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Abstract
The phase in quantum states is an essential information carrier for quantum telecommunications, signal processing, and
computation. Quantum phase estimation is therefore a fundamental operation to extract and control useful information at the
quantum level. Here, we analyze various approaches to quantum phase estimation, when a phase parameter characterizing
a quantum process gets imprinted in a relative phase attached to a quantum state serving as a probe signal. The estimation
approaches are based on standard concepts of signal processing (Fourier transform, maximum likelihood), yet operated
in the quantum realm. We also exploit the Fisher information, both in its classical and its quantum forms, in order to
assess the performance of each approach to quantum phase estimation. We demonstrate a possibility of enhanced estimation
performance, inaccessible classically, which is obtained via optimized quantum entanglement. Beyond their significance to
quantum phase estimation, the results illustrate how standard concepts of signal processing can contribute to the ongoing
developments in quantum information and quantum technologies.

Keywords Quantum signal · Quantum phase · Quantum estimation · Quantum Fourier transform · Maximum likelihood ·
Fisher information

1 Introduction

Quantum methodologies and quantum technologies hold
large potentialities for information processing, telecommu-
nications, and computation [1]. Provably secure telecommu-
nications, high-precision metrology, high-sensitivity sens-
ing, quantum computers, and quantum networking represent
diverse application areas, which are diversely advanced and
currently under intense development, and where quantum
approaches can offer decisive contributions for enhanced
performance [2–8]. In this context, quantum states consti-
tute information-carrying signals for quantum telecommu-
nications, information processing, and computation. Quan-
tum states are normalized state vectors defined on a complex
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Hilbert space, and they remain with unit norm throughout
any valid quantum processing. Beyond its unit norm, the
phase associated with a quantum state stands as an essen-
tial carrier for the information contained in a quantum state.
The phase or relative phases in quantum states condition
their properties of coherence, interference, and interaction,
and determine their ability for information processing and
computation [9, 10]. Quantum states when interacting with
quantum processes or devices often experience an alteration
in their phase; and such phase modification on quantum
states in turn can serve as a probe to characterize or monitor
quantum processes or devices [3, 4]. Quantum phase estima-
tion from quantum states is therefore a fundamental opera-
tion to extract and control useful information at the quantum
level. For instance, quantum phase estimation is essential
to the functioning of quantum clocks, or for establishing
high-precision frequency standards, or to high-sensitivity
magnetometry [3, 4, 11, 12]. Quantum phase estimation
is also an essential step of the Shor algorithm for factor-
ing integers in polynomial complexity, with a significant
bearing for cryptography and secure telecommunications
[10, 13].

In this paper, we will analyze various approaches to
quantum phase estimation, in the generic situation where a
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phase parameter characterizing a quantum process or device
gets imprinted in a relative phase attached to a quantum
state serving as a probe signal. These estimation approaches
will be based on standard concepts of signal processing—
Fourier transform, maximum likelihood—yet operated in
the quantum realm. We will also exploit the Fisher
information, both in its classical and its quantum forms, in
order to assess the performance of each approach examined
for quantum phase estimation. The results carry relevance
to quantum phase estimation; they also illustrate how
standard concepts of signal processing apply to contribute
to the ongoing developments in quantum information and
quantum technologies, and in this way substantiate the
capabilities of quantum signal processing.

2 Qubit phase

For the sake of definiteness, we will consider phase
estimation from qubit states, although other quantum states
can be handled in a similar way. The qubit or quantum
bit [9] is a fundamental system of quantum information,
which can be described by a state vector |ψ〉 belonging to
a two-dimensional complex Hilbert space H2, and endowed
with a unit squared norm 〈ψ |ψ〉 = 1. When the space
H2 is referred to the natural orthonormal basis {|0〉, |1〉},
the quantum state of a qubit can be any normalized
superposition |ψ〉 = α0|0〉 + α1|1〉 ∈ H2 with two complex
coordinates satisfying |α0|2 + |α1|2 = 〈ψ |ψ〉 = 1. A qubit
for instance is a good model for a photon with its two states
of polarization, or an electron with its two states of spin.

To get involved in a task of phase estimation, such a
qubit state |ψ〉 is applied as an excitation signal to probe
a quantum process or device represented by the unitary
operator (any valid evolution of a closed quantum system is
modeled by a unitary operator [9]):

Uξ = |0〉〈0| + ei2πξ |1〉〈1| =
[

1 0
0 ei2πξ

]
, (1)

characterized by a phase parameter ξ ∈ [0, 1[ . The general
state |ψ〉 = α0|0〉 + α1|1〉 of a qubit is affected by the
process Uξ of Eq. 1 according to:

Uξ |ψ〉 = α0|0〉 + ei2πξα1|1〉 , (2)

inducing a phase shift of 2πξ ∈ [0, 2π [ between the
two components of the qubit state. This represents for
instance the fundamental operation taking place in an
optical interferometer that, for a photon with its two states
of polarization, would leave invariant a reference state |0〉,
and would add a phase shift determined by ξ ∈ [0, 1[ on
the other orthogonal state |1〉, as depicted in Fig. 1. Such
an interferometer is a fundamental device of physics and
metrology, which for instance recently served to the first

Fig. 1 Mach-Zehnder interferometer, featuring two polarizing beam
splitters and two mirrors, to realize between the input (in) and output
(out), a photonic implementation of the qubit transformation Uξ of
Eq. 1 with a phase shift determined by the parameter ξ ∈ [0, 1[ which
is to be estimated

observation of gravitational waves [14], and we are thus
concerned here with interferometry at the ultimate level of
individual photons.

Any qubit unitary operator U has two complex unit-
modulus eigenvalues of the form eiϕ1 and eiϕ2 , associated
with two orthogonal eigenstates. In this eigenbasis, U has
the diagonal matrix form U = diag[eiϕ1 , eiϕ2], which can be
factored as U = eiϕ1diag[1, ei(ϕ2−ϕ1)]. A global phase factor
like eiϕ1 affecting a quantum state |ψ〉 has no physically
detectable effect, |ψ〉 and eiϕ1 |ψ〉 being two physically
equivalent states [9]. So, U is equivalent to the unitary
evolution by diag[1, ei(ϕ2−ϕ1)]. Consequently, by referring
it to its eigenbasis, any qubit unitary operator can be put
under the generic matrix form diag

[
1, ei2πξ

]
of Eq. 1 with

ϕ2 − ϕ1 = 2πξ . In the photonic implementation of Fig. 1,
the eigenbasis is selected by rotating the beam splitters.

