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Multifractal analysis of three-dimensional histogram from color images
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a b s t r a c t

Natural images, especially color or multicomponent images, are complex information-car-
rying signals. To contribute to the characterization of this complexity, we investigate the
possibility of multiscale organization in the colorimetric structure of natural images. This
is realized by means of a multifractal analysis applied to the three-dimensional histogram
from natural color images. The observed behaviors are confronted to those of reference
models with known multifractal properties. We use for this purpose synthetic random
images with trivial monofractal behavior, and multidimensional multiplicative cascades
known for their actual multifractal behavior. The behaviors observed on natural images
exhibit similarities with those of the multifractal multiplicative cascades and display the
signature of elaborate multiscale organizations stemming from the histograms of natural
color images. This type of characterization of colorimetric properties can be helpful to var-
ious tasks of digital image processing, as for instance modeling, classification, indexing.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Natural images, especially color or multicomponent
images, constitute information-carrying structures that
can exhibit complex organizations. A window on this com-
plexity is provided by their histogram, which represent
multidimensional data structures that can themselves dis-
play complex organizations [1,2]. This can, for instance, be
manifested by concentrations of pixels in certain regions of
the histogram, with other regions void of pixels, or clusters
of pixels of various sizes and densities non uniformly
scattered. An illustration of such complex organization is
depicted, for a natural RGB color image from Fig. 1, by
the three-dimensional histogram presented in Fig. 2. The
characterization of such complex organizations in multidi-
mensional histograms is useful to image modeling and
efficient exploitation of their histograms, for instance to
identify relevant structures or clusters for segmentation,
classification, indexing, or other purposes, or to envisage
reduction of dimensionality. Many image processing tasks
can benefit from approaches that start to operate on an

approximate raw description at coarse scales or resolu-
tions, while controlling the progressive refinements of
the description towards finer resolutions as needed. Such
approaches could benefit from characterizations across
scales providing a point of view on how relevant features
in images distribute, and possibly relate to each other, at
various scales or resolutions. To contribute to the charac-
terization of such complex organizations, we realize here
a multifractal analysis of three-dimensional histograms
from natural color images, which will reveal elaborate
structures across scales.

Fractal and multifractal concepts so far have been ap-
plied essentially to the spatial organization of images [3–
9]. Fractal or self-similarity properties have been reported
in the spatial organization of natural images [10,4,11], and
related to the many features and details usually present
across many spatial scales, in a self-similar way, in natural
scenes. Multifractal concepts have been employed to ana-
lyze and synthesize complex textures or gray-level statis-
tics extending spatially over natural images [12–19].
These fractal and multifractal approaches of the spatial
properties are helpful to construct more realistic models
for natural images, and carry relevance for image coding
and processing [20–22] and vision systems [23,24].
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In the present paper, we will examine another, comple-
mentary, aspect of the fractal and multifractal properties of
natural images. Beyond the spatial organization of natural
images, we address here their colorimetric organization.
Some evidence has recently been reported that fractal or
self-similar structurations could also exist in the colori-
metric domain for natural images [25,26]. The pixels of
natural color images would tend to display, over the color-
imetric space, specific organizations with self-similar frac-
tal arrangements. This has been shown by means of the
evaluations of the correlation dimension in [25], and of
the capacity dimension in [26], of the distribution of pixels
in the colorimetric space, as represented by the three-
dimensional color histogram of the images. We comple-
ment these colorimetric characterizations by investigating
here the full spectrum of fractal dimensions [27,28], via a
multifractal analysis, which is performed for the first time
from the three-dimensional color histograms as done here.

2. Multifractal analysis

We consider color images where each of the Ntot pixels
is represented by a triplet of components (R,G,B), each of
these components assuming an integer value in [0,Q � 1]

(for example Q = 28 = 256). The three-dimensional space
of color coordinates (R,G,B) therefore possesses Q3 colori-
metric cells or distinct colors. The pixels distributed among
these colorimetric cells form the three-dimensional histo-
gram of the image. For common natural color images as
we shall analyze (see Fig. 1), Fig. 2 shows a three-dimen-
sional histogram under two different angles of view, for a
visual appreciation of its complex organization.

