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Abstract. The present paper proposes a model which 
applies formal neural network modeling techniques to 
construct a theoretical representation of the cerebeUar 
cortex and its performances in motor control. A schema 
that makes explicit use of propagation delays of neural 
signals, is introduced to describe the ability to store 
temporal sequences of patterns in the Golgi-granule cell 
system. A perceptron association is then performed on 
these sequences of patterns by the Purkinje cell layer. 
The model conforms with important biological con- 
straints, such as the known excitatory or inhibitory 
nature of the various synapses. Also, as suggested by 
experimental evidence, the synaptic plasticity underly- 
ing the learning ability of the model, is confined to the 
parallel f iber-  Purkinje cell synapses, and takes place 
under the control of the climbing fibers. The result is a 
neural network model, constructed according to the 
anatomy of the cerebellar cortex, and capable of learn- 
ing and retrieval of temporal sequences of patterns. It 
provides a framework to represent and interpret prop- 
erties of learning and control of movements by the 
cerebellum, and to assess the capacity of formal neural 
network techniques for modeling of real neural systems. 

1 Introduction 

The cerebellar cortex is a biological system exhibiting 
both a structure and a general function which are 
relatively well known. From an anatomical standpoint, 
its structure shows great uniformity of constitution over 
its whole extent. From a physiological standpoint, it 
has been recognized that its general function is to play 
a role in motor control. This relative simplicity, both 
anatomically and physiologically, prompts us to look 
for a theoretical description of the neuronal processes 
that take place in the cerebellar cortex. The general 
problem raised by such a theoretical modeling of the 
cerebellar cortex is to determine an approach that al- 
lows us to capture the mechanisms of information 

processing which result in performances of learning, 
coordination, and/or control of movements. 

Different theoretical models have been proposed for 
the cerebellar cortex in the past. Both Marr (1969) and 
Albus (1971) suggested a representation based on a 
specific assumption concerning the coding of informa- 
tion at the level of the mossy fibers and granule cells, 
and on an association mechanism for spatial patterns 
that is of a perceptron type. These models, however, do 
not address the temporal aspect of information process- 
ing which is necessary to account for properties of 
learning and coordination of movements. 

Fujita (1982) introduced an adaptive filter model 
that relies mainly on control and optimization theories. 
This model exhibits temporal information processing 
abilities, but it fails to respect biological constraints. 
Moreover, it makes use of a learning mechanism based 
on a mean-square minimization whose biological plaus- 
ibility is difficult to justify. Dunin-Barkowski and Lari- 
onova (1985) presented an application of concepts from 
information theory to evaluate the quantity of informa- 
tion that can be stored in the cerebellar cortex, depend- 
ing on the properties and numbers of the different 
neurons. The work by Pellionisz and Llinas (1982), uses 
a new approach based on tensor calculus to describe 
neural processes. Although quite original and interest- 
ing, this work remains largely speculative. 

In this paper, a new model is proposed, which shows 
temporal information processing abilities, and which 
seeks to closely respect both the known anatomy and 
physiology of the cerebellar cortex. Our approach uti- 
lizes and extends methods and techniques originally 
derived from the field of formal neural networks 
(Hopfield 1982; Rumelhart and McClelland 1986), and 
applies them to construct a theoretical model for a 
biological neural network. A schema is introduced, 
which makes explicit use of propagation delays of neural 
signals in a network, to represent a storage ability of 
temporal sequences of patterns in the Golgi-granule cell 
system. A perceptron association is then performed on 
these sequences of patterns by the Purkinje cell layer. 
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The model assigns a specific role to each of the different 
classes of neurons and fibers of the cerebellar cortex, 
and conforms with fundamental biological constraints, 
such as the known excitatory or inhibitory nature of the 
various synapses. As suggested by experimental evi- 
dence, and as also proposed by other investigators 
(Marr 1969; Albus 1971; Fujita 1982), the synaptic 
plasticity underlying the learning ability of our model, 
is confined exclusively to the parallel f ibe r -  Purkinje 
cell synapses, and takes place under the control of the 
climbing fibers. The result is a neural network model, 
constructed according to the structure of the cerebellar 
cortex, and capable of learning and retrievel of tempo- 
ral sequences of patterns. It provides a framework to 
represent and interpret performances of learning, coor- 
dination and control of movements of the cerebellum. 
It also gives an estimate of the capacity of formal 
neural network techniques for modeling of real neural 
systems. 

2 Biological organization of the cerebellar cortex 

Many details of the cerebellar anatomy and physiology 
still are largely unknown at the present time. The 
experimental information collected so far reveals an 
important anatomical regularity together with very 
complex functional properties. In this section, we 
briefly will review the main findings on the cerebellar 
cortex that are well acceigted, and on which our model 
is based. The reference works are Eccles et al. (1967); 
Marr (1969); and Ito (1984). 

The cerebellar cortex is a neural system (see Fig. 1) 
with two afferent pathways: the mossy fibers on the one 
hand, and the climbing fibers on the other hand. The 
efferent pathway is constituted exclusively by the Purk- 
inje cell axons. The afferent pathways carry information 
from the cerebral cortex, or peripheral sensory organs; 
the Purkinje cells, in turn, project efferences into the 
motoneurons via cerebellar nuclei. 

The incoming signals carried by the mossy fibers 
reach the glomeruli, which are complex synaptic struc- 
tures distributing signals to multiple granule cell inputs. 
Granule cell axons form the parallel fibers, which can 
be viewed as a kind of data bus that conveys internal 
information throughout that cortex. Golgi cells are 
activated both by terminals of  the parallel fibers, and by 
mossy fibers; they synapse back on granule cells and 
thus introduce a feedback loop. Purkinje cells receive 
inputs from parallel fibers, either through direct trans- 
mission, or through an indirect transmission via in- 
terneurons, namely the basket and the stellate cells (see 
Fig. 1). The Purkinje cells also receive inputs from the 
climbing fibers and those contacts appear to be one-to- 
one. 

It sometimes is advantageous to consider the 
anatomical unit formed by the set of neurons and fibers 
which are directly or indirectly connected to a given 
Purkinje cell. Such a Purkinje unit in a human cerebel- 
lum contains approximately 80,000 granule cells. A 
given granule cell samples 3 to 5 mossy fibers, whereas 
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Fig. 1. Diagrammatic representation of the structure of the cerebellar 
cortex 

a given mossy fiber makes contact with an average of 500 
granule cells. There is one Golgi cell per 1 to 3 Purkinje 
units, and each Golgi cell synapses with approximately 
5700 granule cells. A Purkinje cell receives inputs from 
40 basket or stellate cells. It has been suggested (Chauvet 
1986, 1988) that such a structural unit around a Purkinje 
cell may be considered also as a functional unit, in 
charge of the regulation of a given parameter in the 
coordination of movement. We also note the extreme 
divergence of the number of granule cells compared to 
the numbers of the other cells of the cerebellum. This 
unique feature of the granule cells needs to be accounted 
for in any model on cerebellar cortex. 

