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We study the aperiodic signal transmission in a static nonlinearity in the context of
aperiodic stochastic resonance. The performance of a nonlinearity over that of the lin-

ear system is defined as the transmission efficacy. The theoretical and numerical results
demonstrate that the noise-enhanced transmission efficacy effects occur for different sig-
nal strengths in various noise scenarios.
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1. Introduction

Aperiodic stochastic resonance proposed by Collins et al.
1,2 describes the noise-

enhanced effect in neural excitable systems for transmitting aperiodic (arbitrary)

signals. This notion emphasizes the shape matching between the input and the

output signals in biological information processing, and also breaks the limitation

of stochastic resonance systems with periodic inputs. In order to characterize the

information-carrying signal through the nonlinear system, such measures as the

cross-correlation coefficient 1–3, the mutual information 4, the Kullback entropy 5
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and the channel capacity 6 are utilized. Later, the notion of aperiodic stochastic res-

onance, as an outstanding extension of conventional stochastic resonance, inspired

its investigation in the area of biological information processing 7–14. However, some

interesting questions have not yet been touched upon. For instance, which type of

background noise is favorable for the signal transmission in a nonlinearity? For a

linear system, the system performance is easily analyzed. With the performance of a

linear system as a benchmark, can we find another system that has a more efficient

performance?

In this letter, we mainly focus on aperiodic signal transmission in a static nonlin-

earity, and also elucidate the above questions. In order to evaluate the performance

improvement by noise, the transmission efficacy is defined as the ratio of the cross-

correlation coefficient of the output signal from a nonlinear system over that of a

linear system. Using this measure, we demonstrate theoretically and numerically

that noise-enhanced transmission efficacy effects occur for different signal strengths

in various noise scenarios. Especially, in the small-signal limit, the noise type de-

termines the structure of nonlinearity that is locally optimal for an arbitrary signal

transmission, and the type of background noise with a high Fisher information is

favorable for the signal transmission. Using the illustrative case of a nonlinearity

with saturation, efficient signal transmission is demonstrated.

2. Transmission efficacy of nonlinearity

Consider the observation of a process x(t) = s(t) + z(t), where the component

s(t) is an information-carrying signal, and zero-mean additive white noise z(t),

independent of s(t), having a probability density function (PDF) fz and variance

σ2
z = Ez[z

2] =
∫

∞

−∞
z2fz(z)dz. Next, the input x(t) is transmitted by a static

nonlinearity

y(t) = g(x(t)), (1)

where the nonlinearity g has zero mean under fz, i.e. Ez[g(x)] = 0.

Assume that the known signal s(t) is with a finite non-zero bound U such that

0 ≤ |s(t)| ≤ U , and exists for a time duration T . The time average of s(t) is

〈s(t)〉 =
∫ T

0
s(t)dt/T , and the average power 〈s2(t)〉 =

∫ T

0
s2(t)dt/T is assumed to

be finite. Then, the average signal variance is assumed to be σ2
s = 〈s2(t)〉 − 〈s(t)〉2,

and the root-mean-square (RMS) amplitude is σs. The normalized time average

cross correlation between s(t) and x(t) is 1,2

Csx =
〈s(t)Ez [x(t)]〉 − 〈s(t)〉〈Ez [x(t)]〉

σ2
s

√

〈Ez[x2(t)]〉 − 〈Ez[x(t)]〉2
=

σs
√

σ2
s + σ2

z

, (2)

where 〈Ez[x(t)]〉 = 〈s(t)〉 and 〈Ez[x
2(t)]〉 = 〈s2(t)〉 + σ2

z . Similarly, the normalized

time average cross correlation between s(t) and y(t) is given by 1,2

Csy =
〈s(t)Ez[y(t)]〉 − 〈s(t)〉〈Ez [y(t)]〉

σs

√

〈Ez[y2(t)]〉 − 〈Ez[y(t)]〉2
, (3)
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with the nonstationary expectations at a fixed time t given by

Ez[y(t)] = Ez[g(s(t) + z)], (4)

Ez[y
2(t)] = Ez[g

2(s(t) + z)]. (5)

For the linear system gL(x) = x, the cross correlation of Eq. (3) is CL
sy = Csx.