The phase shift 2πξ ∈ [0, 2π [ imprinted on the
qubit state by Uξ in Eq. 2 is determined by the phase
parameter ξ ∈ [0, 1[ for which we use the term “phase”
for convenience. For the interferometer of Fig. 1, such
phase reflects a difference of optical paths in the device; in
quantum magnetometry, the phase relates to the magnetic
field enclosed by the device. The task is then to efficiently
estimate the phase ξ ∈ [0, 1[ characterizing the quantum
process Uξ of Eq. 1. The process Uξ is not directly
measurable, but only through the alteration it produces on
quantum states like |ψ〉 in Eq. 2. Qubit states will therefore
be used to constitute a probe or excitation signal applied
to the process Uξ of Eq. 1. The phase alteration according
to Eq. 2 resulting on such a quantum state will be used
to estimate the phase parameter ξ . From the viewpoint
of signals and systems theory, this can be seen as a task
of parameter estimation performed on a probe signal for
system identification. For probing the process Uξ of Eq. 1, it
can be profitable to assemble N qubits to form a composite
signal of N qubits whose joint quantum state belongs to
the tensor-product space H⊗N

2 with dimension 2N referred
to the orthonormal basis {|0 · · · 0〉, |0 · · · 1〉, · · · , |1 · · · 1〉}
where each of the 2N basis vectors |j〉 is identified by a
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binary word of N bits. Common notations in use [9] for
tensor-product quantum states are |·〉 · · · |·〉 ≡ |·〉 ⊗ · · · ⊗
|·〉 ≡ |· · ·〉.

For estimating the phase ξ from a multiple-qubit input
probe signal, there exists an efficient approach that exploits
the quantum Fourier transform. We will now briefly review
the basic properties of the quantum Fourier transform that
will serve for quantum phase estimation.

3 Quantum Fourier transform

The quantum Fourier transform is conveniently defined as
a change of orthonormal basis (instead of a change or
coordinates which may be more common in classical signal
processing) for the representation of quantum states. A
quantum system with an L-dimensional complex Hilbert
space HL is referred to the natural orthonormal basis formed
by the set of L state vectors |j〉 ∈ {|0〉, |1〉, . . . |L − 1〉}. The
quantum Fourier transform is then defined [9] as the unitary
change of basis:

|j〉 �−→ |j̃ 〉 = 1√
L

L−1∑
k=0

exp
(
i2π

jk

L

)
|k〉 , for j = 0, . . . L− 1 ,

(3)

which delivers the set of L vectors {|j̃ 〉} =
{|̃0〉, |̃1〉, . . . |˜L − 1〉} forming another orthonormal
(Fourier) basis of HL. In operator notation, the two bases
are related through |j̃ 〉 = UF|j〉 via the unitary operator UF

represented by the L × L symmetric matrix with generic
term

[
exp(i2πjk/L)

]
/
√

L in the natural basis.
The inverse Fourier transform is defined by the

reverse change of basis inverting the transformation of
Eq. 3 and transforming the Fourier basis {|j̃ 〉} =
{|̃0〉, |̃1〉, . . . |˜L − 1〉} back into the original natural basis
{|j〉} = {|0〉, |1〉, . . . |L − 1〉}, and reading:

|j̃ 〉 �−→ |j〉 = 1√
L

L−1∑
k=0

exp
(
−i2π

jk

L

)
|̃k〉 , for j = 0, . . . L−1 ,

(4)

or equivalently |j〉 = U†
F|j̃ 〉 since by unitarity U−1

F = U†
F

the conjugate transpose.
The quantum Fourier transform of Eq. 3 and its inverse of

Eq. 4 are related to the original orthonormal basis denoted
{|0〉, |1〉, . . . |L − 1〉} here. Yet, in principle, a quantum
Fourier transform can be defined equivalently from any
orthonormal basis of a working Hilbert space.

Equation 3 can also be written as |j̃ 〉 =
L−1/2 ∑L−1

k=0 exp(i2πξj k)|k〉, with ξj = j/L ∈ [0, 1[ and
the phase 2πξj ∈ [0, 2π [ . This shows that the transformed
state |j̃ 〉 is a quantum state constructed as a superposition
of all the basis states |k〉 of the natural basis, each one

weighted by a complex phase factor exp(i2πξj k) involving
the k-th multiple of the fixed phase 2πξj . This provides the
ground for the application of the quantum Fourier transform
to quantum phase estimation. By probing a quantum pro-
cess characterized by a dephasing action via a phase like ξj ,
so as to excite all the multiples ξj k gathered in a response
signal like |j̃ 〉, one will have the faculty, by inverse Fourier
transform on the probing state |j̃ 〉 according to Eq. 4, of
obtaining the index j that identifies the unknown phase ξj .
This Fourier-based approach to quantum phase estimation
is now addressed in more detail.

4 Fourier transform quantum phase
estimation

Application of the quantum Fourier transform to quantum
phase estimation is commonly originated in the work of
Kitaev [15], and has been further analyzed in [9, 16,
17]. Extensions have been proposed to obtain enhanced
estimation efficiency [18–21], especially by exploiting the
specifically quantum property of entanglement.

Here, we consider the Fourier-based method in its variant
presented in [22] for phase estimation on a qubit process
as in Eq. 1, and extended in [23] to phase estimation on
an arbitrary quantum process. As original complements
to [22, 23], here we will assess the performance of the
Fourier-based estimation of [22, 23] by means of the Fisher
information establishing the overall maximal efficiency;
and we will also compare it with a direct maximum
likelihood approach for quantum phase estimation; with
the presentation of the results organized in a consistent
(quantum) signal-processing perspective.

For efficient estimation, we consider the (N − 1)-qubit
excitation signal defined by the joint state, denoted |k 〉, for
integer k = 0 to N − 1, formed with the k first qubits
placed in state |1〉 and the remaining qubits placed in state
|0〉, according to:

|k 〉 =
N−1︷ ︸︸ ︷

|0〉 · · · |0〉 |1〉 · · · |1〉︸ ︷︷ ︸
k

= ∣∣
N−1︷ ︸︸ ︷

0 · · · 0 1 · · · 1︸ ︷︷ ︸
k

〉
. (5)

The set of N states
{|k 〉}, for k = 0 to N − 1, forms an

orthonormal basis for the N-dimensional subspace H′
N of

the 2N−1-dimensional Hilbert space H⊗(N−1)
2 of the N − 1

qubits. All the operations that are going to take place will
maintain the quantum states in the subspace H′

N , which is
established in this way as the working Hilbert space.

The N − 1 qubits in state |k 〉 ∈ H′
N can act as an

excitation signal to the process Uξ of Eq. 1, as depicted
in Fig. 2. Each of the N − 1 input qubits is individually
physically materialized, and it can therefore be applied
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Fig. 2 The excitation signal |k 〉 of Eq. 5 with its N − 1 qubits
sequentially applied at the input of the quantum gate materializing the
process Uξ of Eq. 1, induces the output response signal exp(i2πkξ)|k 〉
of Eq. 6

sequentially, one after the other, to the quantum gate
materializing the process Uξ of Eq. 1. For example, this
would consist in sending N − 1 photons, one by one, across
the interferometer of Fig. 1.

