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Abstract

This paper studies in conjunction correlation and entropy-based information measures for the characterization of

statistical dependence in a random signal. Several simple reference models of random signal are presented, for which both

the autocorrelation and autoinformation functions are calculated explicitly in analytical form. Conditions are investigated

where a general relation is shown to exist between these two functions in asymptotic regime, and which especially apply to

stationary signals. Another, recent, model of nonstationary random signal with long-range dependence, is also presented

and analyzed. For this model, the autocorrelation and autoinformation functions are calculated and compared for the first

time, and exhibit more complex asymptotic behavior. This paper is intended to provide essentially theoretical models and

results useful for better appreciation of the potentialities of the autoinformation function, in complement to the more

common autocorrelation function, for the study of structures, informational contents and properties of complex random

signals.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Measuring statistical dependence along a random signal is an important task, which is specially relevant in
the study of many complex processes of current interest. It can serve various general purposes such as
characterizing the structures and informational contents of a signal, separating informative versus noisy
contributions in its fluctuations, identifying the dynamics of their underlying generating processes. Statistical
dependence in a random signal is commonly characterized with autocorrelation measures. Such measures have
interesting theoretical properties and are readily implementable in practice. They are employed on many
occasions to characterize complex signals and processes [1–5]. Correlation measures have also some inherent
limitations as they quantify statistical dependence only partially. Information–theoretic measures like the
mutual information or autoinformation constitute a useful complementary approach [6–12]. Especially, these
measures offer a complete quantification of the statistical dependence. The counterpart is that these
e front matter r 2007 Elsevier B.V. All rights reserved.
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information–theoretic measures, on a general basis, are usually more difficult to implement practically and to
handle theoretically. For example, while explicit theoretical expressions of the autocorrelation function are
given in many places for many reference random signals, there are scant few places where comparable
theoretical expressions are explicitly provided for the autoinformation function for instance.

Based on their complementary theoretical and practical properties, both types of dependence measures are
simultaneously useful to contribute in the investigation of complex random signals. In the present paper, our
contribution will be to collect and complement essentially theoretical properties of the autoinformation
function, and to connect them with more standard results for the autocorrelation function. We will expose
several simple models of random signal, for which both the autocorrelation function and the autoinformation
function can be calculated explicitly in analytical form. These models can especially serve as reference models
to test various estimation methods for these functions on experimental signals. In addition, on these simple
reference models, we will exhibit a relation that exists between the autocorrelation and autoinformation
functions in the asymptotic regime of large separation times when both functions are small. A theoretical
argument will be given which demonstrates that this asymptotic relation also holds in a general class of
stationary signals. We will also present a recent model of nonstationary random signal with long-range
dependence, for which the autocorrelation and autoinformation functions are calculated analytically and
compared for the first time, and which shows more complex asymptotic behaviors for these two functions. The
global objective of this paper is to provide theoretical models and results useful to more precisely appreciate
the potentialities of the autoinformation function, in complement to the autocorrelation function, to
contribute in the study of structures, informational contents and properties of complex random signals.

The works in Refs. [13,14] also study the relation between correlation function and mutual information for
random signals. These Refs. [13,14] concentrate essentially on symbolic sequences, and essentially binary and
ternary sequences in Ref. [13], while here we also address analog signals. We also offer here a broader view
with reference models not given in Refs. [13,14]. Also [13,14] assume stationarity of the signals, while here
nonstationary signals are also considered, especially with new results concerning a recent model for random
signal with long-range dependence.

2. Measuring statistical dependence

2.1. Autocorrelation function

The statistical dependence along a random signal xðtÞ is commonly characterized by means of the
autocorrelation function Rxxðt; tÞ defined as the expectation

Rxxðt; tÞ ¼ E½xðtÞxðtþ tÞ�, (1)

or also by means of the autocovariance function Cxxðt; tÞ defined as the autocorrelation of the centered signal
xðtÞ � E½xðtÞ�, i.e.,

Cxxðt; tÞ ¼ EðfxðtÞ � E½xðtÞ�gfxðtþ tÞ � E½xðtþ tÞ�gÞ ¼ Rxxðt; tÞ � E½xðtÞ�E½xðtþ tÞ�. (2)

At any t and t, from the Schwarz inequality, the autocovariance verifies jCxxðt; tÞjpstd½xðtÞ� std½xðtþ tÞ�,
with stdð�Þ the standard deviation. A normalized version of the autocovariance is the autocorrelation
coefficient

rxxðt; tÞ ¼
Cxxðt; tÞ

std½xðtÞ� std½xðtþ tÞ�
, (3)

which takes its values in ½�1; 1� for all t and t. Especially, at any time t, the autocorrelation coefficient rxxðt; tÞ
is at its maximum of 1 in t ¼ 0. Also, for many random signals, there is usually when t!�1, a loss of causal
connection between xðtÞ and xðtþ tÞ entailing statistical independence, and in this circumstance both Cxxðt; tÞ
and rxxðt; tÞ go to zero at this limit t!�1. The evolution of rxxðt; tÞ, between its maximum rxxðt; t ¼ 0Þ ¼ 1
and its asymptotics rxxðt; t ¼ �1Þ ¼ 0, serves as a convenient measure of statistical similarity or dependence
between xðtÞ and xðtþ tÞ. Also, the way Cxxðt; tÞ or rxxðt; tÞ return to zero with increasing t offers an
interesting characterization of the statistical fluctuations in xðtÞ. An exponential decay of Cxxðt; tÞ as expð�btÞ,
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often observed in practice, identifies short-range dependence, over a characteristic time scale 1=b. But slowler,
power-law, decays as t�b, with b40, are also frequently observed on various complex processes, and identify
long-range dependence characterized by the exponent b.

A useful property of the autocorrelation function is that its behavior is completely predictable in the
framework of linear systems theory [15, p. 308]: if a random signal xðtÞ with autocorrelation Rxxðt; tÞ is applied
on the input of a time-invariant linear system with impulse response hðtÞ, then the random signal yðtÞ at the
output has an autocorrelation function Ryyðt; tÞ given by

Ryyðt; tÞ ¼
Z þ1
�1

Z þ1
�1

Rxxðt� t0; tþ t0 � t00Þhðt0Þhðt00Þdt0 dt00, (4)

which in the case of xðtÞ stationary reduces to the convolution RyyðtÞ ¼ RxxðtÞ � RhhðtÞ, with
RhhðtÞ ¼

R1
�1

hðtÞhðtþ tÞdt. Similar relations exist for the autocovariance, for instance CyyðtÞ ¼
CxxðtÞ � RhhðtÞ. These general properties offer large possibilities to shape the autocorrelation of a random
signal by means of the selection of a linear filter. For instance, a stationary white noise xðtÞ at the input with
delta correlation RxxðtÞ ¼ dðtÞ will be transformed by the filter in a stationary random signal yðtÞ with
autocorrelation RyyðtÞ ¼ RhhðtÞ definable by the filter via hðtÞ in a very flexible way. However, a linear
system, whatever its complexity or high order, starting with an input signal xðtÞ with no pre-existing
correlation, i.e., a delta-correlated RxxðtÞ ¼ dðtÞ, is unable to produce an output with long-range correlation
in t�b, and will unavoidably produce short-range correlation in expð�btÞ at the output. The reason is as
follows.

