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We consider a nonlinear bistable dynamic system governed by the quartic potential with two-
state quantization at the output — the earliest system to have revealed the phenomenon of
periodic stochastic resonance. We devise a scheme in which this system is used to transmit a
broadband aperiodic informative signal. With this scheme, we demonstrate that the system can
be operated as a memoryless symmetric binary channel, and we develop the characterization of
the transmission up to the evaluation of the input–output information capacity of this channel.
We show that a regime exists where the information capacity can be increased by means of
noise addition, a property we interpret as a form of aperiodic stochastic resonance. In addition,
we demonstrate that a positive input–output gain in the efficacy of the signal recovery can be
obtained with the stochastic resonator, compared to the recovery that would directly operate
on the input signal-plus-noise mixture.

1. Introduction

Stochastic resonance (SR) is a phenomenon of
noise-assisted signal transmission taking place in
certain nonlinear systems [Moss et al., 1994;
Wiesenfeld & Moss, 1995; Anishchenko et al., 1992,
1994; Pantazelou et al., 1995; Chapeau-Blondeau &
Godivier 1996]. Since its first observation some fif-
teen years ago [Benzi et al., 1981; Nicolis, 1982], this
phenomenon has mainly been studied and exploited
to improve the transmission of a periodic signal,
usually a sinusoid [Moss et al., 1994; Wiesenfeld &
Moss, 1995]. Such a situation, which has received
considerable attention, essentially bears a concep-
tual significance. It shows how the transmission of
a “coherent” signal of known form can be improved
by noise addition, revealing a possibility of turning
the noise from a nuisance into a benefit.

In order to improve the transmission of ac-
tual useful information via SR, one needs to sub-
stitute the periodic signal with a broadband aperi-
odic signal. The emphasis has only recently come to

this question of aperiodic SR [Collins et al., 1995a,
1995b; Kiss, 1996]. New measures were proposed to
quantify the effect, based on a signal-to-noise ratio
in the frequency domain [Kiss, 1996], or on cross-
correlation measures [Collins et al., 1995a, 1995b,
1996]. With broadband informative signals, partic-
ularly appropriate measures of SR are provided by
information-theoretic quantities. An input–output
transinformation has been considered in different
reports. Such a measure is defined and studied in a
realization of SR in a neuron that encodes an ana-
log aperiodic input into an output spike train, with
an experimental preparation in [Levin & Miller,
1996] and a theoretical model in [Heneghan et al.,
1996]. Bulsara and Zador [1996] also use an input–
output transinformation, to quantify aperiodic SR
in a simple threshold nonlinearity, and they estab-
lish a connection with the transcoding of an ana-
log input into an output spike train by a neuron.
For a comparable threshold nonlinearity, Chapeau-
Blondeau [1997] develops the characterization up
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to the evaluation of the information capacity of the
system, defined as the maximal achievable input–
output transinformation occuring when the statis-
tics of the aperiodic input signal is matched to the
noise. Neiman et al. [1996] also employ information-
theoretic measures but for SR with a periodic input
signal.

In the present report we shall return to the ear-
liest system to have revealed (periodic) SR, i.e. a
nonlinear bistable dynamic system governed by the
quartic potential, with two-state quantization at
the output. A pioneering study on aperiodic SR
[Hu et al., 1992] has considered this system for the
transmission of a binary input sequence of fixed
length. Hu et al. [1992] use a method relying on re-
peated measurements of the output to average out
the noise in order to correctly recover the input mes-
sage, and they characterize SR through the portion
of correctly received data. In principle, the method
employed in [Hu et al., 1992] requires a number of
measurements tending to infinity, for an exact re-
covery guaranteed for every input binary datum.
Here we devise a different scheme using this non-
linear bistable dynamic system for the transmission
of a broadband aperiodic informative signal, and in
which we demonstrate that the system can be op-
erated as a memoryless symmetric binary channel.
We then develop the characterization of the trans-
mission up to the evaluation of the input–output
information capacity of the channel. We show that
this capacity can be increased by means of noise
addition, a property we interpret as a form of SR.
In this information-theoretic framework, with the
knowledge of the capacity of the system and based
on Shannon’s second theorem [Cover & Thomas,
1991], we are sure of the possibility of a coding strat-
egy that will have the minimal redundancy afforded
by the optimal noise level at the maximum SR, and
that will allow the recovery of the input message
with an arbitrarily small probability of error, with
only a single measurement per transmitted binary
datum as used by our scheme.

