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A B S T R A C T  

This paper is concerned with the modeling of neural systems regarded as information processing 
entities. I investigate the various dynamic regimes that are accessible in neural networks considered 
as nonlinear adaptive dynamic systems. The possibilities of obtaining steady, oscillatory or chaotic 
regimes are illustrated with different neural network models. Some aspects of the dependence of the 
dynamic regimes upon the synaptic couplings are examined. I emphasize the role that the various 
regimes may play to support information processing abilities. I present an example where controlled 
transient evolutions in a neural network, are used to model the regulation of motor activities by the 
cerebellar cortex. 

1. INTRODUCTION 

At a certain level, biological neural systems can be considered as very complex 
physico-chemical plants, and accordingly be described with appropriate physical and 
chemical concepts. However, at a higher level, these systems have to be considered as 
information processing entities, and here one must come to a description involving 
information processing concepts (such as representations, codes, computations, algorithms, 
signal-noise dilemma, reliability, etc). This constitutes the perspective of  the discipline 
known as computational neuroscience (Sejnowski, 1988). There already exist important 
theoretical models that can be viewed as paradigms for the information processing 
performed by biological neural systems. This is the case for the Hopfield neural network 
(Hopfield, 1982, 1984), that proposes a framework where attractor dynamics toward 
controlled stable steady states are used to represent memory processes in the nervous 
system. After a brief review of the Hopfield model, emphasizing its neurobiological 
information-processing orientation, I shall further develop in this paper the possibility to use 
various dynamic regimes in neural networks to support information processing abilities. This 
development will be organized in two steps. In the first step, I shall show that, beyond 
stable steady regimes, other types of dynamic regimes (oscillatory, chaotic, transient) are 
accessible and controllable in neural systems. In the second step, I shall demonstrate, in the 
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continuation of the Hopfield scheme, the possibility to exploit these regimes for information 
processing. For this purpose, I shall rely on an example, that illustrates how it is possible 
to model the ability of the cerebellar cortex to control motor activities, through the use of 
transient evolutions in a neural network. 

2. A C L A S S I C A L  P A R A D I G M  F O R  I N F O R M A T I O N  P R O C E S S I N G  

I N  N E U R A L  N E T W O R K S  

The Hopfield neural network (Hopfield, 1982) is a model that assigns a specific role to 
certain dynamic evolutions of neuron activities, in order to store and retrieve information. 

The model is composed of N neurons, with binary output activities Si(t ) = 0 or 1, 
indicating whether neuron i is silent or active at time t. These N neurons are fully connected 
through N 2 synapses modeled by multiplicative coefficients wij for the link from neuron j 
to neuron i. At time t, the membrane potential of neuron i is defined as: 

N 
vi(o -- wijsj(t). (1) 

j=l 
TO model the nonlinear input-output relationship of the neuron, Vi(t ) is compared to a 

threshold potential Vth. Within a discrete-time dynamics, it is prescribed that if Vi(t ) > Vth 
then Si(t+At ) = 1, otherwise Si(t+At ) = O. 

A state S(t) for the neural network at time t is then introduced as: 

s ( 0  = [ s l ( t ) , s 2 ( t ) , . . . , s N ( t ) ] .  (2) 

This state of equation (2) is the entity that supports the information that is processed by 
the network. It can be compared to a binary word in an electronic computer. The state S(t) 
can experience very different time evolutions, that are controlled by the synaptic couplings 
wij. Depending on the wij's, one can observe with this model, either steady evolutions, or 
periodic evolutions with possibly very long recurrence times in large networks. 

Hopfield gives conditions on the wij's to obtain the two following important properties: 
i) the evolutions of S(t) will always be convergent, toward stable steady states; 
ii) these stable steady states of the evolutions can be imposed (as fixed points or point 

attractors of the dynamics). 
The prescription stipulates that the imposition of M stable steady states S p, p = 1 to M, is 
obtained by setting the synaptic couplings wij according to: 

M 

wij -- ~ ( 2 S f -  1 ) ( 2 S f -  1), and w// -- 0. (3) 
p=l 

There are of course limitations relating the number M of imposed steady states, to the 
number N of neurons in the network. But I will not go, here, into the discussion of such 
issues. Rather, I want to emphasize the general significance of the Hopfield neural network 
for neurobiological information processing. 