A linear system, in the time domain, can be characterized by an input–output linear differential equation, or
equivalently by an impulse response hðtÞ. It can be announced that in general, at large t, the impulse response
returns to zero as hðtÞ� expð�btÞ. Laplace transform of the differential equation yields a transmittance HðsÞ

which comes as a rational function (ratio of two polynomials) in the Laplace variable s. Inverse Laplace
transform of HðsÞ yields hðtÞ. This occurs usually through an intermediate step which is a partial fraction
expansion of HðsÞ as the sum of terms in s of the form 1=ðs� piÞ, whose inverse Laplace transform induces
temporal terms of the form expðpitÞ in hðtÞ. At large t thus hðtÞ is ruled by the dominant pole pi that has the real
part (negative for stability) with smaller absolute value, which is the coefficient �b explaining the asymptotic
form hðtÞ� expð�btÞ, all the other temporal contributions in hðtÞ having returned to zero faster. This
asymptotic behavior of hðtÞ carries over to the autocorrelation RhhðtÞ which is dominated asymptotically by an
exponential decay1 with similar form � expð�btÞ. When no correlation pre-exists in the input, it is this
exponential decay which remains, asymptotically, in the autocorrelation of the random output signal of any
linear system. In particular, this leaves open the question of the origin of the long-range dependence frequently
observed on signals from various complex processes, knowing that it cannot come from linear filtering of any
order operating on delta-correlated or short-range dependent fluctuations. This also establishes the study of
the autocorrelation of observed signals, and specially its short- or long-range behaviors, as a means providing
indication on the possible underlying generating mechanisms, either linear or non.
2.2. Autoinformation function

Autocorrelation measures have thus interesting properties, but they also suffer from some limitations.
Especially, Cxxðt; tÞ as a measure of statistical dependence suffers from the limitation that, at given t,
meanwhile independence between xðtÞ and xðtþ tÞ implies Cxxðt; tÞ ¼ 0, on the converse Cxxðt; tÞ ¼ 0
(decorrelation) does not imply independence between xðtÞ and xðtþ tÞ. To circumvent this limitation, another
measure of statistical dependence between xðtÞ and xðtþ tÞ is provided by a form of the mutual information
Ixxðt; tÞ between xðtÞ and xðtþ tÞ, or autoinformation function, which is definable from, when they exist, the
one-time entropies as

Ixxðt; tÞ ¼ H½xðtþ tÞ� �H½xðtþ tÞjxðtÞ�. (5)
1In case of a multiple pole, the associated temporal term in the impulse response and subsequently in the autocorrelation, rather has the

form �tn�1 expð�btÞ with n related to the multiplicity of the pole, but this decay also is considered as short-range dependence.
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In Eq. (5), the quantity H½xðtþ tÞ� is the marginal entropy of xðtþ tÞ, while H½xðtþ tÞjxðtÞ� is the conditional
entropy of xðtþ tÞ given xðtÞ. The entropies in Eq. (5) follow the standard definitions of entropies for random
variables, either discrete or continuous. For instance, when xðtÞ is a continuous variable, characterized by the
marginal probability density pxðu; tÞ, one has

H½xðtÞ� ¼ �

Z
pxðu; tÞ log pxðu; tÞdu. (6)

With the joint probability density pxxðu1; u2; t; tÞ for xðtÞ and xðtþ tÞ, one has

H½xðtþ tÞjxðtÞ� ¼ �
Z Z

pxxðu1; u2; t; tÞ log
pxxðu1; u2; t; tÞ

pxðu1; tÞ
du1 du2. (7)

Since the one-time entropy above differs from the entropy of a signal defined from multidimensional multi-
time probabilities, we choose to name Ixxðt; tÞ of Eq. (5) autoinformation rather than mutual information;
another reason for this name is the strong parallelism between Ixxðt; tÞ and the autocorrelation function. An
interesting property of the autoinformation function is that it always verifies Ixxðt; tÞX0, with equality if and
only if xðtÞ and xðtþ tÞ are independent. In this respect, while the autocorrelation only measures partially the
statistical dependence, the autoinformation offers a complete quantification of the two-time dependence in a
random signal xðtÞ. The counterpart is that there is no general theoretical property predicting the behavior of
the autoinformation that would parallel Eq. (4) achieved by linear systems theory for the autocorrelation. As a
consequence, very scarce theoretical results are available that gather expressions for the autoinformation
function for some reference random signals. It also results that the autocorrelation and autoinformation
functions remain complementary approaches to characterize statistical dependence in a random signal. In the
sequel, we will present several models of random signal for which both the autocorrelation and
autoinformation functions can be calculated explicitly in analytical form, and we will study the relation
between these two characteristics.

3. Some random signal models

3.1. Stationary Gaussian noise

When the random signal xðtÞ is a stationary Gaussian noise, endowed with mean E½xðtÞ� ¼ m, standard
deviation std½xðtÞ� ¼ s and autocorrelation coefficient rxxðtÞ, then the joint probability density for xðtÞ and
xðtþ tÞ is [15, p. 127]

pxxðu1; u2; tÞ ¼
1

2ps2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xxðtÞ

p exp �
ðu1 �mÞ2 � 2ðu1 �mÞðu2 �mÞrxxðtÞ þ ðu2 �mÞ2

2s2½1� r2xxðtÞ�

� �
, (8)

independent of t.
From Eq. (8), integrals (6)–(7) can be carried out to yield the entropies [15, p. 562]:

H½xðtÞ� ¼ lnð
ffiffiffiffiffiffiffiffi
2pe
p

sÞ (9)

and

H½xðtþ tÞjxðtÞ� ¼ ln
ffiffiffiffiffiffiffiffi
2pe
p

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xxðtÞ

q� �
. (10)

The autoinformation of Eq. (5) follows as:

IxxðtÞ ¼ �1
2
ln½1� r2xxðtÞ�. (11)

It results from Eq. (11) that in this case of the stationary Gaussian noise, the autocorrelation rxxðtÞ uniquely
determines the autoinformation IxxðtÞ; and IxxðtÞ ¼ 0 if and only if rxxðtÞ ¼ 0, i.e., independence equivalues
decorrelation. In addition, when rxxðtÞ ! 0 at the limit t!�1, then from Eq. (11) one gets

IxxðtÞ �!
t!�1

1
2
r2xxðtÞ. (12)
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3.2. Memoryless transform of Gaussian noise

It is possible to envisage the transformation of the Gaussian noise xðtÞ of Section 3.1 by a memoryless one-
point function gð�Þ to produce the random signal yðtÞ ¼ g½xðtÞ�. In this case, a form of Price’s theorem [15,
p. 161] provides a connection between the autocorrelation functions through the differential equation

dnRyyðtÞ
dCxxðtÞ

n ¼ E
dng½xðtÞ�

dxn

dng½xðtþ tÞ�
dxn

� �
(13)

for any positive integer n.
An interesting situation is when gð�Þ is an invertible function, because it leaves unchanged the

autoinformation function, i.e., IxxðtÞ ¼ IyyðtÞ. Thus, invertible transformations gð�Þ in association with Eq.
(13), allows one to generate random signals with control on both their autocorrelation and autoinformation
functions, to some extent.