In order to evaluate the transmission efficacy of nonlinearity g, the ratio

ρ =
Csy

Csx

=
Csy

CL
sy

(6)

is an appropriate measure, which represents the improvement of an arbitrary non-

linearity g over the linear system gL.

For instance, consider a typical nonlinearity with saturation 3

g(x) = tanh(βx), (7)

with the slope parameter β. An example of the nonlinearity g(x) = tanh(5x) is

shown in Fig. 1. In experiments, s(t) is formed by prefiltering a Gaussian random

signal with correlation time τs and average signal variance σ2
s . The autocorrelation

of s(t) is 〈s(t)s(t′)〉 = σ2
s exp(−|t − t′|/τs). The brackets 〈·〉 denote an ensemble

average 1. An aperiodic weak signal s(t), as shown in Fig. 2, is adopted with the

correlation time τs = 20 s, the average signal RMS amplitude σs = 0.045 and total

time length T = 300 s.

In Fig. 3, we plot the transmission efficacy ρ of saturation nonlinearity g(x) =

tanh(5x) versus Gaussian noise RMS amplitude σz for the average signal RMS am-

plitude σs = 0.045, 0.141, 0.447 and 1.414. It is seen in Fig. 3 that, except for the

signal variances σs = 0.045, there is an optimal noise RMS amplitude σz that is

favorable for signal transmission, this is the aperiodic stochastic resonance effect.

This occurs when the signal s(t) is strongly distorted by the saturation nonlinear-

ity. When the noise level is sufficiently large, the signal can be enhanced by noise

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

ta
nh

(5
x)

Fig. 1. The nonlinearity g(x) = tanh(βx) with saturation, for the slope parameter β = 5.
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and the distortion of signal is reduced. However, the transmission efficacy ρ of the

nonlinearity with saturation is always less than unity in the Gaussian noise back-

ground. Can we find the conditions of ρ > 1? This problem will be answered in the

following.

0 50 100 150 200 250 300
−0.15

−0.1

−0.05

0

0.05

0.1

time t (s)

Fig. 2. Aperiodic weak signal s(t) with correlation time τs = 20 s, the average signal RMS
amplitude σs = 0.045 and total time length 300 s.
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Fig. 3. The transmission efficacy ρ of the nonlinearity with saturation g(x) = tanh(5x) versus
Gaussian noise RMS amplitude σz for the average signal RMS amplitude σs = 0.045 (blue), 0.141
(red), 0.447 (green), 1.414 (black).
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3. Small-signal limit

It is noted that Eq. (6) is closely dependent on the input signal s(t), and the study

of the nonlinearity g becomes an indeterminate case. Consider the weak signal s(t)

with the upper bound U → 0 and at a fixed time t, Eq. (4) can be expanded as

E[y(t)] ≈ Ez[g(z) + s(t)g′(z)] = s(t)Ez [g
′(z)], (8)

and Eq. (5) can be approximated as

Ez[y
2
n(t)] ≈ Ez

{

[g(z) + s(t)g′(z)]2
}

≈ Ez[g
2(z)] + 2s(t)E[g(z)g′(z)], (9)

up to the first order in the small signal s(t). Substituting Eqs. (8) and (9) int Eq. (3),

we have

Csy =
σs Ez[g

′(z)]
√

Ez[g2(z)] + 2s(t)E[g(z)g′(z)]
≈

σs Ez[g
′(z)]

√

Ez[g2(z)]
. (10)

Therefore, for the linear system gL(x) = x, the cross correlation is CL
sy = σs/σz.