The Hopfield model provides a framework to represent and interpret memory processes 
in the nervous system. Its content can be abstracted as follows. Neural networks are 
nonlinear dynamic systems, whose states of activity are capable of complex time evolutions. 
These evolutions critically depend upon the strengths of the synaptic couplings, that are 
plastic or adaptive elements. Learning consists in adjusting the synaptic couplings, in order 
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to implement attractor dynamics, toward imposed stable steady states of activity of the 
network. These stable steady states represent the patterns of information that the network 
has memorized, and they are endowed with controlled basins of attraction that determine 
the conditions of stability and retrieval of the learned patterns. 

I wish to point out that the emergent properties for information processing of  the 
Hopfield network, come as a consequence of a few basic elements, that can be considered 
as some of the most essential characteristics of biological neurons. Namely, the model 
incorporates neurons that have a threshold nonlinearity, these neurons are massively 
connected into a network, through the medium of plastic synapses. This basis confers to the 
model a real and profound biological significance (in addition to the technological 
applications that it entails). These fundamental characteristics of biological neurons are 
included in a very schematic way in the original Hopfield model, where the focus is placed 
on the collective properties at the network level, with an interpretation in information 
processing terms. But an interesting fact, that strengthens the status of the Hopfield model 
as an important paradigm, is that the general scheme that it establishes appears to be robust, 
and is preserved when more and more biological details are added to describe individual 
neurons (see for instance Amit, 1990, 1991). 

3. D Y N A M I C  V A R I A B I L I T Y  I N  N E U R A L  N E T W O R K S  

I examine in this section a neural network model, slightly different from Hopfield's, 
although of the same inspiration. This model stands for a minimal framework that allows 
the observation of the complete range of dynamic regimes that are accessible for neural 
networks. Namely, these observed regimes can be steady, oscillatory (periodic or 
quasiperiodic), chaotic (from low-dimensional to high-dimensional chaos). 

The neural network model incorporates Nneurons, with output activities Si(t ) which are 
allowed to continuously vary in the finite interval [0, 1]. The variable S i is interpretable as 
the mean firing rate of  neuron i. 

These Nneurons are fully connected through N 2 synaptic coefficients w~/. At time t, the 
membrane potential of, neuron i is again defined by equation (1). In the context of a 
discrete-time dynamics, the neuron activities evolve according to: 

S i (/+At) = f [ V  i (t)]. (4) 

The function f(.) describes the nonlinear input-output transfer of the neurons. As often 
done in neural modeling, it is given here a sigmoidal shape, with threshold 0 and slope 13, 
of the form: 

1 (S) 
f (V~  -- 1 + exp [ -  13 (V i -  0)]" 

In the resulting neural network, the activities Si(t ) can experience very different time 
evolutions or regimes, that depend upon the adjustable parameters of the model. For the 
networks studied here I took 0 = 0 and 13 = 5, these values being by no means critical to 
obtain the reported properties. The remaining parameters are the synaptic efficacies wij , that 
were used as control parameters to change the dynamic regime of the network. The unit of 
time is such that At = 1. 

As an illustration, figure 1 represents three typical time evolutions of the activities in 
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Fig. 1. Three time evolutions of a neuron activity Si( 0 in a neural network with three different sets 
of synaptic couplings: a) convergence to a steady state, b) oscillatory pattern, c) chaotic 
evolution. 

small networks incorporating no more than 15 neurons. With three different sets of wii , we 
observe in figure la an evolution that converges to a steady state, in figure lb an evolution 
with an oscillatory pattern, and in figure lc a chaotic evolution. 

The unsteady evolutions, as in figure lc, can be shown to exhibit classical characteristics 
that are attached to deterministic chaos (Berg6, 1986). For instance, it is possible to 
represent the attractor reached by a neuron activity, in the plane spanned by the quantities 
{Si(t), Si(t+A t)}. Figure 2 depicts two such phase-plane attractors. The attractor of figure 
2a, which is a one-dimensional close curve, is associated to a quasiperiodic regime. In 
contrast, the attractor of figure 2b, which presents a thinly folded structure, is an example 
of a fractal attractor, with dimension between 1 and 2. It characterizes a chaotic regime. 