For illustration, we consider the case of a zero-mean Gaussian noise xðtÞ through the cubic transformation
g½xðtÞ� ¼ x3ðtÞ ¼ yðtÞ. Exploitation of Eq. (13) at n ¼ 2 gives

d2CyyðtÞ

dCxxðtÞ
2
¼ E½6xðtÞ6xðtþ tÞ� ¼ 36CxxðtÞ, (14)

since yðtÞ is also zero-mean. Integration of Eq. (14) yields

CyyðtÞ ¼ 6C3
xxðtÞ þ 9s4CxxðtÞ, (15)

where the two integration constants have been determined with the conditions Cyyðt!�1Þ ¼ 0 and
Cyyðt ¼ 0Þ ¼ E½y2ðtÞ� ¼ E½x6ðtÞ� ¼ 15s6. For yðtÞ, from Eq. (15) the autocorrelation coefficient ryyðtÞ ¼
CyyðtÞ=E½y2ðtÞ� follows as:

ryyðtÞ ¼ 6
15

r3xxðtÞ þ
9
15

rxxðtÞ, (16)

while its autoinformation IyyðtÞ remains, from Eq. (11) and invertibility of gðxÞ ¼ x3,

IyyðtÞ ¼ IxxðtÞ ¼ �1
2
ln½1� r2xxðtÞ�. (17)

In the asymptotic regime t!�1 where rxxðtÞ goes to zero, Eq. (16) gives ryyðtÞ � 9rxxðtÞ=15, and Eq. (17)
gives IyyðtÞ � r2xxðtÞ=2, leading to

IyyðtÞ �!
t!�1

15

9

� �2

	
1

2
r2yyðtÞ (18)

which bears some similarity with Eq. (12).
Also, it is possible to choose the transformation gð�Þ in order to select the marginal probability density pyðuÞ

of the transformed signal yðtÞ. The original Gaussian noise xðtÞ has a Gaussian marginal density pxðuÞ

derivable from Eq. (8) and associated to the marginal cumulative distribution function

FxðuÞ ¼
1

2
þ

1

2
erf

u�mffiffiffi
2
p

s

� �
. (19)

This F xðuÞ is an invertible function, and the transformed signal Fx½xðtÞ� has a probability density uniform over
½0; 1�. The targeted density pyðuÞ is associated to a cumulative distribution FyðuÞ which is invertible when pyðuÞ

contains no point masses of discrete nonzero probabilities. The resulting inverse function F�1y ðuÞ is an
invertible function, that when used to transform the uniform signal Fx½xðtÞ� produces a random signal
F�1y fF x½xðtÞ�g endowed with the probability density pyðuÞ. The composite transformation gð�Þ ¼ F�1y ½F xð�Þ�

results as an invertible function, which sends the Gaussian noise xðtÞ into a random signal yðtÞ ¼ F�1y fF x½xðtÞ�g

with prescribed marginal probability density pyðuÞ and prescribed autoinformation function IyyðtÞ ¼ IxxðtÞ
defined by rxxðtÞ of the original xðtÞ via Eq. (11). A rather general and flexible technique results to construct an
analog random signal with prescribed marginal probability density and prescribed autoinformation function:
Starting with a white noise, a linear filter is used to produce a Gaussian signal xðtÞ with an autocorrelation
rxxðtÞ prescribed via Eq. (4) and an autoinformation IxxðtÞ resulting via Eq. (11), next on xðtÞ the nonlinear
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memoryless invertible transformation F�1y fF x½xðtÞ�g ¼ yðtÞ produces a random signal yðtÞ with both prescribed
marginal pyðuÞ and autoinformation IyyðtÞ ¼ IxxðtÞ.
3.3. Binarized stationary Gaussian noise

We now consider the stationary random signal yðtÞ obtained from a binary quantization of the stationary
Gaussian noise xðtÞ of Section 3.1, with the quantization threshold at the mean m (which is also the median),
according to the noninvertible transformation

yðtÞ ¼ sign½xðtÞ �m� ¼ �1. (20)

Therefore yðtÞ of Eq. (20) at all t assumes discrete values restricted to �1. From the joint density of Eq. (8), one
can deduce the four joint probabilities Pi;j ¼ PrfyðtÞ ¼ i; yðtþ tÞ ¼ jg for ði; jÞ 2 f�1; 1g2. For instance, one has

P1;1 ¼

Z þ1
u1¼m

Z þ1
u2¼m

pxxðu1; u2; tÞdu1 du2, (21)

which amounts to

P1;1 ¼
1

4
þ

1

2p
arcsin½rxxðtÞ� ¼ P�1;�1. (22)

In the same way, one obtains

P�1;1 ¼ P1;�1 ¼
1

4
�

1

2p
arcsin½rxxðtÞ�. (23)

The marginal probabilities for yðtÞ are PrfyðtÞ ¼ 1g ¼ PrfyðtÞ ¼ �1g ¼ 1
2
, whence the mean E½yðtÞ� ¼ 0 and

standard deviation std½yðtÞ� ¼ 1.
The autocorrelation coefficient for yðtÞ follows as:

ryyðtÞ ¼ P1;1 þ P�1;�1 � P�1;1 � P1;�1, (24)

giving the relation

ryyðtÞ ¼
2

p
arcsin½rxxðtÞ� (25)

known as the arcsine law [15, p. 307].
The marginal entropy for yðtÞ is

H½yðtÞ� ¼ lnð2Þnat ¼ 1 bit. (26)

Together from the marginals and the joint probabilities of Eqs. (22)–(23), one easily deduces the conditional
probabilities, and then the conditional entropy follows as:

H½yðtþ tÞjyðtÞ� ¼ lnð2Þ � 1
2
½1þ ryyðtÞ� ln½1þ ryyðtÞ� � 1

2
½1� ryyðtÞ� ln½1� ryyðtÞ�. (27)

The autoinformation of Eq. (5) results as

IyyðtÞ ¼ 1
2
½1þ ryyðtÞ� ln½1þ ryyðtÞ� þ 1

2
½1� ryyðtÞ� ln½1� ryyðtÞ�. (28)