To characterize the organization of three-dimensional
histograms as in Fig. 2, a multifractal analysis [29–31] is
realized as follows. The colorimetric cube [0,Q � 1]3 is cov-
ered by cubic boxes with sidelength a. Each of these boxes,
indexed by i, is assigned a measure Pi 2 [0,1] equal to the
number of pixels of the histogram contained in the box di-
vided by Ntot. With a parameter q 2 R, one defines a parti-
tion function

Zðq; aÞ ¼
X

i

Pq
i ; ð1Þ

with the summation index i running over the set of (non-
empty) boxes of sidelength a required to cover the three-
dimensional histogram. For a fixed value of the exponent
q, the evaluation of Z(q,a) is repeated for various box sizes
a. The exponent q acts as a zoom on the measure Pi at scale
a, by differently distributing the influence on Z(q,a) of the
various values of the measure. In this manner, q > 1 rein-
force, in a relative way, the influence on Z(q,a) of large val-
ues of Pi, while q < 1 reinforce small Pi. As long as q > 0, the
order relation of Pi is preserved: large Pi contribute more to
Z(q,a) than small Pi, yet with varying weighting according
to the value of q > 0. At q < 0, the order relation of Pi is re-
versed: small Pi contribute more to Z(q,a) than large Pi,
with varying weighting according to the value of q < 0. As
a result, according to the exponent q, the partition function
Z(q,a) is differently influenced by the measure Pi, offering
in this way multiple viewpoint on this measure.

Remarkable properties across scales are identified when
the partition function Z(q,a) displays power law evolution
[32,30,33] of the form

Zðq; aÞ � asðqÞ; ð2Þ

Fig. 1. Two RGB color images with Ntot = 512 � 512 pixels and Q = 256
levels.

Fig. 2. Three-dimensional histogram in the colorimetric cube [0,Q � 1 = 255]3 for image ‘‘Flowers” of Fig. 1, under two different angles of view.
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with an exponent s(q), called mass exponent, a function of
the parameter q that provides a condensed characteriza-
tion of multiscale properties of the structure under analy-
sis. A (trivial) reference behavior is the situation where the
pixels of the three-dimensional histogram distribute in a
uniform way over the whole colorimetric cube [0,Q � 1]3.
In this case, the measure of each box is proportional to
its volume, i.e. Pi � a3, and the number N(a) of boxes with
size a required to cover the histogram gives N(a) � a�3. The
partition function of Eq. (1) then yields Z(q,a) � a3q�3, lead-
ing in Eq. (2) to

sðqÞ ¼ 3ðq� 1Þ: ð3Þ

A linear mass exponent s(q) as in Eq. (3) identifies a mono-
fractal behavior. Power law evolution as in Eq. (2) associ-
ated with an exponent s(q) departing from a linear form
as in Eq. (3), identifies more elaborate multiscale organiza-
tions displaying a multifractal character. We note that, as a
consequence of normalization to 1 of the measure Pi, one
has in Eq. (1) the identity Z(q = 1,a) = 1 for all a; the func-
tion s(q) of Eq. (2) therefore always verifies s(1) = 0.

A generalized fractal dimension is defined as [27,28]

DðqÞ ¼ sðqÞ
q� 1

; ð4Þ

which reduces to the constant D = 3 in the case of the uni-
form three-dimensional histogram of Eq. (3). The general-
ized fractal dimension D(q) offers another condensed
characterization of multiscale properties of the structure
under analysis. An interesting special case occurs for
q = 0, when Z(q = 0,a) of Eq. (1) reduces to counting the
number N(a) of covering boxes at scale a. In this case Eq.
(4) gives D(0) = �s(0), and through Eq. (2) this number of
covering boxes verifies N(a) � a�D(0). The dimension D(0)
therefore represents the box-counting fractal dimension,
or Hausdorff dimension, of the support of the three-dimen-
sional histogram. This dimension is D(0) = 3 for the support
of the uniform three-dimensional histogram; it can be low-
er than 3 for lacunary histograms with regions void of pix-
els across a whole range of scales or sizes. Other values of q
are associated with special fractal dimensions having sim-
ple concrete interpretations [27,28]. In this way D(q = 1) is
related to the information dimension and D(q = 2) to the
correlation dimension of the structure under analysis. For
the characterization of the three-dimensional histograms
from color images, specific studies have been recently per-
formed on the box-counting dimension D(0) of the support
in [26], and on the correlation dimension D(2) in [25]. In
the present paper, we consider the whole set of general-
ized fractal dimension D(q) which in principle represents
an infinite series of fractal dimensions [27,28], and stands
as a more complete characterization of the organization
across scales.