It is generally assumed (see Eccles et al. 1967; 
Geiger 1977; Ito 1984) that in the neural network of the 
cerebellar cortex reside, at least for a part, the abilities 
of motor learning, motor coordination, and control of 
movement. However, little is known about the global 
information processing schemes, as well as the detailed 
mechanisms that underlie such performances. 

3 A model for the Golgi-granule cell system 

3.1 Structure and dynamics of the model 

To represent the structure of the Golgi-granule cell 
system, we consider a neural network (see Fig. 2), 
consisting of a layer of a number Net of granule cells, 
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Fig. 2. Structure of the Golgi-granule cell system 

referenced with index j ( j  = 1 to Ng,). This granule cell 
layer receives feedback from a set of a number Nco of 
Golgi cells, referenced with index k (k = 1 to Nao ). 
Physiological data show that Ngr >> Nao. Signals from a 
set of N,, mossy fibers, referenced with index i (i = 1 to 
Arm), are distributed by the glomeruli to both granule 
and Golgi cell inputs. Granule cell outputs form the 
parallel fibers, which constitute inputs to the Golgi 
cells. Golgi cell outputs, in turn, are fed back on 
granule cell inputs. 

The synaptic efficacies in this neural network are 
denoted as follows: 
#,j for the synapse from mossy fiber i on granule cell j, 
~/~k for the synapse from mossy fiber i on Golgi cell k, 
ajk for the synapse from granule cell j on Golgi cell k, 
Vk/ for the synapse from Golgi cell k on granule cell j. 
From physiological data (see Ito 1984) we know that 
the synapses represented by #~, r/~k and tr/k are excita- 
tory, and thus will receive a positive sign in our model. 
On the other hand, the synapses vkj are known to be 
inhibitory, and will be given a negative sign. After 
having presented the structure, we will now discuss the 
dynamics of the Golgi-granule cell system. 

We note, at time t, U,(t) the signal conveyed by 
mossy fiber i, Xj(t) the output signal of granule cell j 
and Zg(t) the output signal of Golgi cell k. To allow 
direct computer simulations, we chose a discrete-time 
representation for the evolution of the system, letting 
t take only integer values. The activities U~, X/and  Z k 
are quantized with values - 1  or + 1, and are inter- 
preted as deviations from the mean activities of the 
neurons. 

Let us assume that a Purkinje unit has a unique 
Golgi cell (Nao = k = 1). This Golgi cell receives inputs 
from a large number of granule cells. These input 
signals have to travel along parallel fibers before they 
reach the Golgi cell; in this model, we shall explicitly 
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take into account the traveling times of these signals 
along the parallel fibers. 

For that purpose, we assume that the set of granule 
cells connected to the Golgi cell can be divided into a 
number Nctas of classes, which each contains a number 
Ngpc of granule cells. Thus, we assume that 
Ng r -= Nclas "Ngpc. These classes of granule cells are 
given a rank, ranging from rank 1 to rank Nc+,s. The 
rank of a given class expresses how distant this class is 
in spatial relation to the Golgi cells. So, if we consider 
the signals X/(t), present at time t on the granule cell 
outputs, we suppose that only the output signal or 
those granule cells belonging to class 1 can reach the 
Golgi cell at the same time t. The output signal from 
the granule cells of class 2 will reach the Golgi cell at 
time t + l, and so on, up to the output signal from the 
granule cells of class Ncla~, which will reach the Golgi 
cell at time t + (Nc~as - 1). 

For the calculation of the soma potential of the 
Golgi cell, we also have to include contribution of the 
input signals Ui coming from the mossy fibers. For the 
operation described in this model, we consider that 
these signals U,. are constant in time. We thus define the 
soma potential VCl~ of the Golgi cell corresponding to 
k = 1, at time t, as: 

1 Nclas -- 1 (c + l)Ngpc 

V~~ = Ng~,. E E aj,Xj(t -- c) 
c=O j = c N g p c +  I 

1 Nm 
- ~ - ~ m i ~ _ _ l  . i l f  i . ( 1 )  

We then express the output Z~(t + 1) of the Golgi cell 
1 at time t + 1 as a non-linear function of its soma 
potential: 

Z, ( t  + 1) = sgn(VT~ (2) 

Now, to express the soma potentials of the granule 
cells, we also take into account the propagation delays 
of the signals coming from the Golgi cell. In the same 
way, the output signal of the Golgi cell at time t, will 
reach a given granule cell at a later time, depending on 
the class to which this granule cell belongs. After also 
including the mossy fiber inputs, we express the soma 
potential Vgr(t) of the granule cell j, at time t, as: 

v~r(t) = vvZ,(t -c) + ~-r pi/Ui, 
1 .  m i=1 

when j ~ [cNgp~ + 1,(c + 1)Ngpc ] ; (3) 

for c = 0 to Nct,~ -- 1. 

And the output Xj(t + 1) of granule cell j, at time 
t + 1, is: 

Xj(t + li = sgn(Vg~(t)) �9 (4) 

In the definitions (1) and (3) of the soma potentials, 
we have divided each partial sum that corresponds to 
the contribution of each category of cells, by the num- 
ber of cells in this category. This operation provides all 
categories of cells with a comparable relative impor- 
tance in the dynamics of the network. Failing to do 
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such a normalization process of the activities of the 
different categories of  neurons would imply that only 
the most numerous category of  cells plays a significant 
role in the dynamics of  the system. 

To specify the values of  the synaptic efficacies of  
this neural network, we assumed, as it has been done by 
other investigators (Marr  1969; Albus 1971; Fujita 
1982), that no synaptic plasticity occurs in the Golgi- 
granule cell system. Therefore, each value of  the synap- 
tic efficacies of  this system is fixed and assigned a sign 
according to the known exitatory or inhibitory nature 
of the synapse. 

Once the values for the synaptic efficacies have been 
specified, (1), (2), (3) and (4) determine the dynamics of  
the Golgi-granule cell system. For  operation of  the 
network, a constant input pattern U is presented to the 
mossy fibers. As a result, the output pattern X(t) formed 
by the granule cell outputs at time t, shows a complex 
evolution as time proceeds, due to the feedback lop at 
the Golgi-granule cell level. Thus, for a given constant 
input pattern U, the iteration of  the network dynamics 
generates a temporal sequence of  output patterns X(t), 
which is labelled by the input pattern U. The presenta- 
tion of  a different input pattern U will generate a 
different sequence of output patterns X(t). 