It follows from Eq. (28) that in this case also of the binarized stationary Gaussian noise, the autocorrelation
ryyðtÞ uniquely determines the autoinformation IyyðtÞ. From Eq. (28), ryyðtÞ ¼ 0 implies IyyðtÞ ¼ 0; conversely
IyyðtÞ ¼ 0 implies independence which implies ryyðtÞ ¼ 0; therefore for this yðtÞ also independence equivalues
decorrelation. In addition, when ryyðtÞ ! 0 at the limit t!�1, then from Eq. (28) with lnðuÞ � u� u2=2 one
obtains again

IyyðtÞ �!
t!�1

1
2
r2yyðtÞ. (29)
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3.4. Random telegraph signal

We now consider the so-called random telegraph signal xðtÞ ¼ �1, which alternates between the two levels
þ1 and �1 at random times ti distributed according to a Poisson process of parameter l. The number of
points ti in any interval ½t; tþ t� thus equals n with probability pðnÞ ¼ e�ltðltÞn=n!. We assume the initial
condition xðt ¼ 0Þ ¼ 1. At any t40, xðtÞ ¼ 1 if there is an even number of points ti in interval ½0; t�, so one has
the probability

PrfxðtÞ ¼ 1g ¼
Xþ1
n¼0

pð2nÞ ¼ e�lt
Xþ1
n¼0

ðltÞ2n

ð2nÞ!
¼ e�lt coshðltÞ ¼

1þ e�2lt

2
. (30)

Also xðtÞ ¼ �1 for an odd number of points ti in ½0; t�, yielding the probability

PrfxðtÞ ¼ �1g ¼ e�lt sinhðltÞ ¼
1� e�2lt

2
. (31)

One gets the expectation E½xðtÞ� ¼ e�2lt, and E½x2ðtÞ� ¼ 1.
In a similar way, for any tX0, one has the conditional probabilities

Prfxðtþ tÞ ¼ 1jxðtÞ ¼ 1g ¼ Prfxðtþ tÞ ¼ �1jxðtÞ ¼ �1g ¼ e�lt coshðltÞ, (32)

and

Prfxðtþ tÞ ¼ 1jxðtÞ ¼ �1g ¼ Prfxðtþ tÞ ¼ �1jxðtÞ ¼ 1g ¼ e�lt sinhðltÞ. (33)

Gathering the above results, one obtains the autocorrelation function

Rxxðt; tÞ ¼ E½xðtÞxðtþ tÞ� ¼ e�2lt (34)

as also derived in Ref. [15, p. 292], and the autocorrelation coefficient rxxðt; tÞ could also be easily expressed.
From Eqs. (30) to (31), the marginal entropy of xðtÞ is

H½xðtÞ� ¼ �e�lt coshðltÞ ln½e�lt coshðltÞ� � e�lt sinhðltÞ ln½e�lt sinhðltÞ�, (35)

and via Eqs. (32)–(33), the conditional entropy H½xðtþ tÞjxðtÞ� could also be easily expressed, leading to a
rather bulky expression that we omit.

It is clear, for instance from E½xðtÞ� ¼ e�2lt, that xðtÞ is a nonstationary signal, due to the influence of the
initial condition at t ¼ 0. However, sufficiently far from the origin t ¼ 0, i.e., at any tb1=l, one has access to
useful approximations. Especially, one gets for the autocorrelation coefficient

rxxðt; tÞ � e�2lt � e�4lte�2lt ¼ e�2ltð1� e�4ltÞ (36)

plus higher-order terms in e�lt that are negligible. Also, one finds for the marginal entropy

H½xðtÞ� � lnð2Þ � 1
2e
�4lt, (37)

plus higher-order negligible terms in e�lt. Now separately, at any t but for large delays tb1=l, one has for the
conditional entropy

H½xðtþ tÞjxðtÞ� � lnð2Þ � 1
2
e�4lt, (38)

plus higher-order negligible terms in e�lt. Now in conjunction at large tb1=l and tb1=l, from Eqs. (37) to
(38) one finds for the autoinformation

Ixxðt; tÞ � 1
2
e�4lt � 1

2
e�4lte�4lt ¼ 1

2
e�4ltð1� e�4ltÞ. (39)

Eqs. (36) and (39) illustrate that for the present nonstationary signal xðtÞ, there is in general no one-to-one
relationship between, alone, the autocorrelation rxxðt; tÞ and the autoinformation Ixxðt; tÞ. One can
however write Ixxðt; tÞ � rxxðt; tÞe�2lt=2 showing that in the asymptotic regime Ixxðt; tÞ decays faster with t
than rxxðt; tÞ. Also, far from the origin t ¼ 0 and at large delays t, the dominant asymptotic behaviors
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are, from Eq. (36), rxxðt; tÞ � e�2lt, and from Eq. (39), Ixxðt; tÞ ¼ e�4lt=2. At this limit, one can write

Ixxðt; tÞ �!
t;t!1

1
2
r2xxðt; tÞ, (40)

which matches the asymptotic relation of Eqs. (12) and (29) found for stationary signals.

4. Asymptotic behavior

After the reference models of Section 3, where explicit expressions were available for both the
autocorrelation and autoinformation functions, we shall now examine, in an asymptotic regime, conditions
where a general relation can exist between these two functions.

4.1. Arbitrary signal

We assume a random signal xðtÞ which takes its values in a discrete set of N distinct values xi for i ¼ 1 to N.
The random signals of Sections 3.3 and 3.4 are members of this category. However, the argument that will
follow could easily be transposed to the case of analog signals xðtÞ as in Sections 3.1 and 3.2, with discrete
probabilities replaced by densities. We introduce the marginal probabilities PiðtÞ ¼ PrfxðtÞ ¼ xig for
i 2 f1; . . . ;Ng, and the joint probabilities Pijðt; tÞ ¼ PrfxðtÞ ¼ xi;xðtþ tÞ ¼ xjg for ði; jÞ 2 f1; . . . ;Ng

2. When
xðtÞ and xðtþ tÞ are independent, one has the factorization Pijðt; tÞ ¼ PiðtÞPjðtþ tÞ for any ði; jÞ 2 f1; . . . ;Ng2.