According to the operation of the process Uξ defined
by Eq. 2, the two basis states of the qubit transform as
|0〉 �→ Uξ |0〉 = |0〉 and |1〉 �→ Uξ |1〉 = exp(i2πξ)|1〉.
Consequently, the (N − 1)-qubit state |k 〉 of Eq. 5 gets
transformed as:

|k 〉 �−→ U⊗(N−1)
ξ |k 〉 = exp(i2πkξ)|k 〉 . (6)

A specially useful possibility is that the N − 1 input qubits
can be prepared in an arbitrary superposition of the N basis
states

{|k 〉} under the form:

|ψin〉 =
N−1∑
k=0

ak|k 〉 , (7)

with the complex coefficients ak ∈ C normalized by∑N−1
k=0 |ak|2 = 1. This specific form of the excitation

signal |ψin〉 in Eq. 7 was introduced in [22]. It bears some
similarities with the excitation signal used in [19], but
it also differs in some places. Especially, compared with
that of [19], the excitation of Eq. 7 involves a different
superposition, with a smaller number of basis states, and
with a form in Eq. 7 that made it possible to analyze
the impact of quantum noise on the estimation efficiency
as accomplished in [22, 23]. Moreover, for the estimation
based on the excitation signal of Eq. 7, an assessment of the
performance will be worked out in Sections 5–7, which is
new here and not contained in [22, 23].

The basis states |k 〉 of Eq. 5 are separable (factorizable)
states of N − 1 qubits. However, for arbitrary coefficients
ak , the superposition |ψin〉 of Eq. 7 generally forms an
entangled state of the N−1 qubits, not factorizable as tensor
products of one-qubit states. And we shall see later on that
exploiting this entanglement will be an important feature for
enhanced performance in estimation. The input excitation
signal |ψin〉 ∈ H′

N in Eq. 7, by linearity applying on Eq. 6,
induces in the setting of Fig. 2 the output response:

|ψ̃ξ 〉 = U⊗(N−1)
ξ |ψin〉 =

N−1∑
k=0

ak exp

(
i2π

jξ k

N

)
|k 〉 (8)

Fig. 3 An excitation signal |ψin〉 formed by N − 1 input qubits
prepared in the orthonormal basis

{|k 〉} of H′
N as the superposed

state of Eq. 7 is applied to the quantum gate materializing the process
Uξ of Eq. 1, which responds by producing the ξ -dependent probing
signal |ψ̃ξ 〉 of Eq. 8, which is inverse-Fourier-transformed to deliver

the signal |ψξ 〉 = U†
F|ψ̃ξ 〉 of Eq. 9, which is finally measured in the

basis
{|k 〉}, in order to estimate the unknown phase ξ

with jξ = Nξ . With the state |ψ̃ξ 〉 of Eq. 8, constituting
the ξ -dependent response or probing signal, we are coming
close to the superposed state envisaged in the last paragraph
of Section 3 above.

An inverse Fourier transform referred to the orthonormal
basis

{|k 〉} of the working Hilbert space H′
N is performed

on the probing signal |ψ̃ξ 〉, according to Eq. 4, to obtain:

U†
F|ψ̃ξ 〉 = |ψξ 〉 =

N−1∑
j=0

a′
j |j 〉 , (9)

with the coefficients

a′
j = 1√

N

N−1∑
k=0

ak exp

(
i2π

(jξ − j)k

N

)
, (10)

for j = 0 to N − 1. The ξ -dependent state |ψξ 〉 ∈ H′
N of

Eq. 9 is then measured in the orthonormal basis
{|k 〉} of

H′
N in order to estimate ξ .
The whole procedure, from excitation to measure-

ment, performs the feed-forward signal-processing pipeline
depicted in Fig. 3, where the input signal |ψin〉 of Eq. 7 is
prepared in the basis

{|k 〉} and the output signal |ψξ 〉 of
Eq. 9 is measured in the same basis

{|k 〉}.
It can be noted that measuring the transformed state

|ψξ 〉 = U†
F|ψ̃ξ 〉 in the orthonormal basis

{|k 〉} would be
equivalent to measuring the state |ψ̃ξ 〉 in the transformed
basis

{
UF|k 〉}, except for the post-measurement state.

Also, beyond the standard projective (von Neumann)
quantum measurement in the orthonormal basis

{|k 〉}, one
could envisage a generalized quantum measurement [9],
forming an extension to von Neumann measurements which
amounts to measuring the quantum states in an enlarged
Hilbert space. Such generalized measurements are usually
more complicated to implement practically and to handle
theoretically. They may or may not offer some added
capability for enhanced performance. We will come back
to them later in the sequel, showing significant situations
where they are not profitable to maximize the performance.
We now proceed with the analysis of the Fourier-based
estimation strategy of Fig. 3, preparing and measuring the
states in the basis

{|k 〉}.
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According to quantum theory and the Born rule [9], the
measurement of the quantum state |ψξ 〉 of Eq. 9 in the basis{|k 〉}, generally projects on the basis state |j 〉 and delivers
the integer j with probability Pj = |a′

j |2, for j = 0 to N−1.
In the case of a uniform superposition with all ak =

1/
√

N in Eq. 7, and an unknown phase ξ ∈ [0, 1[ that would
yield jξ = Nξ = j0 precisely an integer j0 ∈ [0, N[,
one would have a′

j = δjj0 and |ψξ 〉 = |j0〉 in Eq. 9. The
measurement of |ψξ 〉 would then deliver j0 exactly, and
therefrom the estimator ξ̂ = j0/N would recover the exact
phase ξ̂ = ξ .

In the generic situation of a phase ξ with jξ = Nξ

non-integer, the same protocol of Fig. 3 is employed. The
probability distribution Pj = |a′

j |2 takes the form of a sharp
peak (of width ∼ 1/N) around an integer j very close to
jξ . The measurement of the state |ψξ 〉 ∈ H′

N of Eq. 9 then
returns such integer j from which the estimator ξ̂ = j/N

allows one to recover the unknown phase ξ with a good
precision at 1/N resolution. For any given (measured) j , the
probability Pj = |a′

j |2 resulting from Eq. 10 when seen as
a function of ξ represents the likelihood, and maximized by
ξ = j/N it establishes ξ̂ = j/N as the maximum likelihood
estimator. It can be noted that since the basis states |k 〉 of
Eq. 5 are separable (factorizable) states, measurement in the
projective basis

{|k 〉} of the state |ψξ 〉 with N−1 qubits can
in practice be carried out by measuring each of the N − 1
qubits separately in the basis {|0〉, |1〉}, and then counting
the number j of qubits measured (projected) in |1〉. This
applies even when the state |ψξ 〉 is entangled, since each of
the N − 1 qubits remains physically accessible individually.

This estimation protocol is characterized by a mean-
squared error:

e2(̂ξ ) =
〈(̂

ξ − ξ
)2

〉
=

N−1∑
j=0

(
j

N
− ξ

)2

Pj . (11)

Detailed derivations for the mean-squared estimation error
are developed in various configurations in [23].

In the case of a uniform superposition ak = 1/
√

N in
Eq. 7, the sum of Eq. 10 can be explicitly carried out to give

a′
j = 1

N

sin
[
π(jξ − j)

]
sin

[
π(jξ − j)/N

] exp

[
iπ

N − 1

N
(jξ − j)

]
.