3. Multiplicative cascade

As a useful reference, it is possible to distribute the pix-
els of the three-dimensional color histogram according to
a synthesized multifractal measure obtained through the
following process [29,34]. The colorimetric cube [0,Q� 1]3

is assigned an initial uniform measure of 1. By bisecting
equally along each of the three coordinate axes, the color-
imetric cube is divided into eight equal sub-cubes. Each of
these eight sub-cubes has its initial measure 1/8 multiplied
by a weighting factor mi 2 ]0,1[ with normalization of the
weights

P8
i¼1mi ¼ 1. This process is iterated, by dividing

in eight each of the sub-cubes, and by redistributing the
initial measure of each sub-cube according to the weight-
ing by the fixed {mi}. The process so iterated implements
a multiplicative cascade which converges to a multifractal
measure over the colorimetric cube [0,Q � 1]3, and whose
characteristics are determined by the weighting factors
{mi}. Especially, with similar notions also addressed in
[29,35], the mass exponent s(q) of Eq. (2) results as

sðqÞ ¼ �log2

X8

i¼1

mq
i

 !
; ð5Þ

and the generalized fractal dimension D(q) follows from
Eq. (4). In particular, one always has for such multiplicative
cascade D(q = 0) = 3, in accordance with the support of this
multifractal measure which is the whole colorimetric cube,
thus a support with dimension 3.

4. Image analysis

We now develop the multifractal analysis based on the
partition function Z(q,a) from Eq. (1) numerically evalu-
ated on the histograms associated with three types of color
images with size Ntot = 512 � 512 = 218 pixels and
Q = 256 = 28 levels for each of the three components R, G
and B. The first type consists of random images with, at
each pixel, the three components R, G and B uniformly
drawn at random over [0,Q � 1 = 255]. The second type
corresponds to images where the pixels distribute over
the colorimetric cube [0,255]3 according to the multifrac-
tal measure resulting from the multiplicative cascade of
Section 3. The third type contains common natural color
images, typically as shown in Fig. 1.

On the log–log plots of the partition function Z(q,a) in
Figs. 3 and 4, power law behaviors according to Eq. (2)
are identified by straight lines. Such straight lines charac-
terizing power laws are clearly visible in Figs. 3 and 4,
yet often with a behavior known as crossover, when a
change of slope occurs in the power law for a definite scale
[36–38]. These observations in Figs. 3 and 4 can be inter-
preted as follows, keeping in mind that the graphs of
Z(q,a) characterize the structure of the color histogram of
the image, i.e. the way the pixels of the image take their
colors in the colorimetric cube, as a function of scale, from
close neighboring colors (small scales) to very distinct col-
ors (large scales).

For the random image of Fig. 3(A), Ntot = 218 pixels take
their colors uniformly at random in the colorimetric cube
[0,Q � 1]3. With Q = 256 = 28, the colorimetric cube accom-
modates 224 distinct colors or elementary cells with extent
1 � 1 � 1. The random distribution of Ntot = 218 pixels in
these 224 cells yields an average density of 1/26 pixel per
cell. In this way, in the neighborhood of a given pixel of
the color histogram, below the linear distance of 22 there
is on average no other pixel. The number of pixels starts
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to rise, on average, only beyond a neighborhood with linear
extension 22 and volume (22)3 = 26. In other words, in the
close neighborhood of a color present in the random image,
there is no other color employed in the image; one needs
to reach to sufficiently distant colors for finding them em-
ployed in the image. This is a characteristic of the colori-
metric structure of the image. These properties are
manifested by the crossover in Z(q,a) around the scale
a = 22 in Fig. 3(A). Scales larger than a = 22 have to be
reached to have the count of pixels start to rise in the his-
togram; below this scale of a = 22 the count does not vary
and Z(q,a) remains constant. Above the crossover at
a = 22, the variation of Z(q,a) in Fig. 3(A) occurs according
to the slope s(q) = 3(q � 1) of Eq. (3), as shown in
Fig. 5(A). This characterizes a uniform distribution of the
colors in the three-dimensional histogram above the cross-
over scale of a = 22. Accordingly, the generalized fractal
dimension D(q) of Eq. (4) is the constant D = 3, as shown
in Fig. 6(A).

For the image of Fig. 3(B) associated with the multipli-
cative cascade, a comparable crossover exists at scale
a = 22. The reason is similar. The multiplicative cascade is
iterated until it fills 218 sub-cubes of the initial colorimetric
cube [0,255]3, matching the Ntot = 218 pixels of the consid-
ered images. The linear scale a = 22 is therefore here also a

transition scale. Below this crossover scale, the populations
of pixels cease to vary, as well as Z(q,a); and above the
crossover a = 22, in Fig. 3(B), Z(a,q) varies according to a
power law with slope s(q) shown in Fig. 5(A). The corre-
sponding generalized fractal dimension D(q) of Eq. (4) is
presented in Fig. 6(A). One observes with the multiplica-
tive cascade for the color histogram, a much different
behavior from the uniform histogram of Fig. 3(A). In
Fig. 3(B) for the cascade, Z(q,a) above the crossover varies
according to a slope s(q) much different from that of the
uniform histogram. Fig. 5(A) exhibits a nonlinear s(q) for
the cascade. This is the mark of the multifractal character
of the histogram for the cascade of Fig. 3(B). For this histo-
gram, there is no scale where the measure uniformizes. On
the contrary, at all scales, the measure keeps on varying in
a significant way in the colorimetric space, however with a
form of self-similarity across scales of the observed varia-
tions. This is manifested by the existence of power laws
for Z(q,a), with slopes s(q) significantly differing from the
slopes attached to the uniform histogram as indicated by
Fig. 5(A).

