, depth imaging) which provides an

anatomical information while the other modality (respec-
tively confocal, PET, thermal imaging) gives a more func-
tional information. The functional modality can be used
to locate a region a interest to be further analysed from an
anatomical point of view or the other way round. This is a
useful way to reduce the amount of data to be explored at
high resolution. Also, the high-resolution modality can be
used to analyze separately different anatomical compart-
ments, not clearly contrasted in the functional modality.
This is illustrated in Figure 2 where a 3D image of sugar
beet dry seed has been acquired with a high-resolution
X-ray tomograph and a MRI sequence providing gray lev-
els proportional to the content of lipid in the seed. This
gives an image of the embryo of the dry seed. As shown
in Figure 2, the high-resolution modality can be used to
identify the position of the cotyledon and the radicle in
the embryo. If the two modalities are registered, the land-
mark corresponding to the beginning of the separation
between cotyledon and radicle can be applied onto the
MRI images and then allowing a comparison of the lipid
content of these two sub-organs of the seed. Specifically
here, this shows the expected higher content of lipid in the
cotyledon than in the radicle. The registration step is a key
image processing step in this combination of modalities.
Image registration is a problematic of image processing by
itself [38] with various approaches (conventionnally classi-
fied as rigid versus non rigid, automatic versus manual, ...)
which have in common the calculation of a transformation
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Figure 2 Bimodal imaging of the embryo of a dry seed of sugar beet with a low spatial resolution of 0,187 mm per isotropic voxel in MRI
(A external 3D view and Cmedial 2D slice) and high spatial resolution of 7,84 μmper isotropic voxel in X-ray tomography (B external 3D
view and Dmedial 2D slice). The MRI is a spin-echo sequence giving gray-level propotional to the lipid content of the embryo. The red line in
panel D is positionned manually on the X-ray at the separation between cotyledon and radicle. Red line in panel C is automatically positioned after
registration of both imaging modalities with the ImageJ plugin TrakEM2 of Table 2.

matrix to be applied on one of the modality so as to
be able to surperimpose both modalities with a locally
accurate match all over the images. The development
of high-resolution multiscale images has called for the
design of approaches adapted to the computational cost
due to the large size of the images to be registered. Instead
of performing the computation of the registration on
the whole image, the transformation matrix is computed
on a region of interest containing landmarks and then
applied on the entire image (this is available in the ImageJ
Plugin TurboReg pointed in Table 2). These landmarks
can be selected manually or detected automatically with
scale invariant feature transforms (SIFT) [39] or variants

implemented in the ImageJ Plugin TrakEM2 pointed in
Table 2. Random local deformation can occur with elec-
tron microscopy due to slicing or with MRI due to the
so-called blooming effect or also with thermal imaging
due to the presence of mixed pixels on edges of structures.
The compensation of these local deformations randomly
occuring in one of the imaging modalities remains an
open challenge for image registration.

Selecting scales
The selection of structures appearing in the images at
given scales can be realized with filters. The design of
these filters has to incorporate some prior knowledge on

Table 2 Multiple scale image processing tools available under the free and open software ImageJ

Image processing task ImageJ plugin weblink

Image registration http://fiji.sc/TrakEM2

Landmark detection http://fiji.sc/Feature_Extraction

Wavelet filtering http://bigwww.epfl.ch/demo/fractsplines/java.html

Multiscale blob extraction http://bigwww.epfl.ch/sage/soft/Log3D/

Multiscale vessellness extraction http://www.longair.net/edinburgh/imagej/tubeness/

Nonlocal mean denoising https://code.google.com/p/ij-non-local-means/

Fractal analysis http://rsb.info.nih.gov/ij/plugins/fraclac/

Multiscale color analysis http://www.signal-image.net/2010/04/color-inspector-3d/