(12)

From Eq. 12, with the probability Pj = |a′
j |2 placed in

Eq. 11, it can be found [23] that in the regime of small error
at large N , the mean-squared estimation error of Eq. 11
follows as:

e2(̂ξ ) = 1

π2N
sin2(πNξ) . (13)

From Eq. 13 is recovered the vanishing estimation error
expected when Nξ = j0 precisely an integer. Otherwise, in
the generic case, Eq. 13 leads to a mean-squared estimation

error evolving as e2(̃ξ ) ∼ 1/N , known as the shot-noise or
standard scaling of the error [11]. This is the same standard
scaling of the error that is found in the original Kitaev
approach to Fourier-based quantum phase estimation [9, 15,
16]. This is also the same mean-squared estimation error in
1/N that can be expected in classical statistical estimation
from ∼ N evaluations of the process to be estimated.
Quantum physics however allows us to do better, to reach a
performance inaccessible classically.

The input superposition |ψin〉 of Eq. 7 usually represents
an entangled (non-factorizable) quantum state for the N − 1
qubits. Beyond the uniform ak = 1/

√
N in Eq. 7 associated

with the performance of Eq. 13, it is possible to seek to
optimally entangle the N − 1 input qubits in Eq. 7. The
mean-squared estimation error of Eq. 11 can be evaluated
with arbitrary coefficients ak in Eq. 7, which are then
optimized to minimize the error. This is accomplished in
[23] to find the optimal coefficients:

ak =
√

2

N
sin

(
π

k

N

)
, k = 0, 1, · · · N − 1. (14)

These optimal coefficients ak of Eq. 14 can then be placed
in Eq. 10, and the resulting sum can be explicitly evaluated
to give:

a′
j = 1

N
√

2

sin(π/N)

cos
[
2π(jξ − j)/N

] − cos(π/N)

(
1+exp

[
i2π(jξ −j)

])
.

(15)

From Eq. 15, with the probability Pj = |a′
j |2 placed in

Eq. 11, it is found [23] that in the regime of small error at
large N , the optimal coefficients ak of Eq. 14 achieve in
Eq. 11 the minimal mean-squared error:

e2(̂ξ ) = 1

π2
sin2

( π

2N

)
, (16)

instead of Eq. 13 with the uniform ak’s. The estimation error
of Eq. 16 at large N is also e2(̂ξ ) ≈ 1/(4N2), instead of
a 1/N evolution from Eq. 13. With the optimal coefficients
ak of Eq. 14, the probability distribution Pj = |a′

j |2 of
the measurement results from Eq. 15 gets more peaked
around the true value to be estimated, as illustrated in Fig. 4,
whence a smaller mean-squared estimation error.

This is the striking benefit that can be obtained from
an optimally entangled input superposition in |ψin〉 of
Eq. 7. With ∼ N evaluations of the process Uξ to be
estimated, the uniform superposition in |ψin〉 achieves
with Eq. 13 a mean-squared error evolving as 1/N . By
contrast, for |ψin〉 the nonuniform optimal superposition
of Eq. 14 is able to achieve a much reduced mean-
squared estimation error evolving as 1/N2. This is known
as the Heisenberg scaling of the error [8, 11, 24, 25],
and constitutes a specifically quantum improvement, with
no classical equivalent, obtained here by an optimally
entangled excitation signal in Eq. 7. This Heisenberg
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Fig. 4 The probability Pr
(̂
ξ = j/N

) = Pj = |a′
j |2 for the estimate

ξ̂ of the phase in abscissa, as it results: (◦) from Eq. 12 with the non-
optimal uniform superposition ak = 1/

√
N , or (∗) from Eq. 15 with

the optimal input superposition of Eq. 14. The size N = 20. The true
value of the phase to be estimated is ξ = 0.5 + 0.5/N shown by the
vertical dotted line

enhanced scaling of the efficiency in Fourier-based quantum
phase estimation was also obtained in [18, 19] with differing
approaches, but it was not present in the original approach
by Kitaev [9, 15, 16].

As mentioned earlier, the Fourier-based estimation
exploiting the entangled excitation signal of Eq. 7 was first
introduced in [22] and later extended in [23]. We will now
work out, throughout Sections 5 to 7, an evaluation and a
confrontation of the estimation performance, which are new
here and not contained in [22, 23].

5 Classical Fisher information

After inverse Fourier transform of the probing state |ψ̃ξ 〉
of Eq. 8, measurement of the quantum state |ψξ 〉 of Eq. 9
delivers an integer j ∈ [0, N − 1] having the status of
a classical random variable, with a probability distribution
Pj = |a′

j |2, for j = 0 to N − 1, dependent upon the
unknown phase parameter ξ to be estimated. From the value
j delivered by the measurement, it is known from classical
estimation theory [26, 27], that any estimator ξ̂ for ξ is
endowed with a mean-squared error e2(̂ξ ) = 〈(̂ξ − ξ)2〉
which is lower bounded by the Cramér-Rao bound involving
the reciprocal of the classical Fisher information Fc(ξ).
In this respect, higher Fisher information Fc(ξ) generally
entails higher efficiency in estimation. We want now to
evaluate the Fisher information Fc(ξ) for an assessment of
the performance of the Fourier-based approach to quantum
phase estimation described in Section 4.
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Fig. 5 Classical Fisher information Fc(ξ) from Eq. 18, as a function
of the size N conditioning the (N −1)-qubit state used as an excitation
signal with the optimal coefficients ak of Eqs. 14 and 15, for estimation
of the phase ξ , with (◦) for ξ = 0.5+0.5/N , and (+) for ξ = √

2/3 ≈
0.471. The dashed diagonal with slope 2 materializes the evolution as
N2

From the ξ -dependent probability distribution Pj , the
classical Fisher information Fc(ξ) is defined [26, 27] as the
expectation:

Fc(ξ) =
〈[

∂ξ ln(Pj )
]2

〉
=

N−1∑
j=0

1

Pj

(
∂ξPj

)2
, (17)

with ∂ξ · = ∂ · /∂ξ the derivative relative to ξ . Since here
Pj = |a′

j |2, one also has:

Fc(ξ) = 4
N−1∑
j=0

(
∂ξ |a′

j |
)2

. (18)

With the coefficients a′
j given in Eq. 12 or in Eq. 15,

the differentiation ∂ξ |a′
j | can be accomplished analytically.

The final sum over j resulting in Eq. 18 remains
difficult to evaluate analytically, yet its computation can
be readily performed numerically. This allows us to obtain
the Fisher information Fc(ξ) and analyze its behavior,
especially in relation to the Heisenberg-enhanced mean-
squared estimation error of Eq. 16 evolving as 1/N2.
Figure 5 displays the evolution of the Fisher information
Fc(ξ) from Eq. 18, corresponding to an excitation signal
with the optimal coefficients ak of Eqs. 14 and 15.