It is to be noted that in Figs. 5 and 6(A), the mass expo-
nents s(q) and generalized fractal dimensions D(q) which
are numerically evaluated from three-dimensional histo-
grams, exactly match the theoretical predictions from
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Eqs. (3)–(5), for the uniform image and for the image asso-
ciated with the multifractal cascade. This provides a vali-
dation, on reference cases, of the procedure for numerical
evaluation.

For the natural color images of Fig. 4, an interpretation
can be proposed in relation to the previous reference
behaviors. Power laws also exist for Z(q,a) in Fig. 4 for
the natural images. And for the negative q, a crossover
gradually emerges as q moves toward �1. The crossover is
observed this time at a larger scale a = 26. This crossover
identifies a transition in the distribution of the pixels in the
color histogram. At large scales a P 26, one characterizes
colors largely distinct in the image, their relative weights
and the way they distribute in the colorimetric space. At
small scales a < 26, one characterizes neighboring colors
in the image, that is, fine variations or shades of colors. It
can be noted that, contrary to the Fig. 3, below the cross-
over a = 26 in Fig. 4 the partition function Z(q,a) keeps on
varying. This reveals that in natural images, at short dis-
tances from a populated color of the histogram, there gen-
erally always exist other colors present in the image, and
this down to the finest scales of the colorimetric space.

This is a characteristic of natural images, a high richness
of color shades manifested by the graphs of Z(q,a). Briefly,
on the graphs of Fig. 4, above the crossover one character-
izes largely distinct colors, below one characterizes shades
of colors. The distributions of these colors exhibit a form of
self-similarity across scales, indicated by the power laws,
yet with exponents (slopes) differing on both sides of the
crossover. It therefore appears that basic colors and shades
distribute differently in the colorimetric space, although
both in a self-similar manner. Furthermore, it can be veri-
fied that if one reduces the RGB color images like those of
Fig. 1 into indexed images with a colormap containing only
the dominant colors, it then appears that at small scales
the graphs of Z(q,a) no longer vary, and become constant
as in Fig. 3: the color shades have been lost by keeping only
the dominant colors. One has access in this way, through
the graphs of Z(q,a) as those of Fig. 4, to a quantitative
characterization of the colorimetric organization, that ap-
pears rich for natural images.

For the natural color images, Fig. 5(B) shows the slopes
s(q), with for q < 0 the slopes s(q) evaluated at large scales
above the crossover, for comparison with the conditions of
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Fig. 5(A). The corresponding generalized fractal dimension
D(q) of Eq. (4) is presented in Fig. 6(B).

The condensed characterizations provided by Figs. 5
and 6 reveal that the behavior of the (non multifractal) uni-
form image is markedly different from the behavior of the
multifractal cascade and from that of the natural images.
For the multifractal cascade in Fig. 3(B), the weights {mi}
have been chosen to obtain a mass exponent s(q) of the
cascade that closely matches the mass exponent s(q) ob-
served for the natural image ‘‘Flowers” in Fig. 5(A). The
ensuing generalized dimension D(q) in Fig. 6(A) is also
close for the cascade and image ‘‘Flowers”. This manifests
that the multifractal characteristics observed on the natu-
ral image ‘‘Flowers” are closely similar to those of the ref-
erence multifractal behavior supplied by the cascade. For
another natural image, ‘‘Lena” of Fig. 1, the characteristics
observed in Figs. 5 and 6(B) are also of this same kind of
multifractal behavior, although some difference exists in
the quantitative values of the dimension D(q) in Fig. 6(B)
between two distinct natural images. In addition, one ob-
serves in Fig. 6(A), at q = 0, a dimension D(q = 0) = 3 equally
for the uniform image and for the multiplicative cascade
image. This expresses that the dimension of the support
of the color histogram of these two types of images is 3,
which is expected from their homogeneous constitution
over the whole colorimetric cube, even for the multifractal
cascade image. By contrast, the natural image ‘‘Flowers” in
Fig. 6 exhibits D(q = 0) = 2.7; and for image ‘‘Lena” one
finds D(q = 0) = 2.4. This expresses that the dimension of
the support of the histogram of the natural images is
non-integer, below 3. This is a fractal dimension manifest-
ing a diffuse character of the support of the three-dimen-
sional histogram, with a lacunary structure of voids
across a whole range of sizes or scales containing no color
employed in the image, as illustrated in Fig. 2. The support
of the histogram constitutes the palette of colors existing
in the image, independently of the numbers of pixels hold-
ing these colors. This support exhibits a fractal character
for the natural images, based on the generalized dimension
D(q = 0) which is non-integer: natural images tend to show
a fractal color palette. The other characteristics, at q – 0, in
turn, are influenced by the populations or numbers of pix-
els over the histogram.