The presence of chaos can be observed in small neural networks. Figure 3 depicts two 
phase-plane attractors described by two different neuron outputs Si(t), in a five-neuron 
network. These two attractors, although different, bear some similarity. In fact, they 
represent two projections, in two different planes, of  the complete attractor involving all the 
variables Si(t), with i = 1 to 5. The existence of such complex attractors reveals subtle 
correlations that can occur between two neuron activities in a network in the presence of 
specific sets of synaptic couplings. 

For these neural networks, it is also possible to characterize the dynamics of the neuron 
activities in a phase plane spanned by two phase coordinates S i (t), Sj (t), provided by two 
arbitrary outputs evaluated at the same time t. Figure 4 gives two examples of such 
attractors. The qualitative structure of attractors in {S i (t), S i (t+A t)} or in {S i (t), Sj (t)} are 
quite similar. Each of them can reveal chaotic dynamics, and can serve to extract fractal 
dimensions for the attractor of the dynamics. The attractor of figure 4a with its fine 
structure is characteristic of low-dimensional chaos. The attractor of figure 4b, that densely 
fills finite regions of the phase plane, is characteristic of high-dimensional chaos. 
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Fig. 2. Attractors in phase plane {S(t), S~(t+l)} for a neuron activity in two neural networks: a) 
quasiperiodic regime, b) low-dimensional chaos. 
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Fig. 3. Attractors in phase plane {St(0, S~(t+l)} for two neuron activities in a 5-neuron network in a 
chaotic regime: a) for the neuron i=l, b) for the neighbouring neuron i=2. 
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Fig. 4. Attractors in phase plane {Si(O, Sj(t)} for neuron activities in two neural networks: a) in the 
5-neuron network of figure 3 with here i=1 and j=2 (the same two neurons are observed) and 
characterizing a low-dimensional chaotic regime, b) in a 15-neuron network and characterizing 
a high-dimensional chaotic regime. 
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4. C O N T R O L  O F  T H E  D Y N A M I C  R E G I M E  T H R O U G H  L E A R N I N G  

4.1.  S t e a d y  v e r s u s  u n s t e a d y  e v o l u t i o n s  

When no specific rules are implemented to assign values to the wii , or in other words, 
when the wii's are random, I observed that evolutions converging to a steady state (as in 
figure la) become less probable as the network size N increases. At the same time, unsteady 
evolutions (as in figure lb-c) become more probable. This point is illustrated in figure 5. 
First, we consider networks whose synaptic efficacies wii are randomly drawn with uniform 
probability out of the interval [-1,  1]. Figure 5a shows, for these unconstrained networks, 
the probability that all the neurons of a network reach a steady state, as a function of the 
size N of the network. The values of the probability were evaluated as frequencies of 
occurrence over many networks of size N. We observe in figure 5a that, with no synaptic 
constraints, this probability decreases when the networks become more complex, that is 
when their number of neurons N increases. Figure 5b represents this same probability, but 
for networks whose synaptic efficacies are constrained by the Dale principle. This principle 
(Eccles, 1977), originating in biological observations, stipulates that, in general, the 
synapses emitted by a given neuron are all of the same type (either excitatory, or 
inhibitory). The Dale principle is not of thorough validity in biological neural networks. 
Nevertheless, it can be envisaged as a possible constraint whose impact is worth examining, 
when testing schemes of organization for the synapses in a neural network model. So, for 
the networks of  figure 5b, the synapses wii were randomly drawn with uniform probability 
either in [0, 1] or in [-1,  0], according to a toss-up choice fixed for each emitting neuron 
j. The curve of figure 5b shows that the probability of reaching a steady state can be 
significantly increased when an appropriate structure is conferred to the network through 
synaptic modification. This possibility forms the basis of the information storing ability of  
the Hopfield neural network, where conditions are given on the synapses in order to ensure 
convergence to steady states representing memories. However, the probability curve of 
figure 5a shows that, in general, convergence to steady states is far from being a guaranteed 
property in neural networks, especially when their size become large. Explicit mechanisms 
have to apply for organizing the synaptic connections, if steady states are required, to 
implement memory processes for instance. 