This important property of sequence generation of 
the neural network is a consequence of  both the pres- 
ence of a feedback loop and the intervention of  propa- 
gation delays in the system. The feedback loop is 
necessary to endow the network with an intrinsic dy- 
namic behavior, instead of  a static one-to-one input -  
output association behavior, as has been described in 
earlier models (Marr  1969; Albus 1971). The propaga- 
tion delays are useful to provide sufficiently rich dy- 
namic evolutions, in the presence of  a very absorbant 
feedback loop, as revealed by anatomical data (a large 
number of  granule cells fed back through a single Golgi 
cell). With such an absorbing feedback, simulations 
have shown that no interesting evolutions of the system 
can be obtained if propagation delays between the 
incoming signals on a Golgi cell are not taken into 
account, because in such a case the dynamic trajectories 
would be reduced to fixed points or two-state trajecto- 
ries most of  the time (Chapeau-Blondeau et al. 1989). 

3.2 Simulation results 

Equations (1), (2), (3) and (4) have been used for 
computer simulations of  the time evolution of the 
Golgi-granule cell system. These simulations allowed us 
to visualize the temporal sequences generated by the 
network in various situations, and to study the influ- 
ence on these sequences of  the four principal parame- 
ters on which they depend: 

/) the initial values assigned to the patterns X and Z; 
ii) the numbers of the different cells in the network, 

especially Ngpc and Nclas ; 
iii) the particular set of  values chosen for the synaptic 

efficacies; and 
iv) the constant input pattern U that is presented to the 

network. 

For  the simulations, the values of  the synaptic efficacies 
were chosen randomly, with a uniform probability, 
between 0 and 1 for the excitatory synapses #v, r/ik and 
trjk, and between - 1  and 0 for the inhibitory synapses 
vkj. The influence of the procedure for the choice of  
synaptic values will be discussed later. 

Within the framework of this discrete representa- 
tion, only a finite number of  output states X are acces- 
sible to the network. Moreover, because the dynamics 
of the network is purely deterministic, the time trajec- 
tory of  X(t) always reaches, after a finite transient path, 
a periodic attractor or cycle. This limit cycle may 
reduce, in some cases, to a single state or fixed point, 
but this outcome becomes very unlikely as the number 
of cells in the system becomes large. 

Stable rest state 

A case in which the dynamics always was found to 
converge onto a fixed point, was the situation in which 
is presented to the network an input pattern U that 
contains only - l ' s .  In such case, the network rapidly 
reaches a fixed output state X s which depends on the set 
of values of the synaptic efficacies, but which is found 
independent of the initial values of  the patterns X and 
Z. Such a fixed point Xs represents the stable state at 
which the network arrives in response to a complete 
deficit of  input activities, represented by a pattern U 
containing only - l's. This stable state can be viewed as 
the rest state of the network in the absence of  activity 
on the mossy fibers. In general, this stable state X~ is a 
Ngr-Component vector that contains both - l ' s  and 
+ l's. It is this vector Xs, and the associated vector Zs, 
present in the stable state, that we took as initial 
quantities for the iteration of the dynamics of the 
network in response to an arbitrary input pattern U. 

Influence of  the numbers of  cells 

When iterating the dynamics, starting from the stable 
state of  the network, it was observed that both the 
transient path and the limit cycle of  the output trajec- 
tory increase in length, as the numbers of the different 
cells increase. 

Let us consider, for example, a small network with 
one Golgi cell associated to Arm = 4 mossy fibers, and 
N g r=2 0  granule cells (split into Nczas=10 and 
Ngpc = 2). In such a network, 2 um= 16 different input 
patterns U can be presented, and a very large number 
2ue r ~ l06 of different output patterns X can result. For  
a given set of synaptic efficacies, the numerical simula- 
tions of  the dynamics showed the various temporal 
sequences that can be generated by the network in 
response to different input patterns U. Depending on U, 
the output sequences observed were formed typically of 
a transient path, of variable length, containing 10 to 
100 states, followed by a limit cycle that also was 
variable in length, and contained a few tens of states. 
These "typical" properties were maintained upon 
changing the values for the synaptic efficacies; however, 
the particular sequence generated in response to a given 
U generally differed. 



As the numbers Ngr and Arm increase, the trajecto- 
ries of X(t) become richer and richer: their variety, 
transient part, and limit cycle all were found to in- 
crease. For a sufficiently large number of granule cells 
(Ng  r = 200, Ngpc = 2 for example), both the transient 
path and limit cycle are too long to be identified 
separately, and the trajectory appears as a non-periodic 
sequence of patterns. In biological neural networks, this 
type of situation can be expected to apply, due to the 
large number of cells (especially of granule cells). 

In the model, the exact decomposition of the 
product Nclas" Ngpc in which Ngr is partitioned, does not 
play a critical role, and the characteristic performances 
of the network are maintained provided No/as is suffi- 
ciently large (to preserve notable contribution by the 
propagation delays). When the number Nclas was re- 
duced to 1, the output trajectories shrunk to fixed 
points or two-state trajectories. 

Influence of the synaptic efficacies 

Simulations also revealed that the procedure for the 
choice of the synaptic efficacies does not alter the main 
properties of the model, provided that procedure pre- 
serves the prescribed synaptic signs. Specifically, we also 
tested the procedure for assigning values to the synaptic 
efficacies, which consists in forcing the excitatory 
synapses with value + 1, and the inhibitory synapses 
with value - 1 .  This choice did not alter the ability of 
the network to generate temporal sequences labelled by 
an input pattern U. However, in such extreme case, part 
of the discrimination power of the system was lost, 
because all input patterns U that differed only by circular 
permutations of their components, were associated with 
the same sequence of output patterns. A random distri- 
bution of synaptic efficacies around a center value seems 
a plausible feature from a biological standpoint, and 
yields greater discrimination power of the system. Spe- 
cifically, it seems to enable it, in some sense, to distin- 
guish between individual mossy fibers. 

We also investigated the effect of dilution among 
the synapses of our network model. Starting with a set 
of random synapses in the network, we then forced a 
fraction of them to zero, by random choice out of the 
four synaptic classes. 

For small degrees of dilution ( 1% of the synapses or 
less) no significant alterations were induced in gener- 
ated output sequences X(t) of reference length 100 time 
steps. In particular, the limit cycles were not altered in 
general. From a biological standpoint, such small de- 
grees of dilution of the synapses would result from 
natural synapse breakdowns in the system. If dilution 
adds up with time to become more important (superior 
to a few percents), this process can be expected to be 
slow compared to the sequence generation time scale. 
Such a quasi static drift of the synapses can be compen- 
sated for by permanent learning occuring over long 
time scales, and does not interfere significantly with the 
short-time scale operation of sequence generation. 

From the anatomy of the cerebellar cortex, we 
know that, strictly, there does not exist a synapse 
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connecting any possible mossy fiber-granule cell pair. 
To represent and analyze this absence of full connectiv- 
ity in the structure of the system, we diluted important 
fractions of the synapses ( 10% or more) and examined 
how the performance of the network model was 
affected. It appeared that a large degree of dilution can 
be tolerated without alteration of the global sequence 
generation ability of the network. The main effect of 
large synaptic dilution was to reduce the lengths of both 
the transient path and the limit cycle in the output 
trajectory of the network. For instance, for the particu- 
lar network evoked above with Ngr = 200, with a frac- 
tion of 90% of the synapses set to zero, sequence 
generation was still observed, with trajectories showing 
transient paths of few tens of states and limit cycles 
reduced to fixed points. This suggests that dilution of 
synapses can provide a means for the network to con- 
trol the length of the generated sequences. 