5. Small and large scales

We complement in Fig. 7 with the mass exponents s(q)
and generalized fractal dimension D(q) numerically evalu-
ated also from the graphs of Z(q,a) of Fig. 4 but at small
scales a. For the exponents q P 0, the values of s(q) and
D(q) do not significantly differ when evaluated at small
or at large scales. There is a uniform behavior across scales,
with a regular power law for Z(q,a) with no crossover. On
the contrary, for the exponents q < 0, one observes in
Fig. 7 the values of s(q) and D(q) which depart to become
distinct when evaluated at small or large scales. It is still
difficult to obtain a completely assured interpretation on
the origin of this behavior at q < 0 giving rise to the cross-
over. One reason for this is that at q < 0 these are the small-
est values of the measure over the histogram that tend to
dominate the partition function Z(q,a) of Eq. (1), and thus
the influence of measurement noise may here become sig-
nificant, although the presence and impact of measure-
ment noise are difficult to assess in the common natural
color images we are dealing with. It is for such reason that
the values more commonly interpretable for multifractal
parameters as the generalized dimension D(q), are usually
associated with the range q P 0. One has in this way D(0)
which provides the fractal dimension of the support of the
histogram, D(1) which constitutes its information dimen-
sion, and D(2) related to its correlation dimension; and
these special and important cases of D(q) are evaluated
at quasi identical values at small and large scales as seen
in Fig. 7. The parameters s(q) and D(q) stemming from
the multifractal analysis therefore contain, already at
q P 0, rich characterizations of the three-dimensional his-
togram and further, of the colorimetric organization of the
images across scales.

The observations reported here concerning the images
of Fig. 1 are typical of the results observed during the mul-
tifractal analysis we performed on numerous natural color
images (see Table 1). In particular, the behavior of the log–
log graphs of Z(q,a) as in Fig. 4, starting with one uniform
slope at each q > 0 and gradually moving to two distinct
slopes at small and large scales separated by a crossover
at q < 0, is observed in a quasi-systematic way on the many
natural color images we tested. The graphs of Z(q,a) in
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Fig. 4 are in this respect typical, together with the forms of
the evolutions of s(q) and D(q) in Fig. 7. Beyond these sim-
ilar forms, it is the precise numerical values of s(q) and
D(q) which are going to differ from one image to the other
to become specific. Accordingly for instance for image
‘‘Flowers” of Fig. 1 one gets the fractal dimension of the
support D(q = 0) = 2.7, the information dimension
D(q = 1) = 2.1, and connected to the correlation dimension
D(q = 2) = 1.6; while for image ‘‘Lena” one finds here
D(q = 0) = 2.4, D(q = 1) = 1.8 and D(q = 2) = 1.5.

6. Multifractal spectrum

The multifractal analyses developed above do not re-
quire prior hypotheses on the structure of the data to
which they are applied. Especially, the partition functions
Z(q,a) as in Figs. 3 and 4 can always be computed. One is
then in position to judge about the existence of power
law behaviors according to Eq. (2), and also about the
ranges of scales over which such laws can exist. One al-
ready obtains in this way a point of view about properties
across scales in the analyzed data. If scaling according to
power laws are observed on Z(q,a) over significant ranges
of scales, this allows one to extract the slopes s(q) in Eq.
(2), and then the generalized fractal dimension D(q) via
Eq. (4). One gets with s(q) and D(q) a condensed character-
ization of multiscale properties of the three-dimensional
(or multidimensional) histogram. By themselves, the mul-
tifractal parameters s(q) and D(q) provide a useful contri-
bution to the multiscale analysis and characterization of
many complex empirical data, as it has been illustrated
in many contexts up to the most recent [39,40]. In the con-
text of the present paper, the graphs of s(q) and D(q) reflect
the colorimetric organization of the images across scales.
As such, they can serve various purposes of image
processing.