4.2.  D e s t a b i l i z i n g  s t e a d y  e v o l u t i o n s  

In the opposite direction, some authors have proposed that unsteady or chaotic dynamics 
as in figure lc, can be a desirable feature to support certain cognitive processes (Skarda, 
1987). In a similar way as before, it is possible to devise synaptic plasticity mechanisms 
that will destabilize a network away of any steady state of activity, or even provoke the 
onset of a chaotic regime with controlled dimensionality (McGuire, 1991). 

For instance, to destabilize a given neuron k it is possible to introduce a cost function 
Ek(t ) that will tend to assume high values whenever activity Sk(t ) sits in a steady state. At 
time t, the synaptic efficacies wij are then adjusted in order to minimize Ek(t ). The 
adjustment of  the wii's can be performed through a gradient descent of the form: 

OEk(t) 
wlj( t+at ) = wij(t ) - ot (6) 

Owij 

In general, Ek(t ) will be a state function of the neural network, whose dependence upon the 
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Pig. 5. Probability of convergence to a steady state in neural networks with a) unconstrained synapses, 
b) synapses constrained by the Dale principle. 

wij's and t will be brought in as a consequence of the unique dependence upon the state 
Sk(t ). The performance of the gradient descent of equation (6) thus requires, in parallel to 
the dynamics of  the neural network, to maintain an additional set of dynamic variablesp~/(t) 
defined as (Williams, 1989): 

m OSm(t) (7) 
Pit ( t ) - -  o ~  ~ 

The introduction of the p~ 's  comes about as a consequence of the chain rule while 
differentiating to compute the gradient. In the context of this model, one finds that their 
time evolution is governed by: 

N 

m t -'- [6 miSt(t-At) ~.~ wnmpi j (t-At)] (8) Pit ( )  f t [Vm(t -At )  ] x * n , 
n=1 

where 6m/is the Kronecker delta, and p~/(0) = 0, V/,j,n~ 
The derivative f '  [V/(t-At)] for the sigrnoid of equation (5) can be written as: 

f [Vi ( t_At )]  = [~ f (V i ( t_At ) ) [ l_ f (V i ( t_At ) )  ] -_ f~Si(t)[X_Si(t)]" (9) 

A more general cost function can be made up by linear superposition of terms similar 
to Ek(t) and defined for several neurons k, and then summed up over a given time window 
]t-T, t]. In such conditions, the resulting adjustments of the wit's as given by equation (6) 
just add up linearly. 

A possible expression for the cost function Ek(t) is: 

Ek(t) = [Sk(t)-O.Sl[Sk(t-aO-o.5]. (ao)  



162 

Minimizing the cost Ek(t ) of equation (10) tends to destroy short-term correlations in 
Sk(t ), preventing this signal to settle in a constant value. The corresponding synaptic 
adjustment law, as expressed by equation (6), follows here with: 

OEk(t) -_ [Sk(t)-O.5lp:j( t -At  ) + pi~(t)[Sk(t-At)-0.5].  (11) 
Owij 

Application of  the synaptic plasticity law (11) for a few time steps, was very often 
found sufficient to drive the neural network away of a steady state forth into an unsteady 
regime persisting permanently after the synaptic plasticity was stopped. Other simple cost 
functions were found to be efficient in destabilizing steady activities, for instance: 

Ek(t ) = �89 2 + �89 ) -  1] z. (12) 

The construction of sets of synaptic couplings that implement specific dynamic 
behaviours of the neuron activities in a network, stands as a fundamental operation in neural 
modeling, and bears biological significance. The minimization of a cost function in order 
to realize that construction, although practically efficient, may appear more difficult to 
justify on biological grounds. However, at the least, this methodology can be interpreted as 
a constructive proof that demonstrates the existence of a set of synaptic couplings that do 
realize a specific dynamic evolution of the activities. The possibility of the existence of 
such sets of synapses is in itself an important finding. The means of elaboration of these 
sets in actual biological neural networks can be addressed as a separate issue. It may happen 
that synaptic values that are now theoretically found through a minimization process (that 
appears global and finalist), can identically be reached through another, strictly local, 
process. Classical mechanics provides an example of such a situation, where the motion of 
a mobile can either be deduced from the least-action principle (finalist and global 
minimization), or from Newton's laws (strictly local). 