2. The Nonlinear Information
Channel

We consider s(t) to be a coherent signal carrying
useful information, and η(t) is a stationary random
noise. These two signals are applied to a nonlinear
dynamic system whose internal state x(t) evolves

according to:

τaẋ(t) = x(t)−
x3(t)

X2
b

+ s(t) + η(t) , (1)

with the parameters τa > 0 and Xb > 0. We
are in the presence of a forced (by s(t) + η(t))
bistable dynamic system, whose free relaxation
τaẋ = −dU/dx is governed by the so-called quar-
tic potential U(x) = −x2/2 + x4/(4X2

b ). This sys-
tem has two stable equilibrium states x = ±Xb

corresponding to the two minima of the potential
U(x = ±Xb) = −X2

b /4.
The internal state x(t) determines the output

y(t) of our system, through a “two-state quantiza-
tion” [Moss et al., 1994] expressed by

y(t) = sign[x(t)] . (2)

The dynamics based on Eq. (1) has been the
first type of system to reveal the phenomenon of
SR. In this respect, this system has been the subject
of numerous studies, in which SR is observed and
analyzed mainly in the transmission of a periodic
coherent signal s(t), usually a sinusoid. The mea-
sure of the effect is usually a signal-to-noise ratio,
obtained in the frequency domain, and which quan-
tifies, at the frequency of the periodic input, the
proportion of the output signal related to the peri-
odic input among the part due to the noise [Moss
et al., 1994].

We shall show that another type of SR can
be obtained with the system of Eqs. (1) and (2),
in the transmission of a broadband aperiodic sig-
nal s(t), and with the maximal achievable input–
output transinformation as a measure of the benefit
of adding noise.

The continuous-time coherent signal s(t) will
consist of an aperiodic “telegraph” signal of the
form

s(t) = A
+∞∑
j=−∞

SjΓ(t− jT ) , (3)

where A > 0 is a constant amplitude, and Γ(t) is
a rectangular pulse of duration T and amplitude
unity, i.e. Γ(t) = 1 for t ∈ [0, T [ and Γ(t) = 0
elsewhere. We have introduced a sequence of bi-
nary symbols Sj = ±1, j integer, where the Sj ’s
are identically distributed and independent random
variables.

In the absence of the noise η(t), the minimal
value of the coherent amplitude A that destroys
bistability in Eq. (1) occurs when x−x3/X2

b +A = 0
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ceases to have three real roots, and it comes out as
A = 2Xb/

√
27 ≈ 0.38Xb [Moss et al., 1994]. For

A < 0.38Xb, the coherent input s(t) alone is too
small to induce transitions in the output y(t). Ad-
dition of the noise η(t) will then offer the possibility
of inducing transitions in the output y(t). We are
interested in recovering the successive input sym-
bols Sj = ±1, from the observation of the output
signal y(t). The input symbols Sj are emitted at a
rate of one symbol every T , each new symbol start-
ing at time tj = jT and lasting over a duration T .
We introduce a scheme in which a symbol is de-
coded at the output, from a single observation of
the signal y(t), under the form Yj = y(tj + Ttrans).
The successive readings of the output signal y(t) are
done at the same rate of one reading every T , and
they occur at times t′j = tj+Ttrans. The phase Ttrans

is a fixed transmission time, appropriate to perform
efficient readings of the output, and that we take to
be Ttrans = T − ∆t, where ∆t > 0 is the small-
est possible time allowed by the resolution of the
measurements. Such a choice of Ttrans maximizes
the time allowed for the state x(t) to evolve to the
vicinity of the stable state x = ±Xb corresponding
to the current input symbol Sj = ±1 applied at tj
for a duration T , and Yj = y(tj + T −∆t) will best
reproduce Sj , just before a new input symbol Sj+1