It is possible to push further the multifractal analysis,
provided this time to rely on specific hypotheses about
the data [29,35,30,31]. One assumes that the local measure
Pi at scale a used in Eq. (1) can be expressed as Pi � aa,
where a defines a local singularity exponent or Hölder

exponent. One further assumes that the number of boxes
of size a where the Hölder exponent takes a definite value
a, can be expressed as N(a,a) � a�f(a); and in doing so one
introduces f(a) which represents the fractal dimension of
the set of points with Hölder exponent a, also known as
the multifractal spectrum. Based on these assumptions, the
mathematical multifractal formalism [29,35,30,31] allows
one to establish that, in well defined conditions, the mass
exponent s(q) that we evaluated, can give access to the
multifractal spectrum f(a). This is realized by evaluating
the sum of Eq. (1) that defines Z(q,a), no longer as a sum
over the boxes i, but as a sum over the values of a present
in the data with their respective weights N(a,a). In this
way, one can write for the partition function of Eq. (1), a
variation with scale a as

Zðq; aÞ �
X

a
aqa�f ðaÞ: ð6Þ

Then, through a saddle point approximation, the sum in Eq.
(6) is considered as dominated, at each q, by the value aq

realizing

aq ¼ arg min
a
½qa� f ðaÞ�: ð7Þ

One obtains Zðq; aÞ � aqaq�f ðaqÞ, and by identification with
Eq. (2), for each q it comes s(q) = qaq � f(aq) equivalently
obtainable [29,35,30,31] as

sðqÞ ¼ min
a
½qa� f ðaÞ�: ð8Þ

This relation of Eq. (8) indicates that s(q) comes as the
Legendre transform of f(a), and inversion of this Legendre
transform gives [29,35,30,31]

f ðaÞ ¼min
q
½qa� sðqÞ�: ð9Þ

In this way, through the Legendre transform expressed by
Eq. (9), one can deduce the multifractal spectrum f(a) from
the mass exponent s(q). Also, from Eq. (8), one deduces
that s(q = 0) corresponds to the minimum of �f(a), or
equivalently �s(q = 0) corresponds to the maximum of
f(a). And as indicated by Eq. (4), one always has
�s(q = 0) = D(q = 0), so the maximum of the multifractal
spectrum f(a) is always D(0), the box-counting dimension
the support of the measure.

The relations of Eqs. (8) and (9) provided by the multi-
fractal formalism and connecting the multifractal spec-
trum f(a) to the mass exponent s(q) through a Legendre
transform, imply that the functions f(a) and s(q) are con-
cave (\). This is required to have the possibility of deriving
f(a) from s(q) via Eq. (9). However, the process of evaluat-
ing s(q) can always be envisaged for a data set, as we per-
formed above, but it will not necessarily always lead to a
concave s(q), for an empirical data set displaying complex
multiscale organization. This seems to be the situation of
the three-dimensional histograms from natural color
images studied here. For such histograms, the concavity
of s(q), as illustrated in Fig. 7(A), is usually obtained only
over a certain range of scales. This suggests that these
three-dimensional color histograms present a more com-
plex multiscale organization, lying beyond the elementary
assumptions where the multifractal formalism provides di-
rect access to the spectrum f(a) from the exponent s(q). If

Table 1
For a series of common color images, parameters extracted from their
multifractal spectrum f(a) as in Figs. 8 and 12: minimal amin and maximal
amax Hölder exponent, spectral width Da = amax � amin, exponent
a0 = a(q = 0) achieving the maximum f(a0) = D(q = 0) of the spectrum
providing the box-counting dimension of the support of the color
histogram.

Image amin amax Da a0 D(0)

Flowers 0.9 9.0 8.1 3.6 2.7
Lena 1.1 9.0 7.9 4.3 2.4
Sailboat 0.8 9.5 8.7 5.0 2.8
Zelda 1.3 6.4 5.1 2.9 2.3
Boats 0.6 9.1 8.5 4.5 2.4
Monarch 1.1 9.0 7.9 3.6 2.4
Parrots 1.2 8.2 7.0 3.7 2.6
Fruits 1.0 9.5 7.5 4.5 2.5
Yacht 1.3 8.2 6.9 3.9 2.6
Mandrill 1.4 9.1 7.7 4.0 2.8
Goldhill 1.1 8.5 7.4 4.1 2.5
Car 1.3 9.0 7.7 4.1 2.7
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we restrict the analysis to the range of scales, as in Fig. 5,
where a concave (\) form can be assigned to s(q), it is nev-
ertheless possible in this way to derive, through the Legen-
dre transform of Eq. (9), a multifractal (Legendre) spectrum
f(a) attached to the three-dimensional color histogram.
This will serve as a further multiscale characterization to
situate the three-dimensional histograms in relation to a
classic multifractal reference indicator provided by the
spectrum f(a).