The evolutions of Fig. 5 show a classical Fisher
information Fc(ξ) in Eq. 18 which presents no significant
dependence on the value of the unknown phase ξ

to be estimated. Such a parameter-independent Fisher
information Fc(ξ) in Fig. 5 is an interesting property, not
always obtained in parameter estimation, expressing here
a uniform performance assessed by Fc(ξ) which stays the
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same for any range of the parameter ξ to be estimated.
Such an invariance of Fc(ξ) with ξ here can be explained
as follows. According to the expression of a′

j from Eq. 15,
for Fc(ξ) in Eq. 18, the sum over j applies to a function(
∂ξ |a′

j |
)2 that depends on j only through 2π(jξ − j)/N =

2π(ξ − j/N), and moreover in a way that makes
(
∂ξ |a′

j |
)2

(like a′
j ) a periodic function in j with period N . At large

N , the step 1/N of the sum in Eq. 18 gets finer and it can
be approximated by an integral over the continuous variable
u = ξ−j/N applying to a periodic function in u of period 1,
that, when integrated over one period with u ∈ [0, 1[ , leaves
no dependence in ξ of the result, since ξ acts as an irrelevant
origin for the integration over one period, delivering in
this way a ξ -independent Fc(ξ). Although this argument
applies at large N , we observe via numerical evaluation of
Fc(ξ) that such quasi-independence with ξ is present also at
small N . This is confirmed by many more (exact numerical)
evaluations of Fc(ξ) at different values of ξ complementing
those shown in Fig. 5.

Another significant property shown in Fig. 5 is that
the Fisher information Fc(ξ) resulting in Eq. 18 increases
as N2 with the size N controlling the dimension of the
excitation signal |ψin〉 of Eq. 7 optimally entangled via
Eqs. 14 and 15. This matches the 1/N2 evolution of the
mean-squared estimation error e2(̂ξ ) obtained in Eq. 16
in the optimal configuration of Eqs. 14 and 15. Such
an evolution as Fc(ξ) ∼ N2 is unusual for the Fisher
information. Classically, in statistical estimation, with a
number ∼ N of independent measurements or evaluations
of the process to be estimated, an evolution as Fc(ξ) ∼ N

ensues for the Fisher information. In such classical context,
when correlation exists between the N data points, this
usually corresponds to redundancy among them, which
together carry less original information about the unknown
parameter, this tending to reduce the Fisher information.
So classically, there is usually no correlation pattern in
the data known to enhance the Fisher information from
a variation as ∼ N (at independence) to a variation as
∼ N2. By contrast, in the quantum domain, the variation
Fc(ξ) ∼ N2 of the Fisher information is observed. This
occurs in the presence of an excitation signal |ψin〉 of Eq. 7,
of size controlled by the dimension N , incorporating a
specific type of correlation under the form of an optimal
quantum entanglement according to Eqs. 14 and 15. This
is another manifestation of the specific character of the
correlation realized by quantum entanglement, which can
entail properties and performance inaccessible classically.

Beyond their variations controlled by N2, it is also
interesting to confront quantitatively the Fisher information
Fc(ξ) of Fig. 5 and the mean-squared estimation error e2(̂ξ )

of Eq. 16. In the conditions of Fig. 5, such confrontation is
performed in Fig. 6.
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Fig. 6 Root-mean-squared estimation error e(̂ξ ) of Eq. 16 (solid line)
compared to 1/

√
Fc(ξ) (dashed line) with Fc(ξ) the classical Fisher

information of Fig. 5 (+), as a function of the size N controlling the
dimension of the probing signal

In Fig. 6, the root-mean-squared (rms) estimation error
e(̂ξ ) from Eq. 16 is found just slightly above the bound
1/

√
Fc(ξ). The rms error e(̂ξ ) in Fig. 6 is always below

a factor of 1.14 from 1/
√

Fc(ξ). The bound 1/
√

Fc(ξ) is
the asymptotic lower bound that can be expected, according
to the Cramér-Rao inequality [26, 27], for the rms error
of the maximum likelihood estimator at large N , which is
an efficient estimator in this regime. The small departure
in Fig. 6 between the rms error e(̂ξ ) and the bound
1/

√
Fc(ξ) includes a small bias of the estimator ξ̂ =

j/N which vanishes as 1/N . The results of Fig. 6 show
that the Fourier-based estimator ξ̂ optimized according
to Eqs. 14–16 achieves an rms estimation error e(̂ξ )

very close (barely above) the lower bound 1/
√

Fc(ξ) for
any N .

In this respect, in the estimation protocol of Fig. 3, with
the excitation signal |ψin〉 of Eq. 7 optimized via Eq. 14,
when the probing signal |ψ̃ξ 〉 of Eq. 8 is inverse-Fourier-
transformed to produce the signal |ψξ 〉 = U†

F|ψ̃ξ 〉 of Eq. 9,
based on the data obtained by measuring |ψξ 〉, the estimator
ξ̂ achieving the mean-squared error e2(̂ξ ) of Eq. 16 is quasi-
optimal, as it almost reaches the minimal conceivable error
for any size N .

In the quantum context, there remains an issue that
should be examined, regarding efficient estimation of the
quantum phase. The classical Fisher information Fc(ξ)

of Eqs. 17 and 18 is specifically tied to the probability
distribution Pj = |a′

j |2 resulting from measuring the
quantum state |ψξ 〉 of Eq. 9 via a projective measurement
in the orthonormal basis

{|k 〉} of H′
N . One could wonder

whether a larger Fisher information Fc(ξ) could be reached,
based on another distribution of probability, resulting from
another protocol of quantum measurement. Accordingly,
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one could think of measuring another state related to the
probing signal |ψ̃ξ 〉 of Eq. 8, but differing from the inverse-
Fourier-transformed state |ψξ 〉; and with a measurement
differing from the projective measurement in the basis{|k 〉}. The quantum Fisher information is a notion to handle
this issue.

6 Quantum Fisher information

For a quantum state |φξ 〉 bearing dependence on a parameter
ξ , with the differentiated state ∂ξ |φξ 〉 ≡ |∂ξφξ 〉, the
quantum Fisher information [28–31] is defined as the non-
negative (real) scalar:

Fq(ξ) = 4
(
〈∂ξφξ |∂ξφξ 〉 + 〈∂ξφξ |φξ 〉2

)
. (19)

The quantum Fisher information Fq(ξ) is intrinsic to
the relationship between the quantum state |φξ 〉 and
the parameter ξ . It does not refer to any particular
quantum measurement performed on |φξ 〉 for estimating
ξ . By contrast, the classical Fisher information Fc(ξ),
as in Eqs. 17 and 18, is specifically tied to particular
quantum measurement, via the probability distribution of
the measurement results. The usefulness of the quantum
Fisher information Fq(ξ) is that it can be shown [28–
31] that it provides an upper bound to the classical Fisher
information Fc(ξ) attached to any conceivable quantum
measurement of the state |φξ 〉, i.e.:

Fc(ξ) ≤ Fq(ξ) . (20)

The inequality of Eq. 20 concerns any standard projective
(von Neumann) quantum measurement, which consists in
projecting an N-dimensional state |φξ 〉 ∈ HN in an
arbitrary orthonormal (projective) basis of HN . Changing
the projective basis of HN will change the probability
distribution of the N measurement results, and hence will
change the classical Fisher information Fc(ξ), however
always limited by Eq. 20. The inequality of Eq. 20 concerns
also generalized quantum measurements [9], which consists
in first coupling the state |φξ 〉 to another quantum state (part
of the measuring apparatus) so as to obtain a composite state
of a larger dimension, whose projective measurement will
deliver a number (usually) larger than N of measurement
results for |φξ 〉. These measurement results will also come
with their probability distribution, to determine a classical
Fisher information Fc(ξ) in the usual way, which also is
always limited by Eq. 20.