is emitted at time tj+1 = tj + T .
We assume that, in the communication process,

the interval T at which input symbols are emit-
ted is known at the output where y(t) is decoded.
For the moment we shall further assume that the
times t′j = tj + Ttrans = jT + T − ∆t appropriate
to perform efficient readings of the output y(t), are
also known at the output — a situation of external
or remote synchronization for the output readings.
Later, we shall consider that the times t′j are not a
priori known at the output, and we shall indicate
a scheme whereby, with the sole observation of the
output signal y(t), an estimation can be done of the
times t′j = t′0 + jT efficient for the output readings
— a situation of purely local synchronization at the
output. It will amount to a method for estimating
the unknown fixed phase t′0 to place the successive
readings of y(t) separated by the known interval T .

Now, our system with input symbols Sj = ±1
and output readings Yj = ±1, can be viewed as an
information channel transmitting binary data. We
shall show that this transmission of information can
be assisted by noise addition, a property we inter-
pret as a SR effect.

3. Noise-Enhanced Information
Capacity

To illustrate this possibility of a noise-assisted
transmission of information, we shall consider the
case where the input noise η(t) is a white noise with
an even probability density function; this allows us
to view our system as a symmetric binary chan-
nel. Further, we consider that the successive input
symbols Sj = ±1 are applied for a time T > τa suf-
ficiently larger than the interwell and the intrawell
relaxation times of the dynamics of Eq. (1); and
this allows us to view our system as a memoryless
symmetric binary channel. We shall later produce
a verification of the memoryless character of this
symmetric binary channel.

For independent Sj’s, with the input–output
transmission probabilities

Pr{Yj = 1|Sj = 1} = Pr{Yj = −1|Sj = −1} = p ,

(4)

it is possible to compute the input–output transin-
formation [Cover & Thomas, 1991]. For a memo-
ryless symmetric binary channel, this transinforma-
tion is maximized with equiprobable values ±1 for
the input symbols, which yields the input–output
information capacity C of the system under the
form:

C = 1 + p log2(p) + (1− p) log2(1− p) . (5)

We have realized a simulation of the present
system, with a Euler discretization of Eq. (1) at
a small time step ∆t = 10−2. The emission in-
terval was kept fixed at T = 500∆t, and we took
Xb = 1 as the unit of amplitude. Different values
of the time constant τa with ∆t � τa < T , and
of the signal amplitude A were tested. We chose
η(t) a zero-mean Gaussian noise. With our decod-
ing scheme which samples the signal amplitude, the
important characteristics of the noise is its rms am-
plitude ση, which remains finite for any realizable
noise. If the power density D of the noise is intro-
duced, then a physically realizable noise will have
a short nonvanishing correlation time τc verifying
σ2
η ∼ D/τc. When τc is much smaller than the time

parameters τa and T , the white noise hypothesis
can be expected to provide a correct description.
In our discrete-time simulation, the successive val-
ues of η(t) are generated as independent variables,
making τc also no larger than ∆t, and with the rms
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Fig. 1. Time evolution of the signals for the system of
Eqs. (1) and (2) with Xb = 1 and τa = 10∆t: Panel A shows
the informative input s(t) from Eq. (3) with A = 0.35 and
the successive input symbols Sj = ±1 with equal probabilities
occuring at times tj = jT with T = 500∆t. Panel B shows
the input signal-plus-noise mixture s(t) + η(t) with η(t) a
zero-mean Gaussian white noise of rms amplitude ση = 0.65.
Panel C is the corresponding internal state x(t) from Eq. (1).
Panel D is the resulting output y(t) from Eq. (2), which will
then be read at times t′j = tj + Ttrans to yield the output
binary sequence Yj.

amplitude ση as we want to impose it to the system.
In such conditions, Fig. 1 shows a typical time evo-
lution of the different signals.

We have performed an estimation of the proba-
bility p of Eq. (4) as the frequency of correct trans-
mission over a large number of successive emissions
of input symbols Sj = ±1 occuring as independent
equiprobable random variables. The channel capac-
ity C was then deduced according to Eq. (5). The
variations of both p and C with the input noise level
were examined.