We define, for any ði; jÞ 2 f1; . . . ;Ng2, the quantity

dijðt; tÞ ¼
Pijðt; tÞ � PiðtÞPjðtþ tÞ

PiðtÞPjðtþ tÞ
, (41)

inspired from Ref. [14], and interpreted as an index of departure from statistical independence, since dijðt; tÞ ¼
0 at independence, for all ði; jÞ 2 f1; . . . ;Ng2. We denote a statistical average over the two sets of marginal
probabilities by the notation h��i ¼

P
i;j � �PiðtÞPjðtþ tÞ, to be distinguished from the standard statistical

expectation Eð��Þ ¼
P

i;j � �Pijðt; tÞ. Because of the normalization of the two sets of probabilities PiðtÞ and
Pijðt; tÞ, i.e.,

P
iPi ¼ 1 and

P
ijPij ¼ 1, one has

hdijðt; tÞi ¼ 0 (42)

for any t and t.
The autocovariance function of xðtÞ results as

Cxxðt; tÞ ¼
X

i;j

xixj ½Pijðt; tÞ � PiðtÞPjðtþ tÞ� ¼ hxixjdijðt; tÞi. (43)

The autoinformation of Eq. (5) in nats is also

Ixxðt; tÞ ¼
X

i;j

Pijðt; tÞ ln
Pijðt; tÞ

PiðtÞPjðtþ tÞ
, (44)

now expressable as

Ixxðt; tÞ ¼ h½1þ dijðt; tÞ� ln½1þ dijðt; tÞ�i. (45)

The forms of Eqs. (43) and 45 show that, in general, there is no direct relation connecting alone the
autocovariance Cxxðt; tÞ and the autoinformation Ixxðt; tÞ, even for stationary signals when the dependence in t

of dijðt; tÞ vanishes.
In the situation of large delay t!�1, an asymptotic regime where xðtÞ and xðtþ tÞ return to

independence produces dijðt; tÞ ! 0, and Eq. (45) leads to

Ixxðt; tÞ � 1
2
hd2ijðt; tÞi. (46)

In such a regime, there is no general relation either connecting alone Cxxðt; tÞ of Eq. (43) and Ixxðt; tÞ of
Eq. (46).
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4.2. Stationary signal

If we add the assumption of xðtÞ stationary, one has the probabilities PiðtÞ ¼ Pi independent of t, and
Pijðt; tÞ ¼ PijðtÞ with t-dependence only and Pijð�tÞ ¼ PjiðtÞ, for all ði; jÞ 2 f1; . . . ;Ng2. Also, one can write for
any i 2 f1; . . . ;Ng and any t,

Pi ¼
XN

j¼1

PijðtÞ ¼
XN

j¼1

PjiðtÞ, (47)

expressing 2N constraints imposed by stationarity for the N2 probabilities PijðtÞ. In terms of the dijðtÞ’s these
constraints can be written

0 ¼
XN

j¼1

PiPjdijðtÞ ¼
XN

j¼1

PiPjdjiðtÞ. (48)

In the general case where Eqs. (43) and (45) hold, these constraints of Eq. (48) due to stationarity, allow no
direct relation either connecting Cxxðt; tÞ and Ixxðt; tÞ alone. Yet, if under the assumption of xðtÞ stationary, we
further impose the sufficient condition for the dijðtÞ’s that

dijðtÞ ¼ d0ij f ðtÞ 8ði; jÞ 2 f1; . . . ;Ng
2, (49)

with d0ij independent of t. This amounts to requiring that, for every ði; jÞ 2 f1; . . . ;Ng2, each dijðtÞ bears a
dependence in t expressable by a common multiplicative factor f ðtÞ accompanied by a complementary term d0ij
possibly function of i and j but independent of t. This relation of Eq. (49) is verified by the stationary Gaussian
noise of Section 3.1 and by its binarized version of Section 3.3. Asymptotically, at large t and t, the condition
of Eq. (49) is also verified by the random telegraph signal of Section 3.4.

Based on Eq. (49), one obtains for instance for the autocorrelation coefficient, from Eq. (43),

rxxðtÞ ¼
CxxðtÞ
s2
¼

f ðtÞ
s2
hxixjd

0
iji, (50)

with the stationary standard deviation s ¼ std½xðtÞ�, and for the autoinformation in the asymptotic regime of
Eq. (46),

IxxðtÞ � 1
2
hd02ijif

2
ðtÞ. (51)

Combining Eqs. (50) and (51), one gets at large t for stationary signals verifying Eq. (49),

IxxðtÞ � A1
2
r2xxðtÞ, (52)

with the prefactor

A ¼
hd02iji

xi

s
xj

s d
0
ij

D E2 . (53)

The prefactor A of Eq. (53) is a nondimensional constant, independent of t, since under stationarity the linear
operator h��i introduces no dependence in t (since Pi and Pj are independent of t). It turns out that A ¼ 1 for
the stationary signals of Sections 3.1 and 3.3, and also for the nonstationary signal of Section 3.4 in the
asymptotic regime of large t and t, yielding the uniform behavior of Eqs. (12), (29) and (40) which is a form of
Eq. (52). Also, Eq. (18) is another form of Eq. (52), with A ¼ ð15

9
Þ
2.

Therefore, for stationary signals verifying Eq. (49), at large t, Eq. (52) expresses that the autoinformation
IxxðtÞ is proportional to the squared autocorrelation r2xxðtÞ. Both functions return to zero at large t, but the
autoinformation IxxðtÞ, which measures the complete statistical dependence between xðtÞ and xðtþ tÞ, always
returns to zero faster than the autocorrelation rxxðtÞ which measures only partial dependence. Nevertheless,
the short-range versus long-range character of the dependence in xðtÞ is assessed qualitatively in the same way,
i.e., exponential decay of rxxðtÞ is associated to exponential decay of IxxðtÞ, and power-law decay of rxxðtÞ is
associated to power-law decay of IxxðtÞ.
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We found no alternative way for a more concrete characterization of the stationary signals verifying
Eq. (49). Eq. (49) is equivalent to PijðtÞ ¼ PiPj þ aijf ðtÞ with t-independent aij , for the departure of the t-
dependent joint probability PijðtÞ from the product of the t-independent marginals Pi, Pj. Yet, as indicated,
simple useful models of random signals, as those reported in Section 3, verify this property.

Ref. [14] restricted to stationary symbolic sequences, also arrived at results similar to those of this
Section 4.2. From relations similar to CxxðtÞ ¼ hxixjdijðtÞi for the stationary autocorrelation and to IxxðtÞ �
hd2ijðtÞi=2 for the asymptotic stationary autoinformation, [14] directly jumps to an asymptotic proportionality
relation IxxðtÞ / C2

xxðtÞ. Here in addition we have a form for a proportionality coefficient A from Eq. (53).