As a consequence of Eq. 20, in practice, if a quantum
measurement is found that achieves Fc(ξ) = Fq(ξ), then
it is guaranteed that in this respect it is the most efficient
measurement, and no other measurement could reach a
higher classical Fisher information Fc(ξ). However, the
upper bound formed by the quantum Fisher information

Fq(ξ) in Eq. 20 does not generally stand as an achievable
upper bound. Situations may exist with no definite (and
parameter-independent as it should) quantum measurement
able to achieve Fc(ξ) = Fq(ξ), even by considering the
broader class of generalized measurements.

In addition, the quantum Fisher information Fq(ξ)

of Eq. 19 is invariant under any ξ -independent unitary
transformation U applied to the state |φξ 〉, by virtue of
U†U = I the identity operator.

Now for the present study of quantum phase estimation,
it is meaningful to evaluate the quantum Fisher information
Fq(ξ) attached to the measured state |ψξ 〉 of Eq. 9. It will be
the same as the quantum Fisher information Fq(ξ) attached
to the probing state |ψ̃ξ 〉 of Eq. 8 because of their unitary
connection |ψξ 〉 = U†

F|ψ̃ξ 〉. From the probing state |ψ̃ξ 〉 of
Eq. 8, the differentiated state:

|∂ξ ψ̃ξ 〉 = i2π

N−1∑
k=0

kak exp(i2πkξ)|k 〉 (21)

leads to the inner products:

〈∂ξ ψ̃ξ |∂ξ ψ̃ξ 〉 = 4π2
N−1∑
k=0

k2|ak|2 (22)

and

〈∂ξ ψ̃ξ |ψ̃ξ 〉 = −i2π

N−1∑
k=0

k|ak|2 . (23)

The quantum Fisher information of Eq. 19 then follows as:

Fq(ξ) = 16π2
[ N−1∑

k=0

k2|ak|2 −
(

N−1∑
k=0

k|ak|2
)2 ]

. (24)

An interesting property revealed by Eq. 24 is that, for
the parametric dependence achieved by the probing state
|ψ̃ξ 〉 of Eq. 8 with the phase ξ , the resulting quantum
Fisher information Fq(ξ) is found independent of the
unknown phase ξ . This is an interesting property, not
necessarily granted for all parametric dependence of a
quantum state, and which ensures here that the ultimate
estimation performance assessed by Fq(ξ) stays the same
for any range of the phase ξ to be estimated.

When the coefficients ak of the input superposition
are chosen according to Eq. 14 so as to minimize the
estimation error e2(̂ξ ) as in Eq. 16, then the quantum Fisher
information of Eq. 24 can be evaluated to be:

Fq(ξ) = 4π2
[

1

3
N2 + 2

3
− 2

sin2(π/N)

]
, (25)

which at large N goes to Fq(ξ) → (4π2/3 − 8)N2 ≈
5.16N2. At large N , the analytical asymptotics Fq(ξ) ∼ N2

in Eq. 25 and 1/e2(̂ξ ) ∼ N2 from Eq. 16, consistently
match the evolution as ∼ N2 numerically observed for
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Fig. 7 Quantum Fisher information Fq(ξ) of Eq. 25 (solid line), and
classical Fisher information Fc(ξ) from Eq. 18 (+) in the conditions
of Fig. 5

Fc(ξ) of Eq. 18 in Fig. 5. In addition, for any size N , the
quantum Fisher information Fq(ξ) of Eq. 25 is compared
in Fig. 7 with the classical Fisher information Fc(ξ) from
Eq. 18 with the same optimal coefficients ak of Eq. 14.

Figure 7 shows a classical Fisher information Fc(ξ)

which precisely matches the corresponding quantum Fisher
information Fq(ξ) of Eq. 25 attached to |ψξ 〉 and |ψ̃ξ 〉,
and in this respect saturates the inequality of Eq. 20. This
indicates that no other measurement (be it generalized) of
|ψξ 〉 of Eqs. 9 and 14–15, other than the measurement
in the basis

{|k 〉}, could reach a higher classical Fisher
information Fc(ξ); and no other processing of |ψ̃ξ 〉 of
Eqs. 8 and 14–15, other than the inverse Fourier transform
followed by measurement in the basis

{|k 〉} as in Fig. 3,
could reach a higher classical Fisher information Fc(ξ).
This applies with the excitation signal |ψin〉 of Eq. 7
optimized via Eq. 14. In these conditions, on the resulting
probing signal |ψ̃ξ 〉 of Eqs. 8 and 14–15, the processing of
Fig. 3 consisting in the inverse Fourier transform to produce
the signal |ψξ 〉 = U†

F|ψ̃ξ 〉 of Eq. 9 that is subsequently
measured in the orthonormal basis

{|k 〉}, stands as an
essentially optimal processing of this |ψ̃ξ 〉 for estimating
the phase ξ . No other processing of the probing signal |ψ̃ξ 〉
of Eqs. 8 and 14–15 could reach a larger classical Fisher
information Fc(ξ) and a more efficient estimation.

The optimization performed via Eq. 14 is practically
meaningful because it uses as the optimization criterion
the mean-squared error of a definite practical estimator,
which is then minimized. This is a similar approach
which is followed in [19] for quantum phase estimation,
although on a different probing signal, as we indicated
earlier. Our approach here consistently characterizes a
complete strategy for quantum phase estimation, depicted

in Fig. 3, including the definition of a probing signal, its
Fourier-based processing and measurement followed by a
definite estimator from the measurement results, together
with an evaluation and optimization of the performance
according to a criterion of minimal mean-squared error.
One could nevertheless think of another approach for
devising an efficient strategy of phase estimation, based
on the optimization of a different criterion with a different
meaning. We now describe such an alternative approach to
devising an efficient strategy of phase estimation.

7 Direct maximum likelihood estimation

As an alternative approach, from the explicit expression we
obtain for Fq(ξ) in Eq. 24, one could seek the optimal
coefficients ak to place in the input excitation signal
|ψin〉 of Eq. 7, in order to maximize the quantum Fisher
information Fq(ξ) in Eq. 24 (instead of minimizing the
mean-squared estimation error as performed with Eq. 14 ).
This represents a constrained (by the normalization of the
ak’s) maximization of Fq(ξ) in Eq. 24, that we solve by
the Lagrange multiplier method in the Appendix. We then
find in the Appendix that the maximal quantum Fisher
information Fq(ξ) in Eq. 24 is achieved by the coefficients
a0 = aN−1 = 1/

√
2 and ak = 0 for k = 1 to N − 2.