Figures 2 and 3 represent the variations of the
transmission probability p and of the information

capacity C, as a function of the input noise rms
amplitude ση, for different values of τa and A. We
observe in Figs. 2 and 3 nonmonotonic evolutions
of both p and C, with the noise level ση. When A
is subliminal (A < 0.38 when Xb = 1), the signal
s(t) alone is unable to induce output transitions,
and both p and C are strictly zero in the absence
of the noise. Addition of the noise then allows an
actual transmission of information through the sys-
tem, with a maximum efficacy for a sufficient, opti-
mal, noise level. We interpret this effect as a form
of SR.

The transmission of the input sequence strongly
relies upon the interwell dynamics of Eq. (1). The
interwell transition times of Eq. (1) are not simply
dependent upon τa, but also depend on the input
amplitude. At a fixed τa, the interwell transition
times increase as the input amplitude is reduced to-
ward 0.38Xb, and they can reach values well above
τa. Accordingly in Fig. 2, at a fixed τa, the efficacy
of the noise-assisted transmission increases as the
signal amplitude A is increased (while remaining
subliminal). At a fixed A subliminal, Fig. 3 shows
that the efficacy of the noise-assisted transmission
increases as the time constant τa is reduced rela-
tive to T , making the system more responsive. As
visible in Figs. 2 and 3, parameter values are ac-
cessible that yield, at the resonance, an almost per-
fect transmission of information with both p and C
very close to 1. This outcome is favored when τa
is very small relative to T , but this is associated
in Eq. (1) to values of ẋ(t) that may become very
large as τa goes to zero, making the system unsta-
ble. A finite nonzero value of τa has to be kept in
order to keep x(t) bounded. At any finite nonzero
value of τa, the transmission probability p cannot
be perfectly 1, in principle, because unexpectedly
large deviations of the noise can always occur, with
finite nonzero probabilities; yet these probabilities
are in practice very, very small, leading, as shown in
Figs. 2 and 3, to values of p and C coming very, very
close to 1.

We can here verify the important assumption
of a memoryless channel that allowed us to inter-
pret C of Eq. (5) as the information capacity of
the channel. We have computed the autocorrela-
tion function RY Y (k) = E(YjYj+k) of the sequence
of output symbols Yj in response to an input se-
quence of independent symbols Sj. As visible in
Fig. 4 representing RY Y (k), there is practically no
correlation between the successive output symbols
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Fig. 2. Influence of the signal amplitude A: Probability of correct transmission p from Eq. (4) (panel A), and information
capacity C from Eq. (5) (panel B), as a function of the rms amplitude ση of the input white noise η(t) chosen to be zero-mean
Gaussian. The time parameters are τa = 10∆t and T = 500∆t, and (a) A = 0.35, (b) A = 0.3, (c) A = 0.25, (d) A = 0.2.
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Fig. 3. Influence of the time constant τa: Probability of correct transmission p from Eq. (4) (panel A), and information
capacity C from Eq. (5) (panel B), as a function of the rms amplitude ση of the input white noise η(t) chosen to be zero-mean
Gaussian. The signal amplitude is A = 0.35, and the time parameters are T = 500∆t and (a) τa = 10∆t, (b) τa = 12∆t,
(c) τa = 20∆t, (d) τa = 30∆t.
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Fig. 4. Autocorrelation function RY Y (k) = E(YjYj+k) of the sequence of output symbols Yj, as a function of the lag k,
with T = 500∆t: Panel A is at fixed τa = 10∆t, for (◦) A = 0.35, (∗) A = 0.3, (+) A = 0.25, (×) A = 0.2, in each case
at the location of the resonance of Fig. 2. Panel B is at fixed A = 0.35, for (◦) τa = 10∆t, (∗) τa = 12∆t, (+) τa = 20∆t,
(×) τa = 30∆t, in each case at the location of the resonance of Fig. 3.
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Fig. 5. Output transition rate λ(t), estimated as the prob-
ability of a transition of y(t) in the small interval [t, t + dt[,
in the same conditions as in Fig. 1.

Yj, which allows us to consider the channel as
memoryless.