Perturbation resistance 

The network, when performing an association between 
one input pattern U and a sequence of output patterns 
X, can tolerate a certain degree of distorsion of the 
input pattern, and still reproduce reliably the output 
sequence. Two types of distorsion of the inputs were 
envisaged. 

One type was to perturbe each signal Ui by addition 
of a random noise of small magnitude, and then exam- 
ine how the output sequence was affected. For an 
output sequence of a reference length of 100 time steps, 
we have computed a mean Hamming distance between 
the patterns X that correspond to one another in the 
output sequences generated in the absence and in the 
presence of noise (the Hamming distances were normal- 
ized to 1 by a division by Ngr). This mean distance was 
then averaged over 1000 sequences of length 100 ran- 
domly picked, to yield an average separation corre- 
sponding to a given noise level. This average separation 
is plotted in Fig. 3 as a function of the magnitude of a 
uniform noise applied to the inputs Uj. These results 
were obtained for a network with Arm = 100 mossy 
fibers and Ngr = 100 granule cells. 

For instance, for a noise level of 0.1 in Fig. 3, an 
average separation of 0.014 means that in a sequence of 
100 time steps, the output of a given granule cell was in 
the wrong state of activity in 1.4 steps on average. For 
a noise level of the order of 0.05 or below, there is, on 
average, less than one error in the output of a granule 
cell when generating a sequence of length 100, which 
gives good probability to reliably reproduce the se- 
quence. With this type of perturbation, the noise resis- 
tance was found to increase with the number of granule 
cells and mossy fibers in the system. This can be ex- 
plained by the fact that noise tends to average out when 
weighted sums of activities are performed by each cell 
evaluating its soma potential through (1) or (3). 

Another type of perturbation of the inputs was 
envisaged, in which, for a small fraction of the signals 
Ui of an input pattern U, the state of activity was 
simply reversed. The "perturbed" output sequence gen- 
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Fig. 3. Average separation of a perturbed and an unperturbed output 
sequence, as a function of the magnitude of a continuous noise applied 
to input signals Ui, and obtained for a network with N m = 100 mossy 
fibers and Ng, = 100 granule cells 
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Fig. 4. Average separation of a perturbed and an unperturbed output 
sequence, as a function of the percentage of corrupted (reversed) input 
signals Ui, and obtained for a network with Aim = 100 mossy fibers and 
Ng, = 100 granule cells 

erated under these conditions was then compared to the 
unperturbed sequence with no reversion of  the inputs. 
As before, we computed the mean normalized Ham- 
ming distance between the corresponding patterns in a 
perturbed and unperturbed output sequences of refer- 
ence length 100. This mean distance was then averaged 
over 1000 different output sequences, to yield the aver- 
age separation occuring in the presence of  a given 
fraction of  reversed inputs. Figure 4 shows such an 
average separation as a function of  the percentage of  
corrupted (reversed) input signals Ui, obtained for a 
network with Nm = 100 mossy fibers and Ngr = 100 
granule cells. 

Here, for a fraction of  5% of  corrupted U~ in Fig. 4, 
an average separation of  0.13 means that in a sequence 
of  100 time steps, the output of  a given granule cell was 
in the wrong state of  activity in 13 steps on average. 
With this type of perturbation, the noise resistance 
associated to a given fraction of  corrupted inputs, was 
not improved significantly by increasing the number of  
mossy fibers or granule cells in the system. The com- 
parison of Fig. 4 with Fig. 3 shows that the perturba- 
tion resistance of  the system in presence of  input 
reversion is weaker than in presence of continuous 
noise. Only for less than one percent of reversed inputs, 
may we expect to have, on average, less than one error 
in the output of a granule cell when generating a 
sequence of length 100. Such a behavior in response to 
reversions in the input pattern implies, in counterpart, 
that the system is capable of  learning distinctively a 
larger number of  output sequences. We may not a 
priori expect, from a neural network memorizing dy- 
namical sequences, the same degree of generalization 
capability as exhibited by attractor neural networks 
memorizing static patterns. The main task of  the cere- 
bellar cortex in the framework of  the present model is 
to bring dynamical treatment abilities. Error resistance 
may be provided by other neural circuits associated 
with the cerebellar cortex, as those located in the cere- 
bellar nuclei, and behaving as attractor neural net- 
works, to ensure for instance a correct input pattern U. 
Then, given this U, the cerebellar cortex system can 
perform reliable sequence generation, even in the pres- 
ence of  continuous noise superimposed to the inputs. 

Decorrelation of the patterns 

Another property of the neural network is the high level 
of decorrelation it provides between the output patterns 
of a sequence. We define the correlation of  two patterns 
as their normalized dot product (X p- X q ) =  
(1/Ngr) Ej XPX q. Then, any two patterns of  a sequence 
generally show a low correlation (a good decorrela- 
tion), except of course for two occurences of  the same 
patterns in a periodic cycle (see Sect. 5). This decorrela- 
tion property makes the output patterns well suited for 
efficient use in a perceptron association scheme (see 
below). The correlation decreases when the numbers of  
cells in the network increase. From numerical simula- 
tions it comes out that, for a given network, both the 
length of the sequences generated before cycling, and 
the correlations among the patterns in these sequences, 
depend on the values of  the synaptic efficacies. With the 
network dynamics chosen here, there certainly exist 
optimal sets of  synaptic efficacies that lead to sequences 
of maximal length or minimal correlation. However, we 
did not find any obvious means to theoretically derive 
those optimal sets. Instead of  solving an optimization 
problem, another way to attain to long sequences of  
decorrelated output patterns is to increase the number 
of cells in the network. Considering the very large 
number of granule cells existing in the cerebellar cortex, 
this could be the solution implemented in biological 
systems. 
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4 The Purkinje cell layer 

4.1 A perceptron model 

The model proposed here for the Golgi-granule cell 
system exhibits properties of sequence generation. A 
temporal sequence of output patterns is produced as a 
response to a constant input pattern U. The output 
sequence, labelled by input pattern U, is formed with 
output patterns that cannot be specified, but which are 
imposed by the network characteristics. The capacity of 
granting significance to these sequences of nonspecific 
patterns, is a role which can be assigned to the Purkinje 
cell layer. For that purpose we assume in our model, 
that the Purkinje cell layer acts as a multiple perceptron 
(Minsky and Papert 1969), which transforms sequences 
of non-specific patterns generated by the Golgi-granule 
cell system, into sequences of patterns that encode 
actual commands for the motor system. 