With the above assumption, the ratio ρ of Eq. (6) becomes

ρ =
σz Ez[g

′(z)]
√

Ez[g2(z)]
≤ σz

√

E

[

f ′2
z (z)

f2
z (z)

]

= σz

√

I(fz) =
√

I(fz0), (11)

where the equality of Eq. (11) occurs as g becomes

gopt(z) , Cf ′

z(z)/fz(z), (12)

by the Schwarz inequality for the derivative f ′

z(z) = dfz(z)/dz (without loss of

generality C = −1) 15. Here, the scaled noise z(t) = σzz0(t) has PDF fz(z) =

fz0(z/σz)/σz, and the standardized noise PDF fz0 is with zero mean and unity

variance σ2
z0

= 1 15. Then, the Fisher information I(fz) of fz can be expressed as

I(fz) = E

[

f ′2
z (z)

f2
z (z)

]

= σ−2
z E

[

f ′2
z0
(z0)

f2
z0
(z0)

]

= σ−2
z I(fz0), (13)

with the Fisher information I(fz0) of fz0 . This result of Eq. (11) indicates that the

Fisher information I(fz0) of noise distribution is closely related to the upper bound

of the transmission efficacy ρ.

Since the structure of the locally optimal system gopt in Eq. (12) is established by

the knowledge of the noise distribution, and in practice it may be difficult to obtain

an explicit analytical expression of gopt in the unknown noisy environment. Thus,

we exploit easily implemented nonlinearities to transmit the aperiodic signals. Here,

we still consider the saturation nonlinearity of Eq. (1) in the generalized Gaussian

noise z(t) with PDF

fz(x) =
c1
σz

exp
(

−c2

∣

∣

∣

x

σz

∣

∣

∣

α)

, (14)
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where c1 = α
2
Γ

1

2

(

3
α

)

/Γ
3

2

(

1
α

)

and c2 =
[

Γ
(

3
α

)

/Γ
(

1
α

)]
α

2 . For this nonlinearity of

Eq. (7), Eq. (11) can be computed as

ρ =
σzβ Ez[sech

2(βz)]
√

1− Ez[sech
2(βz)]

. (15)

For different exponents α = 1 (Laplacian noise), 1.2, 1.5, 1.7, 2 (Gaussian noise)

and ∞ (uniform noise), the transmission efficiencies ρ of the nonlinearity g(x) =

tanh(5x) are plotted as the function of noise RMS amplitude σz by solid lines, as

shown in Fig. 4. Here, the average signal RMS amplitude is fixed as σs = 0.045.

Each point of the transmission efficacy ρ, as shown in Fig. 4 by datapoints, was

averaged over 200 trials in the simulations and the corresponding Gaussian gen-

eralized noise is generated with different seeds. It is shown in Fig. 4 theoretically

and numerically that the transmission efficacy ρ exhibits the stochastic resonance

effect for the exponents α = 1, 1.2, 1.5, 1.7. It is noted that, for α < 2, the possibil-

ity of the transmission efficiencies ρ > 1 is demonstrated. However, the maximum

of ρ of the nonlinearity with saturation does not yet reach the upper bound of
√

I(fz0) =
√

α2Γ
(

3α−1
)

Γ
(

2− α−1
)

/Γ2
(

α−1
)

indicated in Eq. (11).

4. Conclusion

In this paper, we studied aperiodic signal transmission in a nonlinearity. The trans-

mission efficacy is adopted as the cross-correlation coefficient of an output signal

for a nonlinear system over that of a linear system. Then, we demonstrate theoret-

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

noise RMS amplitude σ
z

tr
an

sm
is

si
on

 e
ffi

ci
en

cy
 ρ

 

 

α=1

α=1.2

α=1.5
α=1.7

α=2

α=∞

Fig. 4. The transmission efficacy ρ for the nonlinearity g(x) = tanh(5x) versus the generalized
Gaussian noise RMS amplitude σz for different exponents α = 1, 1.2, 1.5, 1.7, 2 and ∞ (from
top to bottom). The solid lines are theoretical curves of Eq. (15), and the data points are the
corresponding numerical results. Each point is averaged over 200 trials in the simulations. Here,
the average signal RMS amplitude is fixed as σs = 0.045.
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ically and numerically that the noise-enhanced transmission efficacy effects occur

for different average signal variance, which is illustratively presented by a nonlin-

earity with saturation. It is found that, in the small-signal limit, the structure of

the nonlinearity that is locally optimal for an arbitrary signal transmission depends

on the noise type, and the noise with a high Fisher information is favorable for the

signal transmission.
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