In this direction, from Eqs. (7) and (8) one can write [41]

sðqÞ ¼ qaq � f ðaqÞ; ð10Þ

and since s(q) is in a minimum at aq,

0 ¼ ds
daq
¼ q� d

daq
f ðaqÞ; ð11Þ

whence

q ¼ d
daq

f ðaqÞ: ð12Þ

Also, from Eq. (10),

ds
dq
¼ aq þ q

daq

dq
� df ðaqÞ

daq

daq

dq
; ð13Þ

giving, thanks to Eq. (12),

ds
dq
¼ aq: ð14Þ

For each q where s(q) is measured, one thus in practice has
access via Eqs. (14) and (10), to a point (aq, f(aq)) defining
the multifractal spectrum.

In this respect, the multifractal spectrum f(a) associated
with the multiplicative cascade of Section 3 can be theoret-
ically computed, from Eq. (5), with

aq ¼
d

dq
sðqÞ ¼ �1P8

i¼1mq
i

X8

i¼1

mq
i log2ðmiÞ; ð15Þ

and

f ðaqÞ ¼ qaq � sðqÞ: ð16Þ

As a result, the multifractal spectrum f(a) from Eqs. (15) and
(16) lives over a range of Hölder exponent a 2 [amin,amax],
with amin = aq?1 = �log2[maxi(mi)] and amax = aq?�1 =
�log2[mini(mi)]. In addition, at q = 0, the maximum
�s(0) = D(0) = 3 is reached by f(a), and occurs at, from Eq.
(15),

a0 ¼
�1
8

X8

i¼1

log2ðmiÞ: ð17Þ

Fig. 8 compares the multifractal spectrum f(a) computed
from the mass exponent s(q) of Fig. 5 for different types
of images. In particular in Fig. 8, the weights {mi} of the
multiplicative cascade are selected to obtain a range [amin,
amax] that matches the range observed for the spectrum
from the natural color image ‘‘Flowers” of Fig. 1. The mul-
tifractal spectra f(a) of Fig. 8 are numerically computed,
through the Legendre transform of Eq. (9), implemented
via Eqs. (14) and (10) in practice, and applied to the mass
exponent s(q) measured in Fig. 5. At the same time, a the-
oretical expression is available for f(a) of the multiplicative
cascade via Eqs. (15) and (16), and we have verified that an
exact match is obtained between the theory and the
numerical evaluation of f(a) for the cascade. This provides
a validation, against an analytical theory, of the numerical
procedure we implemented for the evaluation of the mul-
tifractal spectra.

In Fig. 8, for the uniform image, the spectrum degener-
ates to the single point (a = 3, f(a = 3) = 3) as expected for a
measure uniformly filling the colorimetric cube. By con-
trast in Fig. 8, the spectra f(a) for the multiplicative cascade
and for the natural images, display in common a very
broad range of Hölder exponent Da = amax � amin � 8,
which is the mark of strong multifractal behavior. Also,
as we indicated, the maximum of the spectrum f(a) yields
the box-counting dimension D(0) of the support of the
measure. This dimension is always D(0) = 3 for the multi-
plicative cascade in accordance with its support being the
whole colorimetric cube; and this maximum occurs for
the cascade at a0 � 4.04 according to Eq. (17), as verified
in Fig. 8. By contrast, for the natural images in Fig. 8, the
maximum of the spectrum is evaluated as D(0) = 2.7 for
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Fig. 8. Multifractal spectrum f(a) as a function of the Hölder exponent a for the histogram measure. Open circle: degenerate spectrum reduced to the point
(3,3) for the uniform image. Dashed line: multiplicative cascade image of Fig. 3(B) coinciding with the theoretical prediction of Eqs. (15) and (16). Solid line:
image ‘‘Flowers” (panel A) and ‘‘Lena” (panel B) of Fig. 1.
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image ‘‘Flowers” of Fig. 8(A) and as D(0) = 2.4 for image
‘‘Lena” of Fig. 8(B); these are non-integer dimensions be-
low 3 manifesting a nonhomogeneous fractal support of
the color histogram in the colorimetric cube. This is an
important difference between the multifractal spectra of
the cascade and of the natural images: the width Da of
these two spectra can always be made to coincide, by prop-
er choice of the weights {mi} of the cascade; but the max-
imum for the cascade is always at D(0) = 3, while it is often

observed at a non-integer D(0) < 3 with natural images.
This represents a more complex multifractal signature
from the natural images, with a broad spectrum f(a) and
a non-integer fractal dimension D(0) for a nonhomogene-
ous diffuse structure of the histogram.