Such perceptron behavior by the cerebellar cortex 
has been proposed by Albus (1971). However, in previ- 
ous models, the perceptron was assumed to perform an 
association of a static type, between one mossy fiber 
input pattern and one output pattern on the Purkinje 
cell axons. In contrast, our model results in a dymanic 
association between one mossy fiber input pattern and 
a sequence of output patterns on the Purkinje cell 
axons, due to-the sequence generation property of the 
Golgi-granule cell system. 

A given Purkinje cell, referenced with index m, can 
be considered as the output unit of a simple perceptron. 
Input signals for this perceptron are constituted by the 
output activities X of the Golgi-granule cell system. 
Input signal Xj is applied to Purkinje cell m through a 
synaptic efficacy w:m. The output signal of Purkinje cell 
m will be noted I'm. 

Let us denote by X p (where p is a variable index) 
the different patterns appearing in an input sequence. 
The role of the Purkinje cell layer is to map this 
sequence of input patterns X p, into a sequence of corre- 
sponding output patterns ye. The high level of decorre- 
lation that can be obtained by the Golgi-granule cell 
system between the different patterns X p of a sequence, 
is a favorable feature which yields a high discrimination 
power in a perceptron association mechanism. 

To achieve the desired mapping, the presentation of 
a given pattern X p during a learning phase, produces a 
change APw), in the synpatic efficacy wjm, which can be 
expressed, according to classical perceptron learning 
rule, by: 

a % , .  = x y  Y'm . (5) 

To make this learning scheme realizable in biologi- 
cal systems, there is a need for a mechanism that 
informs the system of the desired output YP,, which has 
to be associated with each input X~. Here, we resort to 
an assumption, that has been introduced in modeling 
previously (Marr 1969; Albus 1971; Fujita 1982), and 
has been demonstrated experimentally (see Ito 1984): 
learning at the Purkinje cell level is performed under the 
control of the climbing fiber. We denote by Cm the 

signal carried by the climbing fiber of Purkinje cell m, 
and we suppose that when learning takes place, the 
specific output signal Y~, which has to be associated 
with a given input signal X p, is presented to the Purkinje 
cell under the form of a specific climbing fiber signal CPm. 
The learning rule (5) can thus be rewritten as: 

APw:,, = X fC~  . (6) 

Assuming learning starts from a tabula rasa (i.e., 
the synapses all are zero before they learn), after pre- 
sentation of a sequence to be learned, the synaptic 
efficacy w), has taken the value: 

wi, . = ~ Aewj,, = Z XPCP" (7) 
p P 

It would be desirable that the system be able to 
distinguish by itself between learning phases, which 
involve the learning of novel movements by modifica- 
tion of synaptic efficacies, and retrieval phases, which 
involve the generation of movements without modifica- 
tion of the synapses. This performance can be achieved 
by allowing a climbing fiber to be in an active state 
encoded by the value CPm = + 1, or in an inactive state, 
encoded by the value C p = 0. By doing this, the climb- 
ing fiber can be assigned the double role of a teacher 
signal, and of switching between learning phases (when 
C p = + 1) and retrievel phases (when C p = 0). Before 
demonstrating this feature of the system, we point out 
that the role of the climbing fiber, as described here, 
also can be interpreted as that of an error signal. Such 
role has been assigned to the climbing fiber by other 
investigators (Fujita 1982). 

With our representation of climbing fiber activity, it 
is clear from (6) that the variation of the synaptic 
efficacy only takes place when C~ = + 1 and vanishes 
when C p = 0, thus implementing the switching mecha- 
nism between learning phases and retrieval phases of 
the system. 

Now for the retrieval operation, we define the soma 
potential V~ u of Purkinje cell m when an arbitrary 
input pattern X is presented, as: 

1 u2.~ , 
VPu = Ng~j~, wj,,X/. (8) 

The resulting value for the output Ym of Purkinje 
cell m will be defined as: 

Y,, = sgn( V P" - 0), (9) 

where 0 is a threshold we suppose to exist for the 
activation of Purkinje cells. 

If  we substitute (7) in (8), and make the suitable 
arrangements, we can express the soma potential as: 

V ~ " = ~  CPm < X . X P >  , (10) 
P 

where < X" X p > stands for the normalized dot product 
of presented pattern X and learned pattern X p. 

Now let us assume that the presented pattern X is 
equal or close to a particular learned pattern, say X p~ 
Then we shall have: 

< X ' X P >  ~ 1 for P =P0,  
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and, for a sufficient level of decorrelation between 
learned patterns: 

( X ' X  p) ~ 0  for  P #Po-  

The soma potential thus reduces to: 

vs = c 0. 

Therefore, it is the value of the teacher signal C~ o 
presented during learning, which will determine, 
through (9), the output value Ym of Purkinje cell m 
during the retrieval operation. The generation of an 
active output Ym -- + 1 when the teacher signal is + l, 
and an inactive output Ym = -  1 when the teacher 
signal is 0, will be most efficiently achieved when the 
Purkinje cell threshold is set to the mean value of 
climbing fiber activity, i.e., when 0 = 0.5. 

As stated above, the perceptron learning described 
here, can also be interpreted as governed by an error 
signal rather than by a teacher signal. For a Purkinje 
cell m, no learning takes place if the climbing fiber is 
not activated. And if no learning has occurred, the 
output of Purkinje cell m will remain in a low-activity 
state coded by Ym = -  1. If  a situation requires the 
output Ym to be in a state of high activity coded by + 1, 
then only in this case the climbing fiber is activated, 
leading the Purkinje cell to learn to generate a high-ac- 
tivity output as a response to its current input. Thus, 
only conditions where a high-activity output Ym = + 1 
is required have to be explicitly learned, and are effec- 
tively learned in a mechanism triggered by the activa- 
tion of the climbing fiber error signal. Conditions where 
a low-activity output Y,, = - 1  is required correspond 
to a passive state of the cell, and do not have to be 
explicitly learned. From a biological standpoint, this 
learning scheme assigns to the climbing fiber the role of 
an error signal, rather than that of a teacher signal. The 
realizability of this scheme does not require the pre-ex- 
istence in the system of the activity patterns to be 
learned, but only the ability to learn to generate high- 
activity outputs in response to the activation of the 
climbing fibers. 

4.2 Sign constraint for Purkinje cell synapses 

Experimental data show that the synapses from parallel 
fibers on Purkinje cells are excitatory. With learning 
rule (6), the synaptic efficacies wjm can be either positive 
or negative, because the X p's can be + 1 or - 1. Assign- 
ment of physiologically correct signs to synaptic effica- 
cies can be achieved by consideration of the two 
possible pathways from parallel fibers on Purkinje cells: 
a direct pathway that involves excitatory synapses, and 
an indirect one that involves inhibitory interneurons, 
the basket and stellate cells. We shall simplify the 
complex connectivity by assuming that the connection 
of an interneuron is as depicted on Fig. 5. Next, as 
done by Fujita (1982), we split the synaptic efficacy wjm 
into two parts, wjm = wTm + w f,,, where wTm is the in- 
hibitory synapse of the indirect pathway, and wf,, is the 
excitatory synapse of the direct pathway. We assume 

[ "~ inter- 
~ ,__~ . -_ l  neuron 

Xj :)arallel 
fiber j 

Fig. 5. Double-pathway connection from parallel fiber j to Purkinje 
cell m 

that the interneuron of Fig. 5 performs an input-out-  
put transformation which is the identity transformation 
expressable as: 

S = sgn(Xj) = Xj. 