4.3. S t ruc tu re  in chaos  

In a chaotic regime, due to the presence of sensitive dependence on initial conditions, 
the neuron activities Si(t ) as such, do not appear as good candidates to support pieces of 
information. Indeed, the precise macroscopic values of these activities, critically depend 
upon uncontrollable microscopic fluctuations. In contrast, the chaotic attractors of figures 
2 to 4 exhibit remarkable structural stability. The question arises whether they could 
constitute a substrate for mental images. Chaotic time evolutions may embed some internal 
coherence. For instance, let us consider the phase plane attractor of figure 3a. This attractor 
is chaotic, and it is easy to check that two trajectories, initiated very close to one another 
on the attractor, exponentially diverge to become completely different after a short time. 
However, for an arbitrary trajectory of Si(t ) on the attractor, one can compute the time 
autocorrelation function C//('~) (normalized and centered), or correlation coefficient defined 
as the normalized covariance: 

(IS i(t) - ~Si)] [S i ( t-x)  - (SI)]) 
c~(~)  -- (13) 

( [s i (0-  (si)] 2 > 

The notation (x(t)) denotes the time average of signal x(t). This autocorrelation 
function Cu(x ) is plotted in figure 6. The first maximum peak after x = 0 occurs at x M = 
23, where the normalized autocorrelation is higher than 0.5. Moreover, the time decay of 
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Fig. 6. Time autocorrelation function of an evolution S,(t) on the attractor of figure 3a. 

100 

C//('~) is slow. I have verified that the long-time tail of the autocorrelation Ca(x), when 
delays above x = 100 are also considered, exhibits exponential decay with a time constant 
Xdeeay around 85. These elements point to strong correlations that are preserved in signal 
S i ( t  ) over long time scales, and this property holds for any trajectory of S i (t) on the 
attractor of  figure 3a. A time delay of x g = 23, or a correlation time of Xdecay = 85, 
represent long intervals compared to the typical evolution time At = 1 of single neurons. In 
this small network with N = 5 neurons, these two intervals are even large times compared 
to the travelling time across the whole network, which is of the order of 5. In general, 
coherent oscillations will display periods of the order of a few At in unstructured networks, 
or of  the order the travelling time across the network when a loop structure prevails among 
all the neurons. Beyond these limits, in some cases, specific sets of synaptic couplings exist, 
that allow to sustain coherent reverberation of activity over longer times, as for the case of  
figure 6. 

5. M O T O R  C O N T R O L  B Y  T H E  C E R E B E L L A R  C O R T E X  

I shall present in this section a neural network model of the cerebellar cortex that is able 
to learn and retrieve trajectories, or time sequences of activity patterns in a neural network. 

The cerebellar cortex plays a role in the control of motor activity and coordination of 
movements. Its anatomy reveals the presence of five types of neurons, organized in a very 
regular layered structure, depicted in figure 7. 

The cerebellar cortex receives two external input pathways, formed by the mossy fibres, 
and by the climbing fibres. In broad terms, the mossy fibres are known to carry information 
coming from the motor cortex and concerning the intention of the movement, as well as 
sensory information related to the physical environment of the movement. The climbing 
fibres carry an error signal controlling learning and adjustment of performance. In contrast, 
there is a single output pathway, formed by the axons of the Purkinje cells, that emit motor 
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Fig. 7. Diagrammatic representation of the anatomy of the cerebellar cortex. 

commands for motoneurons via cerebellar nuclei. 
A classical theory (Marr, 1969; Albus, 1971) proposes a perception model of the 

cerebellar cortex that performs a one-to-one association of static patterns (one input pattern 
on the mossy fibres is associated to one output pattern on the Purkinje cells axons). There 
is a possibility to expand this scheme, in order to endow the model with dynamic 
association performances. This can be achieved by taking advantage of the feedback loop 
formed in the layered architecture by the Golgi cells (Chapeau-Blondeau, 1991). This 
feedback allows an autonomous dynamics of the system, which becomes able to generate, 
in response to a static input pattern, not just a static output pattern (as common layered 
neural networks), but a time sequence of different output patterns. This output sequence is 
in fact labelled by the current static input, and can be retrieved upon its presentation. 