4.3. Stationary binary signal

In the special case of a stationary signal xðtÞ with only N ¼ 2 states, the 2N ¼ 4 (unindependent) constraints
of Eqs. (47)–(48) impose severe limitations on the degrees of freedom of the random signal contained in the
N2 ¼ 4 probabilities PijðtÞ. In this circumstance, it necessarily results the following forms:

P11ðtÞ ¼ P2
1 þ f ðtÞ, ð54Þ

P12ðtÞ ¼ P21ðtÞ ¼ ð1� P1ÞP1 � f ðtÞ, ð55Þ

P22ðtÞ ¼ ð1� P1Þ
2
þ f ðtÞ ð56Þ

Any such stationary binary signal will in fact be defined by (in addition to the states x1 and x2) one scalar P1

and one even function f ðtÞ. The binary signal of Section 3.3 is one member of this class. Eqs. (54)–(56) are
equivalent to

d11ðtÞ ¼
1

P2
1

f ðtÞ, ð57Þ

d12ðtÞ ¼ d21ðtÞ ¼ �
1

P1P2
f ðtÞ, ð58Þ

d22ðtÞ ¼
1

P2
2

f ðtÞ, ð59Þ

with P2 ¼ 1� P1, which obviously satisfy Eq. (49). The sufficient condition Eq. (49) is thus always satisfied by
any stationary binary signal. Therefore, Eq. (52) is expected to hold for any stationary binary signal.
Moreover, as we shall show next, the prefactor A in Eq. (52) is always 1 for a stationary binary signal.

From Eqs. (54) to (56) or Eqs. (57) to (59), one obtains from their definitions exact expressions for the mean
E½xðtÞ� ¼ x1P1 þ x2P2, the variance std2½xðtÞ� ¼ ðx1 � x2Þ

2P1P2, the autocovariance function

CxxðtÞ ¼ ðx1 � x2Þ
2f ðtÞ, (60)

the autocorrelation coefficient

rxxðtÞ ¼
1

P1P2
f ðtÞ, (61)

and the autoinformation function

IxxðtÞ ¼ � P1 logðP1Þ � P2 logðP2Þ þ 2½P1P2 � f ðtÞ� log½P1P2 � f ðtÞ�

þ ½P2
1 þ f ðtÞ� log½P2

1 þ f ðtÞ� þ ½P2
2 þ f ðtÞ� log½P2

2 þ f ðtÞ�. ð62Þ

Since from Eq. (61) one has f ðtÞ ¼ P1P2rxxðtÞ, it results from Eq. (62) that for a stationary binary signal the
autocorrelation rxxðtÞ uniquely determines the autoinformation IxxðtÞ. Moreover, when P1 ¼ P2 ¼

1
2
, Eq. (62)

reduces to the form of Eq. (28), showing that, not only the binarized stationary Gaussian noise of Section 3.3,
but any stationary signal binarized at its median (to get P1 ¼ P2 ¼

1
2
), will verify Eq. (28).

In the asymptotic regime where Eq. (51) holds, one obtains

IxxðtÞ � 1
2

1

P1P2

� �2

f 2
ðtÞ, (63)
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Finally, as announced, for the stationary binary signal, one always observes the relation

IxxðtÞ � 1
2
r2xxðtÞ (64)

between the autocorrelation and autoinformation functions in the asymptotic regime of t large.
For the special case of a stationary binary sequence with states x1 ¼ 1 and x2 ¼ 0, [13] arrived at results

similar to those of this Section 4.3.

4.4. Summary of asymptotic behavior

In the general situation, because of Eqs. (43) and (45) no direct relation can be expected to hold between the
autocorrelation and autoinformation functions, even for stationary signals. In the asymptotic situation of
large delay t!�1 when xðtÞ and xðtþ tÞ return to independence, it sufficies that the signal verify the
condition of Eq. (49), to allow relation (52) to hold between the autocorrelation and autoinformation
functions.

A stationary binary signal always satisfies sufficient condition (49). Therefore in the asymptotic situation of
large delay t!�1, it verifies relation (52), and moreover with a prefactor A which is always 1.

We shall now examine another model, for a nonstationary random signal, which especially displays long-
range dependence, but which does not satisfy sufficient condition (49).

5. A model of long-range dependent signal

We now consider a discrete-time model [16,17], with time step Dt, and t ¼ kDt with k integer. For the
discrete time t40, we introduce the system

UðtÞ ¼ Uðt� DtÞ þ uðtÞ, ð65Þ

X ðtÞ ¼ max½X ðt� DtÞ;UðtÞ�, ð66Þ

xðtÞ ¼ X ðtÞ � X ðt� DtÞ, ð67Þ

with the initial condition Uð0Þ ¼ X ð0Þ ¼ 0. For all times t ¼ kDt40 in Eq. (65), the input quantities uðtÞ are
independent and identically distributed random variables. For simplicity of notation, we set for the sequel
Dt ¼ 1 making t an integer time.

The system of Eqs. (65)–(67) produces a random signal xðtÞ which represents the increments of the running
maximum X ðtÞ of the random walk UðtÞ having independent increments uðtÞ. Concretely, xðtÞ is formed by
successions of intervals where xðtÞ ¼ 0 interrupted by bursts where xðtÞ40, with these successions occurring in
a self-similar fashion over all time scales. The resulting self-similar structure for xðtÞ is visible in Fig. 1 on a
realization; it will also be expressed by power-law forms for the autocorrelation and autoinformation
functions of xðtÞ as we shall see.

According to Eq. (66), xðtÞ40 at each time t where the walk UðtÞ realizes a first passage. Also xðtÞ possesses
a renewal property, since according to Eq. (66), at each time t where xðtÞ40, one has X ðtÞ ¼ UðtÞ, and for the
subsequent evolution of the increment x it is just as if the system had been reset to its initial condition
X ¼ U ¼ 0.

We now consider the simple case of the binary input uðtÞ ¼ �1 equiprobably, for any integer t40. In
this case, the values accessible to the increment xðtÞ reduce to 0 or 1. For any integers t40 and t40, we
introduce the marginal probabilities PiðtÞ ¼ PrfxðtÞ ¼ ig for i 2 f0; 1g, and the joint probabilities Pijðt; tÞ ¼
PrfxðtÞ ¼ i;xðtþ tÞ ¼ jg for ði; jÞ 2 f0; 1g2. One has P11ðt; tÞ ¼ Prfxðtþ tÞ ¼ 1 j xðtÞ ¼ 1g 	 P1ðtÞ. Because of
the renewal property, Prfxðtþ tÞ ¼ 1 j xðtÞ ¼ 1g ¼ FðtÞ, a function which only depends on t, and verifies
Fð0Þ ¼ 1 and

FðtÞ ¼ P1ðtÞ ¼ E½xðtÞ� ¼ E½x2ðtÞ� (68)

for all t40. One then deduces

P0ðtÞ ¼ 1� P1ðtÞ ¼ 1� FðtÞ, (69)
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Fig. 1. One realization of the random signal xðtÞ from Eqs. (65) to (67) when uðtÞ ¼ �1 equiprobably, represented over time intervals of

increasing durations showing the self-similarity of xðtÞ.
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and

P11ðt; tÞ ¼ FðtÞFðtÞ. (70)

One can right away deduce the autocorrelation function

Rxxðt; tÞ ¼ E½xðtÞxðtþ tÞ� ¼ 1	 1	 P11ðt; tÞ ¼ FðtÞFðtÞ. (71)