Such a mechanism allows us to preserve the correct 
signs for the different synapses, with the learning 
scheme of (6). When the learning process (6) builds up 
a positive value wj,,, its value is assigned to w fro whilst 
w fro stays at a zero value; the opposite takes place when 
learning yields a negative wjm. 

We note, however, that such a double-pathway 
connection is unlikely to exist for all possible parallel 
fiber-Purkinje cell pairs. This would require a number 
of interneurons as large as the number of granule cells 
times the number of Purkinje cells. It is known that the 
number of interneurons in the cerebellum is only inter- 
mediate between that of the Purkinje cells and that of 
the granule cells. 

In any case, a negative-to-positive range for the 
value of the synaptic contacts for each possible parallel 
fiber-Pukinje cell pair is not necessary to preserve cor- 
rect perceptron behavior of the system. (i) It is well 
known (see for instance Shinomoto 1987) that a certain 
amount of dilution in the synapses of a neural network 
does not suppress its global pattern storage ability. 
Thus, the fraction of parallel fiber-Purkinje cell 
synapses that do not possess the double-pathway con- 
nection, could be viewed as included among the diluted 
synapses with no dominant role in the system. (ii) It 
recently has been shown (Amit et al. 1989) that the 
perceptron behavior can subsist with any arbitrary set 
of signs imposed on the synapses, even with purely 
excitatory synapses. As in the case of dilution, such 
constraints lead to a reduction of the storage capacity 
of the network. Storage capacity can be restored, how- 
ever, by increasing the number of input units (i.e., the 
granule cells) of the perceptron. This could provide an 
explanation for the very large number of granule cells 
in the cerebellar cortex. 



2 7 5  

4.3 Numerical simulations 

The perceptron operation has been tested numerically 
with learning rule (6). Three different possibilities were 
examined to ensure physiologically correct signs to the 
synaptic efficacies. First, we allowed both signs to be 
available for all synapses of the perceptron, assuming a 
double-pathway connection for all possible synaptic 
contacts between a parallel fiber and a Purkinje cell. 
Second, we mixed synapses with two possible signs with 
positive only synapses. Third, we assumed only positive 
synapses. Learning for a positive synapse is still per- 
formed according to rule (6), except when the modifica- 
tion prescribed by this rule would make the synapse 
negative, in which case such modification would be not 
performed. 

With all three possibilities, a correct associative 
perceptron behaviour was observed. 

An important aspect to verify was the high proba- 
bility for patterns to be correctly associated by the 
perceptron. It is known that correct classification of a 
set of patterns by a perceptron requires fulfillment of 
the condition of linear separability of the patterns 
(Minsky and Papert 1969). It also is known that correct 
classification of a given set of patterns can always be 
attained by addition of further additional units (gener- 
ally, hidden units) to the perceptron. In the model 
studied here, the role assigned to the perceptron is that 
of learning and retrieval of a set of output patterns 
specified by the climbing fibers. This is performed by 
associating these sequences of specific output patterns 
to sequences of non-specific input patterns. As these 
input patterns (generated by the Golgi-granule cell 
system) cannot be specified, they can be considered as 
randomly appearing. We thus have studied the proba- 
bility for a given set of input patterns, picked at ran- 
dom, to be correctly mapped onto a given set of output 
patterns by the perceptron. Typical results on such 
operation are shown in Fig. 6, which represents the 
probability of correct association as a function of the 
number of granule ceils (input units of the simple 
perceptron), in different conditions. 

Figure 6a represents the probability of correct em- 
bedding of a given set of 5 input-output pairs of 
patterns. This probability was evaluated as the fre- 
quency of correct embedding calculated by numerical 
simulations for a given number of granule cells, with 
5000 sets of five input-output pairs randomly selected. 
In this case, the synaptic efficacies of the simple percep- 
tron performing the association were not sign-con- 
strained (i.e., they could be positive or negative). Figure 
6b represents the probability of correct embedding of a 
given set of 10 input-output pairs, using the same 
method. Figure 6c shows the same probability as in Fig. 
6a, except that this time the synapses of the perceptron 
were constrained to be positive. 

The results of Fig. 6 show that for a given value of 
the number of granule cells Ngr, the probability of 
correct embedding of a given set of patterns varies with 
the number of patterns to be stored and with the 
constraints imposed onto the network. Nevertheless, 
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Fig. 6. Probability of correct embedding of Np input patterns ran- 
domly selected, as a function of the number of granule cells of the 
network, a) for Np = 5 and b) for Np = 10, with no sign constraints 
on the synapses, c) for N~ = 5 with sign-constrained synapses 

under all conditions, this probability is an increasing 
function of the number of granule cells Ngr. The simu- 
lations suggest that this probability can be made very 
close to unity by increasing the value of Ngr. (For the 
constrained case depicted in Fig. 6c, the largest value 
Ngr = 2500 tested gave a probability of 0.73). We can 
thus deduce that any arbitrary set of patterns can be 
stored in the perceptron, even with sign-constrained 
synapses (see Amit et al. 1989, for exact proof), pro- 
vided the number of granule cells is sufficiently large. If 
we remember that, in the cerebellar cortex, an average 
number of 80,000 granule cells are available for one 
Purkinje cell, we can infer that with such a mechanism, 
the system will be capable of storing a very large 
number of sequences of patterns, with a good probabil- 
ity of correctness. 

5 Simulation of the complete system 

When the two levels of the model are joined together, the 
result is a neural network that can learn and retrieve 
temporal sequences of specified output patterns. The 
control of the length of the output sequences on the 
Purkinje cell axons can be carried out by the system in 
different ways. A simple way is to present on the mossy 
fiber inputs a complete deficit of activity, coded by a 
pattern U containing only - l's. After a short transient, 
the system will then respond by converging to a stable 
point that corresponds to a fixed intermediate pattern X, 
mapped on to a fixed output pattern Y~. If one wants to 
suppress on the output trajectory Y(t) the transient 
phase that precedes stabilization, one can simply map 
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Table 1. Time evolution o f  the patterns in a retrieval phase of  a 
neural network with 20 granule cells. First column: applied input 
patterns U, second column: intermediate patterns X, third column: 
learned output  patterns Y, fourth column: normalized dot product of  
each pattern X with the fourth pattern X 4. (In U and Y a "0"  means  
a - 1 activity state) 

U X Y < X  " X 4 >  

00000000 653193 00 --0.2 
10101010 436613 01 0.1 
10101010 874603 10 --0.1 
10101010 035647 11 1 
00000000 653189 00 --0.2 
00000000 653193 00 --0.2 

the few intermediate patterns X of the transient on to 
the desired stable output X s. 