This is associated in Eq. 7 with the (N − 1)-qubit optimal
excitation signal |ψin〉=

(|0 〉 + |N − 1 〉)/√2 = (|0 · · · 0〉 +
|1 · · · 1〉)/√2. Such an optimal signal is comparable to
photonic NOON states as an extreme way of populating
optical modes with photons [3, 4, 20]. At the optimum, the
quantum Fisher information of Eq. 24 gets maximized at

Fq(ξ) = 4π2(N − 1)2 , (26)

which at large N goes to Fq(ξ) → 4π2N2 ≈ 39.48N2. It
can be observed that the quantum Fisher information Fq(ξ)

of Eq. 26 is strictly larger than that of Eq. 25 for any size
N ≥ 2. However, it remains to be known whether, and how,
the estimation performance associated with Fq(ξ) of Eq. 26
can actually be achieved by an effective estimation strategy.
It can, yet in a slightly restrictive way, as we now show.

The (N − 1)-qubit optimal excitation signal:

|ψin〉 = 1√
2

(
|0 〉 + |N − 1 〉

)
∈ H′

N (27)

achieving the maximal Fq(ξ) of Eq. 26, induces in the
setting of Fig. 3 the probing signal:

|ψ̃ξ 〉 = U⊗(N−1)
ξ |ψin〉 = 1√

2

(
|0 〉 + exp[i2π(N − 1)ξ ]|N − 1 〉

)
.

(28)

A direct measurement of the ξ -dependent probing signal
|ψ̃ξ 〉 ∈ H′

N of Eq. 28 can be envisaged to estimate the
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phase ξ . A projective measurement in the Hilbert space H′
N

can be conceived, with one of the projective vectors of H′
N

formed by the input state |ψin〉 ∈ H′
N of Eq. 27. From

the inner product 〈ψin|ψ̃ξ 〉 = (
1 + exp[i2π(N − 1)ξ ])/2,

the probability in the measurement of projecting |ψ̃ξ 〉 on
|ψin〉 is:

P0 = ∣∣〈ψin|ψ̃ξ 〉
∣∣2 = 1

4

∣∣1 + exp[i2π(N − 1)ξ ]∣∣2 (29)

= 1

2
+ 1

2
cos[2π(N − 1)ξ ] (30)

= cos2[π(N − 1)ξ ] . (31)

It is enough to complement the quantum measurement
in H′

N by a single additional projector projecting on the
subspace of H′

N orthogonal to |ψin〉. This forms a valid
quantum measurement for |ψ̃ξ 〉, with only two orthogonal
projectors to span H′

N , yielding two possible outcomes,
either |ψ̃ξ 〉 is projected on |ψin〉 with the probability P0 of
Eq. 31, or |ψ̃ξ 〉 is projected on the orthogonal subspace with
the complementary probability 1 − P0.

According to Eq. 17, such a two-outcome measurement
is associated with the classical Fisher information:

Fc(ξ) = 1

P0

(
∂ξP0

)2 + 1

1 − P0

(
∂ξ (1 − P0)

)2 . (32)

With P0 from Eqs. 30 and 31 and some elementary
trigonometric identities, for Eq. 32, one finally finds:

Fc(ξ) = 4π2(N − 1)2 . (33)

So the two-outcome measurement reaches a classical Fisher
information Fc(ξ) in Eq. 33 that exactly matches the
quantum Fisher information Fq(ξ) of Eq. 26, which is itself
maximized over all feasible excitation signals |ψin〉 in Eq. 7.
No other estimation protocol can be expected to reach a
higher efficiency in terms of the performance assessed by
the Fisher information, classical and quantum. In practice,
the maximum likelihood estimator directly applied on data
delivered by the two-outcome measurement is assured to
reach the performance dictated by the (classical) Fisher
information, at least asymptotically in the limit of a large
data record. This looks like a protocol with a performance
strictly superior to that of the alternative Fourier-based
estimation protocol of Section 4, so why bother with it in
the first place ?

The reason is that the probing signal |ψ̃ξ 〉 of Eq. 28,
on which is grounded the estimation with superior Fisher
information, probes the unknown phase ξ only through the
multiple (N − 1)ξ (performing what is known as parameter
amplification [19]), and the two-outcome measurement
has a probability distribution (P0, 1 − P0) related to the
unknown phase ξ only through the cosine of the amplified
angle 2π(N − 1)ξ as visible in Eq. 30. The consequence
is that the data from the two-outcome measurement allow
one to estimate (first) an amplified angle 2π(N − 1)ξ ∈

[−π/2, π/2]. This leads for the angle 2πξ to multiple
possible determinations 2πξ ∈ [−π/2, π/2]/(N − 1) +
πn/(N − 1) with integer n ∈ [0, N − 2]. So for the phase
ξ there are N − 1 feasible determinations that cannot be
distinguished from the measured data. This ambiguity can
be lifted only with prior or additional information limiting
the unknown phase ξ to one specific determination. In
this respect, this estimation protocol performing parameter
amplification realizes a local estimation, when one seeks to
estimate, with a high accuracy, a very small change around
a priorly known phase.

By contrast, the Fourier-based estimation, via the probing
signal |ψ̃ξ 〉 of Eq. 8, simultaneously probes a whole range
of multiples kξ , with k = 0 to N − 1, of the unknown
phase ξ . Consistently, the measurement of |ψξ 〉 = U†

F|ψ̃ξ 〉
of Eq. 9 with its N possible outcomes is able to extract,
from |ψξ 〉, this richer information for estimating ξ . The
associated estimator ξ̂ = j/N returns an estimate over the
whole range [0, 1[ for ξ , with no ambiguity from multiple
determinations. In this respect, the Fourier-based estimation
protocol realizes a global estimation, over the whole feasible
range of the unknown phase.

So both approaches, local and global, to quantum
phase estimation offer complementary properties. Both
approaches benefit from the favorable Heisenberg mean-
squared error decreasing as 1/N2. The local approach
assessed by Eq. 26 is the most accurate, with an rms
error decreasing as 1/(2πN) ≈ 0.16/N , yet only to
estimate a local change around a priorly known phase.
The global Fourier-based approach assessed by Eq. 25
is a bit less accurate, with an rms error decreasing as
1/(

√
4π2/3 − 8 N) ≈ 0.44/N , but for estimation over

the whole feasible range of the unknown phase. Still other
phase estimation techniques have been proposed, offering
other trade-offs, for lifting the ambiguity of multiple
phase determinations, while also preserving the Heisenberg
enhanced efficiency. For instance, adaptive techniques have
been proposed to progressively adapt the measurement via
successive estimates, or techniques varying among several
excitation signals or measurements according to predefined
schedules, or techniques employing more than one copy of
the phase gate to be estimated [18–21, 32].

In the setting of the present study, for global quantum
phase estimation, our approach offers a complete Fourier-
based strategy with an evaluation of its performance
optimized according to a criterion of minimal mean-squared
error of a definite estimator. Strictly speaking, the results
reported here do not exclude that there may still exist
other alternative strategies for global phase estimation, with
possibly superior performance according to some definite
criterion. Other alternative strategies possibly probing the ξ -
dependent process Uξ in a different way, with an excitation
signal other than |ψin〉 of Eqs. 7 and 14, experiencing
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a processing other than the Fourier-based one used here,
followed by a (possibly generalized) measurement other
than measuring in the basis

{|k 〉}, with the measurement
results feeding another estimator, and preferably with some
theoretical control on the functioning and performance, are
yet to be proposed.