One also has P10ðt; tÞ ¼ Prfxðtþ tÞ ¼ 0jxðtÞ ¼ 1g 	 P1ðtÞ, yielding

P10ðt; tÞ ¼ ½1� FðtÞ�FðtÞ. (72)

Since P1ðtþ tÞ ¼ P11ðt; tÞ þ P01ðt; tÞ, it comes

P01ðt; tÞ ¼ Fðtþ tÞ � FðtÞFðtÞ, (73)

and since P0ðtþ tÞ ¼ P00ðt; tÞ þ P10ðt; tÞ, it comes

P00ðt; tÞ ¼ 1� Fðtþ tÞ � ½1� FðtÞ�FðtÞ. (74)

The marginals PiðtÞ and joint probabilities Pijðt; tÞ for any ði; jÞ 2 f0; 1g2, are therefore all known by Eqs.
(68)–(74) through function Fð�Þ. This function Fð�Þ can be expressed, according to the properties of the
random walk UðtÞ with increments uðtÞ ¼ �1, as

FðtÞ ¼
Xt

n¼1

jðn; tÞ (75)

for any integer tX1, where jðn; tÞ is the probability of a first passage in U ¼ n at step t of the random walk U

started from U ¼ 0 at step 0. This is because xðtÞ ¼ 1 is equivalent, according to Eq. (66), to a first passage of
the walk U at step t.

According to Ref. [18, p. 89, Eq. (7.5)], one has a jðn; tÞ ¼ 0 for n and t with opposite parity, and for n and t

with same parity

jðn; tÞ ¼
2�t

t
nbino½t; ðtþ nÞ=2�, (76)

where binoð�; �Þ is the standard binomial coefficient.
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The sum of Eq. (75) can be explicitly evaluated: for tX2 even, one has

FðtÞ ¼
2�t

t
t!

1
t�2
2

	 

! t

2

	 

!
, (77)

and for t42 odd, one has

FðtÞ ¼
2�t

t
t!

1
t�1
2

	 

! t�1

2

	 

!
. (78)

Eqs. (77)–(78) allow exact evaluations of both the autocorrelation and autoinformation functions of xðtÞ for
any t40 and t40, which however come as rather complicated expressions. We shall be interested now in the
special case of the asymptotic regime where 15t5t. In this regime, from Eqs. (77)–(78) one finds at leading
orders in t and t,

FðtÞ ¼ E½xðtÞ� � at�1=2, (79)

with the constant a ¼ 1=
ffiffiffiffiffiffi
2p
p

, and the autocorrelation function

Rxxðt; tÞ ¼ FðtÞFðtÞ � a2t�1=2t�1=2. (80)

Eqs. (79)–(80) establish xðtÞ as a nonstationary long-range dependent random signal with power-law
autocorrelation. The autoinformation Ixxðt; tÞ will depend separately on FðtÞ, FðtÞ and Fðtþ tÞ, just as the
joint probabilities Pijðt; tÞ of Eqs. (70)–(74) do. Since Rxxðt; tÞ from Eq. (71) only depends on the product
FðtÞFðtÞ, no general relation is expected to hold between Ixxðt; tÞ and Rxxðt; tÞ alone.

Next, from the definition of Eq. (41), one finds at leading orders in t and t,

d11ðt; tÞ �
1

2
tt�1, ð81Þ

d10ðt; tÞ � �
a

2
tt�3=2, ð82Þ

d01ðt; tÞ � �
a

2
t1=2t�1, ð83Þ

d00ðt; tÞ �
a2

2
t1=2t�3=2. ð84Þ

Clearly, the above coefficients dijðt; tÞ do not verify the sufficient condition of Eq. (49) which would guarantee
the asymptotic relation of Eq. (52) to hold between autocorrelation rxxðtÞ and autoinformation IxxðtÞ.

However, in the asymptotic regime, one also finds at leading orders in t and t, from their definitions,

Cxxðt; tÞ �
a2

2
t1=2t�3=2, ð85Þ

rxxðt; tÞ �
a

2
t3=4t�5=4, ð86Þ

and

Ixxðt; tÞ �
a2

8
t3=2t�5=2. (87)

Finally, in this asymptotic regime, one observes again the same relation

IxxðtÞ � 1
2
r2xxðtÞ (88)

between the autocorrelation and autoinformation functions.
The theoretical expressions of Eqs. (86)–(88) are verified in Fig. 2 through numerical simulation of the self-

similar random signal xðtÞ of Fig. 1.
The results of Fig. 2 confirm the long-range dependence in the signal xðtÞ with power-law evolutions for

both the autocorrelation and autoinformation functions. Moreover, the simple asymptotic relation of Eq. (88)
between the autocorrelation and autoinformation functions is obtained for this type of nonstationary long-
range dependent random signal.
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Fig. 3. One realization of the two-state random signal yðtÞ represented over two time intervals of increasing durations showing the self-

similarity of yðtÞ.
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The signal xðtÞ of Figs. 1 and 2 results from a very simple generation algorithm, based on the first-order
recurrence of Eqs. (65)–(67). Its numerical implementation is straightforward and provides a very simple
approach for producing a random signal with long-range dependence persisting over time duration of
arbitrary length, as long as the process is left to run. To obtain more variety in the appearance of the random
signal while preserving the long-range dependence and simplicity of generation, its is possible to use the
process of Eqs. (65)–(67) to drive a secondary random signal, in various ways.

For instance, we used the random signal xðtÞ of Fig. 1 to drive a binary random signal yðtÞ ¼ �1, with yðtÞ

flipping its state between �1 and þ1 at each time t where xðtÞ40. A realization of this yðtÞ is plotted in Fig. 3,
over two time intervals of increasing durations, which provides visual appreciation of the self-similar character
of yðtÞ, inherited from the self-similarity of the underlying process xðtÞ from Eqs. (65) to (67).

Fig. 4 presents for yðtÞ the numerical evaluation of autocorrelation function ryyðt; tÞ and autoinformation
function Iyyðt; tÞ. The theoretical statistical properties of yðtÞ of Fig. 3 are more intricate than those of xðtÞ of
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similarity of zðtÞ.
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Fig. 1, and we did not obtain analytical expressions for ryyðt; tÞ and Iyyðt; tÞ. Yet, the numerical evaluations of
Fig. 4 clearly manifest the long-range dependence of yðtÞ with power-law evolutions of the autocorrelation
ryyðt; tÞ�t�1=2 and of the autoinformation Iyyðt; tÞ�t�1 at large delay t. Also, although yðtÞ is a nonstationary
binary signal and therefore does not belong to the conditions of Section 4.3, Fig. 4 shows that yðtÞ nevertheless
verifies the simple asymptotic relation Iyyðt; tÞ � 1:5	 1

2
r2yyðt; tÞ in place of Eq. (64).