After having shown an effect of noise-enhanced
capacity in the transmission, we return to the prob-
lem of estimating the constant phase Ttrans with
which to perform the output readings y(jT +Ttrans)
every T — the situation of local synchronization
at the output. With the observation of the out-
put signal y(t) we have the possibility of estimat-
ing the transition rate λ(t) at the output, where
λ(t)dt represents the probability of a transition of
y(t) in the small time interval [t, t + dt[. An es-
timation of λ(t) is shown in Fig. 5 with the same
conditions as in Fig. 1. The successive input sym-

bols Sj = ±1 are emitted at times tj = jT , but
these times are ignored by the receiver. The output
transition rate λ(t) displays the period T , and λ(t)
is minimum when y(t) is “maximally stabilized” in
response to the current input symbol. This mini-
mum identifies for the receiver at the output, the
time Ttrans = T −∆t appropriate for the readings,
as visible in Fig. 5. Thus, the local determination of
the phase of the readings at the output, amounts to
estimating the transition rate λ(t) over one period
T , say for t in [0, T [, identify in this period the time
t0 at which λ(t) is minimum, and then perform the
output readings at times t0 + j′T . The estimation
of λ(t) for t in [0, T [, can be performed over a single
realization of the output signal y(t), via sample av-
erages on N data points y(t+ nT ) with the integer
n = 1 to N .

4. Input Output Gain in the
Information Capacity

It is possible to bypass the stochastic resonator im-
plemented by Eq. (1) and envisage the detection of
the input symbols Sj directly from the input signal-
plus-noise mixture s(t)+η(t). In this condition, the
output signal y(t) to which the previous decoding
procedure is applied is simply

y(t) = sign[s(t) + η(t)] , (6)

in place of Eq. (2). We shall call this process linear
decoding.
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Fig. 6. Comparison of the linear and nonlinear decodings, with a zero-mean Gaussian input white noise η(t) of rms amplitude
ση in abscissa. Panel A shows the probability of correct transmission, and panel B the information capacity. The monotonically
decaying curves are for the linear decoding, and the resonant curves for the nonlinear decoding with the stochastic resonator
at Xb = 1, T = 500∆t and τa = 10∆t. The curves are parameterized, from the topmost to the lowest, by A = 0.35, 0.3, 0.25
and 0.2.
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In such a case, the probability p of Eq. (4)
reduces to

plin = Pr{A+ η > 0} = Pr{−A+ η < 0} , (7)

which is analytically expressable under the form

plin = Fη(A) , (8)

with the statistical distribution function Fη(u) =
Pr{η(t) < u} of the noise η(t).

The probability plin of Eq. (8) used in Eq. (5)
yields the information capacity Clin in the linear
decoding. This capacity Clin can then be studied
as a function of the input noise level, and also com-
pared to the nonlinear capacity C in the presence of
the stochastic resonator. For illustration, we chose
again the case where the input white noise η(t) is
zero-mean Gaussian, with the rms amplitude ση,
and

Fη(u) =
1

2

[
1 + erf

(
u√
2ση

)]
, (9)

with the error function erf(u) = 2
∫ u
0 exp(−u′2)du′/√

π. Figure 6 then compares the transmission prob-
abilities and the information capacities for the lin-
ear and nonlinear decodings.

As visible in Fig. 6, when the noise is strictly
zero, the linear decoding is perfect and completely
dominates the nonlinear decoding which is inop-
erative without the noise. But as the noise rises
above zero, the performance of the linear decoding
monotonically decays, whereas that of the nonlin-
ear decoding starts to rise. Rapidly, the nonlinear
decoding outperforms the linear one and then per-
manently remains superior in efficacy. These evolu-
tions of Fig. 6 demonstrate that, as soon as there
are low levels of the noise, there is a positive ben-
efit in passing the input signal-plus-noise mixture
through the stochastic resonator of Eq. (1), rather
than working directly on this input mixture. More-
over, for a given range of the noise level, with the
stochastic resonator, there is a further additional
benefit in increasing the noise level so as to maxi-
mize the performance.