The following examples we present are illustrations 
of  the abilities of  the complete system to deal with 
temporal sequences of  patterns. 

The first example uses a network with 8 mossy 
fibers, 20 granule cells (split into Nc/,s = 5  and 
Ngp, = 4), 1 Golgi cell, and 2 Purkinje cells. The net- 
work is trained to be in a stable output state coded as 
Y - , when input pattern U = is 
presented; to generate the output sequence formed with 
successive patterns Y = - + ,  Y = + - ,  Y = + + ,  when 
the input pattern U = + - + - + - + - is presented; 
and then to stop and return to stable state Y -  
Table 1 gives, at each iteration of  a retrieval phase, the 
time evolution of  the output pattern Y in response to 
the input pattern U which is applied. Also given are the 
nonspecific patterns X which serve for an intermediate 
coding of  the sequences of  patterns. Values of  the 
normalized dot product of  the different patterns X with 
a given one among them, are also presented as an 
indicative estimation of  their decorrelation. In Table 1, 
we used a binary representation of patterns U and Y 
(with "0" for a - 1  activity state, and "1" for a + 1 
activity state), and a decimal representation for patterns 
X. Figure 7 shows the time signal which can be ob- 
tained by plotting the decimal value of  output pattern 
Y, when different successive values of  input pattern U 
are applied. 

The second example uses a network with 8 mossy 
fibers, 80 granule cells (split into Ncl~ = 2 0  and 
Ng;c = 4), 1 Golgi cell, and 3 Purkinje cells. The net- 
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Fig. 7. A temporal representation of  a sequence memorized by a 
network with 20 granule cells 

Table 2. Time evolution of  the patterns in a retrieval phase of  a 
neural network with 80 granule cells. First column: applied input 
patterns U, second column: learned output  patterns Y, third column: 
normalized dot product of  each intermediate pattern X with the 
second pattern X 2. (In U and Y a "0"  means  a - 1  activity state) 

U Y < X -  X2>  

00000000 100 -0 .075  
10101010 101 1 
10101010 111 - 0 . 0 5  
10101010 101 -0 .075  
00000000 100 0.125 
00000000 100 --0.075 
00000000 100 --0.075 
00000000 100 --0.75 
00000000 100 --0.075 
01010101 001 0.025 
01010101 010 0.0 
01010101 001 0.025 
00000000 100 --0.025 
00000000 100 --0.075 

1 . . . . . . . . . .  I 

I I 

Fig. 8. A temporal representation of  two different sequences memo- 
rized by a network with 80 granule cells 

work is trained to memorize two different output se- 
quences this time, instead of one. It is in a stable output 
state that we now choose to code as Y = + - - ,  when 
input pattern U = is applied; it re- 
trieves the first output sequence if input pattern 
U = + -  + -  + -  + -  is presented, and the second if 
U = - + - + - + - + is presented. Table 2 shows the 
corresponding data. Figure 8 presents the time signal 
obtained in the same way as for Fig. 7. This type of  
signals can be viewed as command signals for the 
temporal control of  a given parameter in a movement, 
such as the angle of  a joint or the tension of  a muscle. 

These examples illustrate how it is possible to han- 
dle sequences of  patterns of various forms, even with 
small networks. It is clear that with networks of  the size 
of  biological networks, which contain a very large 
number of neurons, important storage capacity (in 
terms of number and length of  the sequences) can be 
accomplished. We did not investigate the optimal stor- 
age capacity as a function of  the number of  cells. The 
important feature we wanted to exemplify is the ability 
of a neural network, constructed according to the 



anatomy of the cerebellar cortex, to deal with temporal 
sequences of patterns. 

6 Discussion of the model 

6.1 Neural network theory standpoint 

We have introduced in this paper a biologically con- 
strained neural network model, to represent the neu- 
ronal system of the cerebellar cortex. This model is able 
to learn and retrieve temporal sequences of patterns. 

The architecture of this network model closely ad- 
heres to the anatomy of the cerebellar cortex. Its struc- 
ture is arranged in three layers (glomeruli, granule cells, 
Purkinje cells) which include a feedback loop from the 
granule cell layer through Golgi cells, back to the 
granule cells. It is to note however that we are not 
dealing here with a classical layered network, because 
of the presence of the feedback. The structure neither 
represents a fully recurrent network, because of the 
strictly limited scope of the feedback. We believe that 
such intermediate network architectures, based on bio- 
logical grounds, can provide fruitful frameworks to 
generate new capabilities for neural network models. 

In the network model considered here, we explicitly 
took into account the propagation delays of a certain 
class of neural signals in the net. Such assignment of a 
role to propagation delays is a feature seldom considered 
in modeling with formal neural networks; yet, it is likely 
to be present in biological neural networks. Incorporat- 
ing such delays into the dynamics also gives rise to new 
and interesting network behaviors. In the present model, 
propagation delays intervening in a feedback loop of a 
very absorbing type prevent the dynamics of the net 
from being blocked too easily in fixed points. 

It is also interesting to emphasize that the neural 
network model described here possesses different classes 
of synapses, most of which are not modifiable. This 
demonstrates that neural networks with non-modifiable 
synapses are not necessarily confined to trivial behav- 
iors, and may exhibit fundamental properties, such as 
the sequence generation ability of the Golgi-granule cell 
system. 

The present neural network model, offers a scheme 
to learn temporal sequences of patterns, and to re- 
trieve them upon presentation of the input label to 
which they were associated. This constitutes a pro- 
posal, among others recently introduced (Sompolinsky 
and Kanter 1986; Dehaene et al. 1987; Kuhn et al. 
1989; Massone and Bizzi 1989; Pearlmutter 1989), to 
endow neural network models with controlled dynamic 
properties, in addition to their ability to deal with 
static patterns. With respect to the present neural net- 
work, we have not yet investigated how to optimize 
the storage capacity of the net (in terms of length and 
number of sequences) through the number of its hid- 
den units (the granule cells), or how to control the 
length and form of the sequences through the choice 
of the values of the synapses of the Golgi-granule cell 
system. 
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Nevertheless, the model demonstrates that classical 
formal neural network modeling techniques, which are 
based on a few essential concepts, such as high connec- 
tivity in a net, weighted sums of activities, and non-lin- 
ear units, can provide sufficient tools to construct 
models mimicking complex dynamic performances of 
biological systems when rules to achieve propagation 
delays also are included in them. 