More specifically, a static input pattern U is applied on the mossy fibres. As a response, 
owing to the feedback loop via the Golgi cells, a sequence of patterns X(t) evolving at each 
time step, is produced on the granule cells outputs. I f  it is admitted (based on experimental 
evidence) that there is no significant plasticity for the synapses of the Golgi-granule cells 
circuit, the sequence of X(t) cannot be externally specified. It depends upon synaptic 
efficacies that cannot be controlled and that are assumed here to be fixed. The role of 
assigning specific values to the patterns of the sequence is devoted to the Purkinje cells 
layer. This layer acts as a perception, which associates to any fixed unspecified pattern X, 
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Fig. 8. Functional diagram of the model for the cerebellar cortex. 

x(t) 

an output pattern Y that can be exactly specified through a classical perception learning 
supervised by the error signals carried by the climbing fibres. This specification aims at 
generating the motor commands that are appropriate to implement a given movement in a 
given environment (as coded by input U). 

It is known that a one-layer perception is not able to realize any arbitrary set of pair 
associations. A limitation arises from the necessity of linear separability of the set. 
However, if a given set is not linearly separable, it is always possible, by increasing the 
dimensionality of the representation, to make it linearly separable. This possibility provides 
an interpretation to a unique feature of the cerebellar cortex, mainly the presence of the very 
prominent number of granule cells, involving a divergence of the order of 1 to 10,000 of 
the fibres at this level. In the framework of the model, the role of the huge number of 
granule cells is to ensure correct association in the perception learning, by increasing the 
dimensionality of the representation of the intermediate patterns X. Furthermore, I have 
shown that the additional degrees of freedom provided by the numerous granule cells, also 
allow to incorporate biological constraints on the signs of the synapses, without losing the 
possibility of perception associations (Chapeau-Blondeau, 1991). 

The global structure of the neural network model that results for the cerebellar cortex 
is depicted in figure 8. Upon presentation of a static input pattern U that codes both the 
intention and the context of the movement, the neural network generates the sequence of 
output patterns Y(t) that has been learned as appropriate for the current motor control task. 

6. C O N C L U S I O N  

In this paper, I have demonstrated the dynamic variability that can be achieved with 
neural networks, considered as nonlinear adaptive dynamic systems. Steady, oscillatory and 
chaotic regimes can be easily observed, and critically depend upon synaptic couplings. 
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Under certain conditions, when no specific synaptic constraints operate, unsteady evolutions 
tend to prevail. The different accessible dynamic regimes can form the substrate of  various 
cognitive functions. Stable steady states are frequently relied upon to implement memory 
processes. Oscillatory evolutions, as in figure lb, can play a role in the control of  rhythmic 
activities. I have shown (Chapeau-Blondeau, 1992a) that the period of oscillation in an 
oscillatory regime can be continuously varied through the alteration of a synaptic efficacy 
or of an external neuron input, thus offering internally or externally regulated neural 
pacemakers. The control of transient trajectories from specified starting points in a neural 
network can also contribute to information processing for motor tasks. This ability has been 
illustrated here in a neural network model of the cerebellar cortex. 

Concerning chaotic regimes in neural systems, it seems that their existence is now 
established, both from experimental evidence (Babloyantz, 1985, 1986; Mpitsos, 1988; Cerf, 
1990; Doyon, 1992) and theoretical arguments (Harth, 1983; Guevara, 1983; 
Chapeau-Blondeau, 1992b, 1993). However, they role for information processing in the 
nervous system is far from being fully understood, although some propositions are already 
debated (Skarda, 1987; Yao, 1990; Hansel, 1992). A challenge ahead is, beyond the analysis 
of  chaotic dynamics, to uncover how to control and exploit them (Hayes, 1993; Shinbrot, 
1993). 
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