The Fourier-based approach is specifically useful since it
involves a single measurement on a multiple-qubit signal to
deliver a “one-shot” global phase estimate, with a precision
that in principle can be made arbitrary high by increasing
the size N of the probing signal. In its variant presented
here, the Fourier-based approach, by using an optimally
entangled probing signal, benefits from the Heisenberg
enhanced efficiency with a mean-squared estimation error
scaling as 1/N2. Moreover, it possesses the simplifying
features for its physical implementation of requiring a single
copy of the phase gate to be estimated, and of involving
a multiple-qubit probing signal where each qubit (although
entangled to the others) can be applied and measured
separately.

8 Discussion

The variant of the Fourier-based approach, although
presented here for estimating the phase induced by a
qubit process Uξ as in [22], could as well be adapted to
phase estimation on an arbitrary quantum process Uξ (not
necessarily a qubit process). This would demand, as in
[23], to use a controlled version of the arbitrary quantum
process Uξ (see for instance [9] and its Section 4.3 for this
notion of controlled quantum process), with the possibility
of arranging the control by qubits that would undergo the
same transformation process as in Section 4.

As a complement to the studies of [22, 23] that examine
the same Fourier-based method, the present analysis
here extends the characterization with an assessment of
the estimation performance, especially via the explicit
evaluations of the Fisher information, both classical and
quantum. This allowed us here to obtain a characterization
of the overall best performance for estimation. The results
analyze the conditions where, to realize a global phase
estimation via a probing signal as |ψ̃ξ 〉 in Eq. 8 probing
a whole range of multiples kξ of the unknown phase, the
Fourier-based processing described in Section 4 is optimal,
and achieves the best estimation efficiency based on |ψ̃ξ 〉.
We note that with the present Fourier-based estimation
scheme, the excitation signal |ψin〉 of Eq. 7 is an (N − 1)-
qubit state belonging to the N-dimensional subspace H′

N ,
and it is enough to probe all the N multiples kξ of the
unknown phase ξ , for k = 0 to N − 1; using a higher-
dimensional state belonging to the whole 2N−1-dimensional

space H⊗(N−1)
2 of the N − 1 qubits would, according to the

numbers of qubits in state |1〉, redundantly probe the same
multiples kξ and would add no extra capabilities not already
accessible from the minimum-sized |ψin〉 of Eq. 7.

Quantum phase estimation, as addressed here, is at the
root of many practical applications, as sketched in the
“Introduction”, and connects to many directions still open
for exploration [33, 34]. It connects to general or multipara-
metric quantum system identification, also known as quan-
tum process tomography, which especially can be assessed
with the same concept of Fisher information, classical and
quantum, exploited here. For telecommunications [35–37],
this relates for instance to the tasks of quantum channel esti-
mation and equalization, quantum system inversion related
to quantum source separation [38].

One specially interesting direction for further exploration
would be to analyze the evolution of the estimation
performance in the presence of quantum noise. Quantum
noise or decoherence represents the alteration of quantum
states caused by their interaction with an uncontrolled
environment [7, 9, 39–42]. Quantum noise is a ubiquitous
factor generally impacting the performance of quantum
processing and quantum technologies. In the course of
elaborating methodologies for quantum information and
signal processing, it is therefore relevant to come to
examine how their performance evolves in the presence
of quantum noise. For Fourier-based quantum phase
estimation, few studies have examined the impact of
quantum noise, following different noise models [19, 21–
23, 43]. Specifically, [22, 23] considered the impact of
quantum phase noise—which is specially relevant when
phase information is to be retrieved—taken into account
at the level of each probing qubit under the form of
a nonunitary evolution [9, 42], and when the quantum
states are treated as mixed states [9] expressible as convex
combinations (convex sums) of pure states setting the
reference in the present study. As a complement to [22, 23],
one could examine the impact of the phase noise on the
classical and quantum Fisher information of Sections 5 and
6 to establish the ultimate efficiency for phase estimation in
the presence of noise, and how practical approaches stand
in relation to such limits.

For estimation with quantum noise, one could also
investigate the existence of special regimes of stochastic
resonance, where the presence of noise is not necessarily
detrimental but can prove beneficial to improve the
performance. Such noise-enhanced performance has been
widely explored for classical signal processing [44–51].
Recently, concerning quantum signal processing, some
regimes of stochastic resonance have been observed in
the quantum [52] and classical [53] Fisher information in
the presence of quantum noise. It could be interesting to
investigate if regimes of enhancement by quantum noise
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could be observed in the performance of the Fourier-based
phase estimation approaches considered here.

Beyond its significance to quantum phase estimation, the
present study illustrates how the standard conceptualiza-
tions and methodologies of signal processing naturally find
their way at the quantum level, and can thus take part in the
ongoing developments of quantum information processing
and quantum technologies. Much remains to be accom-
plished in these areas, and the thread of quantum signal
processing constitutes a useful contribution to this science
endeavor.

Appendix

The constrained maximization of the quantum Fisher
information Fq(ξ) in Eq. 24 can be approached in the N

real variables xk = |ak|. Accordingly, in the variables xk ,
we consider the constrained maximization associated with
the Lagrange multiplier μ and Lagrangian:

L =
N−1∑
k=0

k2x2
k −

(
N−1∑
k=0

kx2
k

)2

+ μ

(
N−1∑
k=0

x2
k − 1

)
. (34)

In particular, the form of the Lagrangian L which depends
only on the squared variables x2

k renders unnecessary to
additionally enforce that the variables xk should be positive.
By differentiation, we obtain the necessary condition for
extremality as the system of N + 1 equations:

for all k = 0 to N − 1.
A solution to the system of Eqs. 35 and 36 exists with a

single nonzero xk = 1, feasible for any k = 0 to N − 1,
and μ = k2, which gives a vanishing Fisher information
Fq(ξ) = 0 in Eq. 24. This corresponds to a minimum of the
non-negative Fisher information Fq(ξ).

Another solution to the system of Eqs. 35 and 36 exists
with only two nonzero xk1 and xk2 for some k1 �= k2. From
Eqs. 35 and 36, it follows that x2

k1
= x2

k2
= 1/2 and μ =

k1k2. This is a necessary condition for the extremization of
the Fisher information Fq(ξ), which applies for any pair of
k1 and k2 �= k1, and realizes in Eq. 24 the Fisher information
Fq(ξ) = 4π2(k2 − k1)

2 which is maximized at Fq(ξ) =
4π2(N − 1)2 when k1 = 0 and k2 = N − 1.

Beyond, when three or more xk’s are nonzero, it can be
verified that no solution exists to the system of Eqs. 35
and 36.
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41. Kappe P, Kaiser J, Elsässer W, Wirth R, Streubel K (2003)
Investigations of the fundamental quantum noise properties of

resonant-cavity light-emitting diodes (RCLEDs). Annales Des
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