6.2 Biological standpoint 

The present neural network model is based on the 
following general hypothesis: a movement or trajectory 
in real space is coded and memorized by the cerebellar 
cortex as a trajectory in the state-space of a neural 
network. We demonstrated that these performances can 
be supported by a neural network model that takes into 
account important biological constraints and therefore 
is biologically plausible. In particular, in the model 
presented here: 
- -  the cerebellar cortex anatomy is closely reproduced 

by the network architecture (especially the presence 
of a very large number of granule cells making 
connection with a small number of Golgi cells), 

- -  synaptic efficacies are either inhibitory or excitatory, 
according to their physiological nature, 

- -  only parallel fiber-Purkinje cell synapses need be 
modifiable, 

- -  learning is performed according to Hebbian rules 
rather than in form of a gradient-descent minimiza- 
tion. 

The model includes an interpretation of the respective 
roles of the Golgi-granule cell system, and of the Purk- 
inje cell layer. The Golgi-granule cell system, due to its 
feedback loop, generates a temporal sequence of pat- 
terns in response to an input pattern applied on the 
mossy fibers. The Purkinje cell layer, acting as a multi- 
ple perceptron, maps this sequence into a sequence of 
commands for the motor system. The input pattern 
presented on the mossy fibers is assumed to code both 
an intentional movement command coming from higher 
cerebral centers, and the context of the movement 
coming from sensorial sources. In the retrieval phase, 
characterized by the absence of activation of the climb- 
ing fibers, a temporal output sequence is generated on 
the Purkinje cell axons, which codes for the sequential 
commands necessary to perform or control the desired 
movement in the specified context. In the learning 
phase, when climbing fibers are activated, the parallel 
fiber-Purkinje cell synapses are modified under the con- 
trol of the climbing fibers, in order to adjust the output 
sequence. 

The neural network model makes use of propaga- 
tion delays of nervous signals on parallel fibers. From a 
biological standpoint, the presence of significant propa- 
gation delays in these fibers is quite plausible. It is 
known (Eccles et al. 1967) that granule cell axons, 
which constitute these parallel fibers, have a small 
diameter (0.2-0.3 ~tm), and can extend over several 
millimeters. In such thin and long fibers, the propaga- 
tion velocity of a nervous s~gnal can be as small as a 
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few tens of centimers per second (see Gieger 1977), and 
thus can lead to propagation times of the order of tens 
of milliseconds. To generate sequences in the order of 
seconds that may be involved in the control of move- 
ment by the cerebellar cortex, would require the genera- 
tion of sequences with a length of the order of I00 time 
steps. As shown in Sect. 3, this type of performance, 
under this length constraint, can be obtained by the 
sequence generation mechanism of the Golgi-granule 
cell system. Another argument for the importance of 
propagation delays has been suggested by Braitenberg 
(1990). He noted that the metric invariance observed in 
the organization of the cerebellar cortex network, as 
opposed to the merely topological invariance prevalent 
in other neuroanatomical structures, could reveal a 
crucial role of the times of signal transmission and 
reception in different points of the parallel-fiber beam. 

In the model developed here, the mossy fiber input 
pattern U was assumed to be constant during iteration 
of the dynamics of the network. This is by no means a 
necessity, and the sequence generation ability, which is 
due to the delayed feedback, is preserved if input pattern 
U is changed during iteration. In such case, the same 
succession of patterns U need to be presented during 
retrieval and learning phases to have correct retrieval of 
a memorized sequence. In such operation, the evolution 
of U can be interpreted as monitoring the evolution of 
the context resulting from the movement that is being 
performed. A global feedback of this type could lead to 
greater stability or generalization capacity for the whole 
system: due to successive readjustments, a retrieved 
output sequence is prevented from gradually diverging 
from the corresponding memorized sequence, when iter- 
ation is started with a slightly corrupted input pattern U. 

We saw that the length of the output sequences on 
the Purkinje cell axons can be controlled by presenta- 
tion on the mossy fiber inputs of a complete deficity of 
activity, coded by a pattern consisting of only - l ' s .  
The system can realize this control of the length of the 
sequences in different other ways. For instance an ad- 
justment of the fixed synapses of the Golgi-granule cell 
system could provide such a control. We mentioned 
that the number of granule cells and the values of the 
fixed synapses (and their amount of dilution) determine 
the average length of the sequences generated by the 
Golgi-granule cell system. This provides the Purkinje 
cell layer with sequences of a given average length, that 
would correspond to the quantity of patterns necessary 
to encode the information to perform or control a 
phase in a movement. A given sequence can also be 
terminated and another one initiated when the mossy 
fiber input pattern is simply changed during iteration of 
the dynamics. In such a schema, successive mossy fiber 
patterns applied to the system, could represent the 
coarse definition of a given movement. The role of the 
cerebellar cortex would be to complete this coarse 
coding, by inserting additional information in the form 
of sequences of patterns, in order to generate a fine 
implementation of the movement. 

In the framework of the model, an interpretation for 
the divergence of the num~Ser of granule cells observed 

in the cerebellar cortex is provided. On the one hand, as 
output units of the Golgi-granule cell network, a large 
number of granule cells guarantees both large variety 
and good decorrelation for the sequences generated at 
this level. On the other hand, as input units of the 
Purkinje cell network, a large number of granule cells 
leads to the possibility of embedding a large number of 
patterns with almost unit probability of correctness, 
even with sign-constrained synapses. Phrased in formal 
neural network terminology, the role of the divergence 
of the granule cells is to implement the so-called ther- 
modynamic limit, when the number of cells in a net 
becomes so high that any finite storage capacity can be 
achieved, even in the presence of constraints. This may 
not appear as an optimal way of devising a neural 
network, but it at least is an efficient one. 

The model also offers elements to further interpret 
the cerebellar ability for coordination of movements. 
What has been considered here, in Sect. 1, is the set of 
granule cells that connects on a given Golgi cell. Such 
a Golgi unit can drive several Purkinje cells, each of 
which, in turn, supplies an output signal for the con- 
trol of a given parameter in a movement. It is possible 
to consider several of these Golgi units, and introduce 
interactions among them through signals exchanged at 
the level of their Golgi cells. From a biological stand- 
point, such interaction between neighbouring Golgi 
units is plausible. This would make the sequences gen- 
erated by a Golgi unit dependent on the behavior of 
the neighbouring units. In other words, sequences of 
patterns for the control of various movements, or vari- 
ous movement parameters, could be learned or re- 
trieved in relation with one another. This type of 
mechanisms could provide a schema to represent and 
interpret performances of coordination of movements. 
We currently are investigating this feature of the 
model. 

The proposed model stands for a global theoretical 
description of some general performances of the cere- 
bellar cortex. Although many questions concerning the 
cerebellar function are not addressed by the present 
model, it nevertheless leads to several predictions that 
can be tested experimentally: propagation delays of 
neural signals on parallel fibers would have significant 
values, compared to Golgi cell response time; parallel 
fibers would tend to fire in a scattered and seemingly 
random fashion, rather than in coordinated beams; 
only parallel fiber-Purkinje cell synapses need be 
modifiable for learning of movement control abilities. 
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