For more insight, we also present the same multifractal
characterization applied to two other common natural col-
or images from Fig. 9.

For the images in Fig. 9, the partition function Z(q,a) is
presented in Fig. 10. With the same approach as for Figs.
5 and 6(B), the corresponding mass exponent s(q) and gen-
eralized dimension D(q) are shown in Fig. 11. Then Legen-
dre transform of s(q) of Fig. 11(A) according to Eq. (9)
yields the multifractal spectrum f(a) of Fig. 12.

The nonlinear evolutions of s(q) and D(q) observed in
Fig. 11, and the broad spectra f(a) in Fig. 12, represent
marked multifractal signatures extracted from the three-
dimensional color histograms. The dimension D(0) of the
support of the histogram, as read for instance at the max-
imum of the spectrum in Fig. 12, comes as D(0) = 2.8 for
image ‘‘Sailboat” and D(0) = 2.3 for image ‘‘Zelda”. These
are non-integer dimensions that identify a fractal support
of the histogram. The width of the spectra Da =
amax � amin are observed in Fig. 12 as Da = 8.7 for image
‘‘Sailboat” and Da = 5.1 for image ‘‘Zelda”. The multifractal

Fig. 9. Two RGB color images with Ntot = 512 � 512 pixels and Q = 256
levels.
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characteristics measured for different images can thus dif-
fer significantly, although the marked multifractal charac-
ter remains as a common feature.

The same multifractal analyses have been carried out
for a whole set of common natural color images, as also
used in [26]. Multifractal characteristics measured in this
way are summarized in Table 1. These analyses, leading
in Table 1 to broad spectral widths Da and non-integer
support dimensions D(0), show the general tendency to
multifractal behaviors observed from the three-dimen-
sional histograms of natural color images. The quantitative
parameters extracted from the present multifractal analy-
sis offer measures to characterize the structures across
scales in the color histograms reflecting the colorimetric
organizations of images. From previous multifractal analy-
ses applied to the spatial organizations of images, special
significance can be attached to specific values of the Hölder
exponent a, such as a0 in Table 1, and they were used to
various purposes such as image segmentation or recon-
struction [12,6,42,17].

7. Discussion

Multiscale approaches offer means to contribute to the
characterization of complex structures such as natural
images. In this direction, we have performed a multifractal
analysis of the three-dimensional histograms from color
images, following an approach which can also be extended
to multicomponent images with more than three compo-
nents. The theoretical framework and equations that we
used as a basis for the multifractal analysis are standard
material that we reviewed from the literature; and we ap-
plied them, for the first time to our knowledge, to a multi-
fractal characterization of the color histograms. The results
show complex multiscaling signatures emerging from the
analysis of the three-dimensional histograms from natural
color images, with behaviors which are similar or even
more elaborate than those attached to reference multifrac-
tal models provided by three-dimensional multiplicative
cascades.

The behaviors observed in the multifractal analysis are
useful to image characterization and modeling. They can
be related to the presence of multiscale arrangements of
the pixels of the color histograms, into clusters with no
definite scales. This could carry relevance for methods for
segmenting or indexing multicomponent images, that
would seek to identify a few well delineated peaks in their
histogram, since one can expect organizations with peaks,
sub-peaks and sub-sub-peaks, etc., nested across many
scales. Also, a colorimetric organization with multifractal
character in natural images, could provide cues on coding
strategies from the visual system [24] and the distribution
of its capabilities across spectral scales, since trichromacy
is essentially a coding modality of the visual system. These
eventualities were already evoked based on the fractal
properties reported in [25,26], and are reinforced by the
multifractal properties reported here.

The multifractal characterization of images could also
serve other practical applications. For instance, they could
be tested to construct metrics for the quantitative assess-
ment of the (colorimetric) perception or realism of natural
images as opposed to synthetic images or cartoon-like pic-
tures [43,44]. Multifractal characterization of chromatic
structures could also be relevant to novel applications such
as artistic painting evaluation and authentication [45,46].
Significant multifractal properties have been reported in
different areas of physiology [47–50] and especially in
neural dynamics [51–53], inciting one to raise the interest-
ing issue of whether aesthetic relevance could match the
brain dynamics.

The multifractal analyses of three-dimensional color
histograms are presented here for the first time, as far as
we know. They will benefit from extensions to larger series
of images, in order to more deeply interpret their meaning
and what they reveal concerning the colorimetric organi-
zation of natural images. This will consolidate the contribu-
tion of fractal and multifractal concepts to the understanding
of the complex structures of images.
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