http://fiji.sc/TrakEM2
http://fiji.sc/Feature_Extraction
http://bigwww.epfl.ch/demo/fractsplines/java.html
http://bigwww.epfl.ch/sage/soft/Log3D/
http://www.longair.net/edinburgh/imagej/tubeness/
https://code.google.com/p/ij-non-local-means/
http://rsb.info.nih.gov/ij/plugins/fraclac/
http://www.signal-image.net/2010/04/color-inspector-3d/
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the shape of the objects to be found at each scale. Among
the strategies for the design of bank of filters, wavelets
have shown to be a very powerful approach for applica-
tion in plant sciences, see [40] for a review of the late
90’s, which continue to be investigated to select patterns
on leaves [41-44] or on canopies [45,46]. The wavelet
approach is versatile since a large panel of wavelet func-
tions have been designed. A wavelet is a wave-like oscil-
lation with an amplitude that begins at zero, increases,
and then decreases back to zero on a scale which can be
defined by the user. Such functions are expected to con-
stitute good filters when they share common features with
the shape of the objects to be extracted. Some familly of
filters have specifically been developed to extract given
shapes. Let us shortly underline the vesselness filter [47]
which enhances area in images where the gradient in the
image is almost null in one direction and much higher in
the other perpendicular directions. This situation is found
with any tubular structures. Therefore, although initially
developed to enhance biomedical images with vascular
vessels the vesslness filter is also very much suited to
enhance tubular structures met in plant sciences such as
cell walls, leaf veins or branches in trees. Based on the
same philosophy, enhancing areas with high gradient in
all directions extract the blob-like structures [48] (cells,
nodules, spherical fruits, . . . ), or also enhancing areas
with high gradient in only one direction in space extracts
surface-like structures (cellular layers, plant leaves,. . . ).
These familly of filters are available under ImageJ as men-
tioned in Table 2.
When no prior knowledge on the shapes or scales of the

objects of interest in the image is available, it is necessary
to use self-adaptive methods to automatically select the
appropriate scales of interest. Such methods are known
as wavelet packets decomposition. However, in this case,
the choice of the wavelet and of the range of scales to be
analysed still have to be performed by the user. Another
self-adaptive method, of more recent introduction, is the
empirical mode decomposition also called Hilbert-Huang
transform, where the scale analysis is purely based on
the data itself. Data-dependent modes, corresponding to
the local frequency data, are extracted by the analysis
to decompose the signal, instead of a decomposition on
preexisting elemental functions such as wavelets. Intro-
duced for monodimensional signals [49], empirical mode
decomposition has then been extended to images [50]
and successfully applied to texture characterization [51].
The dominant modes of the decomposition single out the
main scales in the signals or images under analysis, and
keeping only the dominant modes offers natural methods
for parsimonious representation and for data compres-
sion. Efficient compression schemes have been developed
for landscapes captured in remote sensing for scales from
canopy to field [52]. Such compression approaches by

scale selection remain open for investigation for the other
scales of Table 1.
Another active field of image processing associated to

the selection of scales is image denoising. Benchmark are
found in the litterature [53] so as to identify the best tech-
niques. However, such benchmarks are mostly organized
on natural images not specifically suited for a given scien-
tific field. It is very likely that the ranking of best practices
may vary depending on the specific type of images. A
specificity of multiscale images in plant sciences is the
presence of replicated structures. This is visible in Figure 1
with cells or in Figure 3 with leaves. This replication pro-
cess found in plant architecture constitutes a prior which
is not found in all natural images. This observation moti-
vates the choice of the so-called nonlocal mean [54] as
interesting denoising methods. Nonlocal mean denoising
is realized by averaging pixel content weighted by how
similar these pixels are to the target pixel. In its principle,
this non local averaging process, available under ImageJ
plugin given in Table 2, will be very efficient if a lot of
pixels are similar to the target pixel like in the self-similar
structures found in plant sciences.

Characterizing multiscale signatures
Instead of selecting specific scales of interest, another
approach is to characterize the global organization over
multiple scales in the images. Nontrivial regularities
developing in a self-similar way across a significant range
of scales usually identify the existence of a fractal orga-
nization. Fractal concepts have been shown relevant to
the description of plants, of their roots and shoots,
which often show self-similar organizations across scales
[55-59]. Especially, such organizations lead to high surface
areas at the interfaces with the environment, ensuring for
the plant efficient capture of nutrients and energy.
Self-similarity accross scales, i.e. fractal features, can

thus be found in various properties of images from plants.
For instance, they have been reported in the spatial orga-
nization of gray-level luminance images from outdoor
scenes of woods and plants [60,61]. This is manifested by
scale-free power-law evolutions present in the frequency
spectrum of luminance images or also in their spatial
correlation functions. Also, the colorimetric organiza-
tion of natural images including landscapes with plants
has been reported to carry self-similarity and fractal
properties [62-64]. More recently, multiscale analysis has
been undertaken for plant images obtained from another
imaging technique delivering depth images of a physical
scene [65]. The depth map images from outdoor scenes
of woods and plants as in [60,61] were shown in [65]
to also reveal self-similarity and fractal properties. Such
multiscale image analyses revealing and characterizing
fractal properties in plants are important to contribute
to their understanding, since the fractal and multiscale
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Figure 3 Bimodal RGB-depth representation of a forestery scene (first row) and a single plant (second row). Panels A and E: RGB luminance.
Panels B and F: corresponding RGB histogram. Panels C and G: depth map expressed in meter. Panels D and H: corresponding point cloud of the
depth map.