Next, we used a random signal x1ðtÞ similar to xðtÞ of Fig. 1 to drive a binary random signal z1ðtÞ ¼ 0=1,
with z1ðtÞ flipping its state between 0 and 1 at each time t where x1ðtÞ40. Another similar but independent
x2ðtÞ was used to drive another binary signal z2ðtÞ ¼ 0=1 in the same way. At each time t, the binary values of
z1ðtÞ and z2ðtÞ are collected to form the two bits of the binary representation for a signal zðtÞ; this zðtÞ therefore
results as a four-state random signal. A realization of zðtÞ is plotted in Fig. 5, over two time intervals of
increasing durations, also to provide visual appreciation of self-similarity in zðtÞ.

The self-similarity of zðtÞ is quantitatively confirmed by its autocorrelation coefficient rzzðt; tÞ which was
numerically evaluated and is shown in Fig. 6, revealing a power-law evolution rzzðt; tÞ�t�1=2 at large delay t.
In the same way, numerical evaluation was performed of the autoinformation function Izzðt; tÞ shown in
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Fig. 6, which is also found to follow a power-law Izzðt; tÞ�t�1 at large delay t. Moreover, an asymptotic
relation is observed in Fig. 6 as Izzðt; tÞ � 3	 1

2
r2zzðt; tÞ.

6. Summary and discussion

In this paper we have presented different models of random signal for which both the autocorrelation
function and the autoinformation function are given explicitly in analytical form. These models can especially
serve as reference models to test various estimation methods for these functions on experimental signals,
although this issue of estimation was not explicitly addressed here [19–22]. In general the autocorrelation and
autoinformation functions are not connected in a one-to-one way. However, in the asymptotic regime of large
separation times when both functions return to zero, we have investigated conditions (summarized in the
sufficient condition of Eq. (49)) where a relation can exist between them. This sufficient condition is fulfilled by
common models of stationary random signal, but may not be fulfilled by more complex nonstationary signals.
In this direction, we have presented a nonstationary model for several random signals with long-range
dependence, that do not a priori fulfill this sufficient condition, but that nevertheless exhibit also a simple
asymptotic relation between the autocorrelation and autoinformation functions. The various behaviors
observed for the autocorrelation and autoinformation functions are summarized in Table 1.

The results of Table 1 clearly show that the behaviors of the autocorrelation and autoinformation functions
do not generally coincide, so that both remain complementary tools for investigating random signals. From
Table 1 however, there seems to exist a uniform asymptotic behavior where the autoinformation is
proportional to the square of the autocorrelation. Only in specific cases reported in Table 1 has this
proportionality been strictly proved to hold, for stationary signals verifying sufficient condition (49). The more
complex nonstationary signals also tested in Table 1, although they do not satisfy (49), were also proved
theoretically (signal of Fig. 2) or observed numerically (signals of Figs. 4 and 6) to display this proportionality.
This asymptotic proportionality between the autoinformation and the squared autocorrelation thus appears to
be a very common behavior for random signals, stationary or nonstationary. However, based on Eqs. (43) and
(46), this proportionality cannot a priori be expected to hold in general, as long as the square of a linear
average (Eq. (43)) is not the average of the squares (Eq. (46)). These possibilities of behaviors exhibited here
may be useful for the interpretation of the properties of complex real signals, and the evolution at large
separation of the statistical dependence they may contain.

Also, we want to emphasize that the model of Section 5 for long-range dependent random signals, is a recent
model, for which the autocorrelation and autoinformation functions are calculated and compared here for the
first time. The main advantage of the model of Section 5 is that it is able to generate long-range dependence
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Table 1

Summary of the results concerning the behaviors of the autocorrelation and autoinformation functions

General relation between autocorrelation and autoinformation Asymptotic relation Ixx � A	 1
2
r2xx

Nonstationary

signal

No, based on Eqs. (43) and (45)

even for Gaussian or binary signal.

Yes,

example of Fig. 6 (A � 3).

Nonstationary

binary signal

No,

counterexample of Eq. (71).

Yes,

examples of Eq. (40) (A ¼ 1),

Fig. 2 (A ¼ 1), Fig. 4 (A � 1:5).

Stationary

signal

No, based on Eqs. (43) and (45),

except for Gaussian or binary signals.

Yes,

sufficient condition Eq. (49),

example Eq. (18) (A ¼ ð15=9Þ2).

Stationary

binary signal

Yes,

proof of Eq. (62).

Yes, always with A ¼ 1,

proof of Eq. (64).

Stationary

Gaussian signal

Yes,

proof of Eq. (11).

Yes, always with A ¼ 1,

proof of Eq. (12).
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over time horizons of arbitrary durations. This is made possible by the recurrent form of the model, expressed
by the first-order recurrence of Eqs. (65)–(67). This recurrence is straightforward to numerically implement,
and as long as it is left to run, it generates a random output with long-range dependence which keeps
developing in time. This has to be contrasted with other methods for generating long-range dependent random
signals, for instance wavelet synthesis, inverse Fourier transform, Cholesky decomposition [23,24]. These
methods do not implement a recurrent synthesis over an a priori unlimited time horizon, but a block synthesis,
where the duration of the long-range dependent signal has to be specified and limited before the method is run.
Especially, with these methods, if one a posteriori wants to add to the signal only one more point with long-
range dependence, there is no other way than to restart anew a complete synthesis with a block size longer by
one unity. Other methods based on fractional integration can also be used to generate long-range dependent
random signals [23,24]. These methods can lead to recurrent algorithms for synthesis. But fractional systems
are infinite-order systems, and implementing them in a recurrent form requires a truncation to finite-order,
which translates necessarily into a long dependence restricted to a limited time horizon. The method of Section
5, based on a first-order recurrence, does not have these limitations. Another possible approach allowing to
generate random sequences with long-range dependence is based on an iterative transformation which
randomly alternates expansion and substitution, and which is repeatedly applied to evolve a string of symbols.
An interesting example is given by the expansion-modification system presented in Ref. [25], with an extension
in Ref. [26]. Both processes of Refs. [25,26] reach power-law behavior of the autocorrelation, in common with
our model of Section 5, yet with a generating mechanism which has more a spatiotemporal nature, and which
differs from the simple temporal recurrence of Eqs. (65)–(67). Our recurrence model of Section 5 is specially
convenient for studying the asymptotic behavior of random signals, there where usually the properties of long-
range dependence emerge. This served to us here to compare the asymptotic behaviors of the autocorrelation
and autoinformation functions. Also the method for producing zðtÞ in Section 5, where Eqs. (65)–(67) are used
to generate the random bits of the binary representation of a multi-state long-range dependent signal, is new
here. This approach, or other approaches using Eqs. (65)–(67) to drive other secondary random signals, can
ground various techniques for generation of long-range dependence over arbitrary time horizons. The present
theoretical results and models may be useful to contribute to the study of structures and informational
contents in complex processes and signals.
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