5. Conclusion

We have shown that the nonlinear dynamic system
of Eq. (1) can serve for the transmission of a broad-
band information-carrying signal, with assistance
from the noise through SR. In practical use, the
effect can be operated as follows. The system of
Eq. (1) with fixed Xb and τa, receives a coherent

signal s(t) of subliminal amplitude A < 0.38Xb. In
the absence of the noise, the system is completely
unable to transmit any information. For a given
A < 0.38Xb, an optimal nonzero noise rms ampli-
tude exists that maximizes the information capac-
ity of the system. At this optimal noise level, the
synchronization scheme described in Sec. 3 allows a
purely local decoding of the ouput, at the maximum
efficacy of the transmission.

Now, with the strictly above-zero capacity af-
forded by the noise, and based on Shannon’s sec-
ond theorem [Cover & Thomas, 1991], we are sure
of the possibility of a coding scheme that will al-
low the transmission of the input symbols Sj with
an arbitrarily small probability of error. Moreover,
this coding scheme will have the minimal redun-
dancy afforded by the optimal noise level at the
maximum of SR. For instance, in the conditions of
Fig. 3(d), the maximum capacity at the resonance
is around 0.8 = 4/5 bit of information per trans-
mitted binary symbol. Shannon’s second theorem
then guarantees the possibility of a coding scheme,
whose effect will be to add an average redundancy
of around 1 binary digit per 4 input symbols, in or-
der to reduce the entropy of the input just below
the channel capacity, which will be enough to over-
come the noise and achieve a vanishing probability
of error. Such conclusions are made possible here
because we were able to define a communication
channel for which we explicitly compute the infor-
mation capacity. This contrasts the present results
with the method in [Hu et al., 1992], which uses
multiple correlated output readings to reduce the
noise through averaging, what requires an infinite
number of readings to reach a vanishing probability
of error in the recovery of each transmitted sym-
bol. With a finite sampling rate, an infinite num-
ber of readings per transmitted symbol translates
into a vanishing rate of information transfer in [Hu
et al., 1992], while with our transmission scheme the
achievable rate is known to be the capacity of the
channel. Also, in [Hu et al., 1992], the important
question of the synchronization of the ouput read-
ings is not addressed, and the method ceases to be
applicable if the times of emission of the input sym-
bols are not known at the output.

In addition to showing this possibility of a
noise-enhanced capacity, we have shown here the
positive gain in the capacity that can be obtained
in the presence of the stochastic resonator, com-
pared to the situation where the resonator would
be absent. This issue is similar to the problem of
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obtaining a signal-to-noise ratio larger at the output
than at the input, in the context of periodic SR. It is
known that severe constraints exist if one wants to
obtain an input–output gain in the signal-to-noise
ratio in periodic SR [Gong et al., 1993; Dykman
et al., 1995; DeWeese & Bialek, 1995; Inchiosa &
Bulsara, 1995]. We have shown here that an input–
output gain in the measure of SR (the information
capacity) can be obtained in aperiodic SR. This
demonstrates a situation where there is an actual
benefit in passing the input signal-plus-noise mix-
ture through the stochastic resonator, rather than
not passing it. We have to specify that we compare
here the performance of the same type of signal re-
covery, with and without the stochastic resonator,
as is also done in the studies on periodic SR inter-
ested in an input–output gain in the signal-to-noise
ratio [Loerincz et al., 1996; Chapeau-Blondeau &
Godivier, 1997]. In each of these cases, a specific
optimal linear filter can be conceived, which is not
considered because usually it is assumed that the
implementation of such a specific filter is not avail-
able. This is a reasonable assumption in systems
having to operate with a pre-imposed “hardware”,
such as, for instance, neural systems, for which
certain aspects were shown describable by bistable
dynamic systems of the type of Eq. (1) [Bulsara
et al., 1991; Bulsara & Schieve, 1991; Longtin
et al., 1994], and for which the present extension
of aperiodic SR may have relevance.

To summarize, the results of the present study
(i) demonstrate a new form of aperiodic SR in a pre-
viously well-known periodic stochastic resonator,
(ii) develop a characterization that goes up to the
evaluation of the information capacity of the sys-
tem, (iii) prove the possibility of an input–output
gain in the efficacy of information transmission af-
forded by the stochastic resonator. These results
contribute to the assessment of SR, and to the pro-
gression towards practical applications of SR for sig-
nal and information processing.
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