organization of plants has a direct impact on their func-
tioning, for instance for efficient interactions with their
environment as evoked above [58,66-68]. Also, fractal
characterization of plants is useful to devise synthetic
models of plants with sufficient realism [1].
For illustration, we proceed to the scale analysis of sev-

eral images from a forestry scene and from a single plant,
as shown in Figure 3, acquired with a bimodal RGB-
depth camera [69]. Figure 3 shows four possible ways
of vizualizing such data, with an RGB luminance image,

with a 3D RGB histogram, with depth map or with a
3D depth point cloud. We analyze the scale organization
in each of these four representations. The spatial fre-
quencies of the RGB luminance images in Figure 3 are
analyzed with the power spectrum computed via the peri-
odogram method, through the squared modulus of the
two-dimensional Fourier transform, expressed in polar
coordinates in the plane of spatial frequencies from a sin-
gle plant, as shown in Figure 3, acquired with a bimodal
RGB-depth camera [65]. An average is then realized over

Figure 4 First and second rows:multiscale analysis of RGB-depth images of first and second rows of Figure 3. First column: average spectrum
of RGB luminance image as a function of spatial frequency on a log-log plot. Second column: box counting in the RGB histogram as a function of the
box size on a log-log plot. Third column: average spectrum of depth map image as a function of spatial frequency on a log-log plot. Fourth column:
box counting in the point cloud of the depthmap as a function of the box size on a log-log plot. In each graph, the dotted line with its slope indicated
represents a model to appreciate a power-law evolution to match the data. The slopes reveal noninteger exponents for the power-law evolutions
matching the data over a significant range of scales. This indicates nontrivial self-invariance of the data across scales, i.e. a fractal organization.
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the angular coordinate to yield the orientationally aver-
aged spectrum. This power spectrum is computed on a
gray-level version of the RGB image of Figure 3 and on
the depth image of Figure 3 as a function of the spatial
frequency. The results shown in Figure 4 demonstrate for
both the forestry scene and for the single plant, and with
both imaging modalities, scale-invariant power-law sig-
natures over a significant range of scales, represented by
the spatial frequency. Also, in Figure 4 we implemented
the box counting method [65] on the point clouds consti-
tuted by the RGB histogram of Figure 3 and by the depth
image of Figure 3. The box counting values are obtained
in terms of scales represented by the side length of the
various boxes. For each side length, we compute the num-
ber of boxes with this side length which are needed to
cover all the point cloud. Here again the results shown in
Figure 4 demonstrate, for both scenes and both modal-
ities, power-law signatures over a significant range of
scales, represented by the size of the covering boxes. As
shown in Figure 4, the measures computed in luminance
space, in RGB space as well as in depth space, all dis-
play scale-invariant power-law signatures over significant
ranges of scales. Such fractal signatures are interesting in
the context of multiscale imaging since they constitute an
efficient and concise way to characterize a complex orga-
nization. Fractal image processing tools have been widely
applied to characterize plants (see [70] for a review) at the
scales of leaf [67,71], canopy [72]. So far the fractal char-
acterization of plants at the microscopic scale is open for
investigation. Fractal analyses of root systems have been
undertaken but mainly from plants taken out of the soil
[73-75]. The new high-resolution X-ray CT reported in
[20-22] therefore opens new perspectives for the fractal
characterization of the root system directly in 3D and in
the soil.

Conclusion
High-resolution multiscale imaging in plant sciences was
until recently limited to the domain of remote sensing.
It is now also possible to capture entire roots or shoots
of plants, at various stages of development, with cellu-
lar or subcellular spatial resolution. These high-resolution
imagings are producing huge amounts of data, specially
when they are applied to large populations of plants in
high-throughput phenotyping. In this framework, we have
highlighted here some current approaches connected to
the multiscale analysis of plants and pointed toward effi-
cient computational implementation under the free and
open software ImageJ in Table 2. Open problems emerge
for image compression and image characterization. Mul-
tiscale approaches are specifically relevant for the new
microscopies such as those presented in Table 1; these
are more recent and have received so far, in a multiscale

perspective, less attention than remote-sensing imaging
or than proximal detection in the field.
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