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ABSTRACT

We describe and analyze a very parsimonious model of it-
erated function systems (IFS) and address the issue of con-
trolling the properties of the fractal images they generate. We
specially focus on image modelling through control of the ge-
ometrical moments of the fractal attractors and on conditions
for imposing continuity to such fractal images.

1. INTRODUCTION

Iterated function systems (IFS) have recently been introduced
in the context of fractal geometry. For image processing, IFS
have found applications for image synthesis and image com-
pression [1, 2, 3]. IFS as an emerging tool still contain rich
potentialities to be explored for image processing. Here, we
describe and analyze a very parsimonious model of IFS and
address the issue of controlling the properties of the fractal
images they generate. We specially focus on image modelling
through control of the geometrical moments of the fractal at-
tractors and on conditions for imposing continuity to such
fractal images.

2. IFSMODEL

We consider the set 7 of two-dimensional signals or images
s(z,y) € IR with spatial coordinates (x,y) defined over the
support [0, 1[x[0,1[= S. A transformation 7" is introduced
which maps an initial image of Z into another (final) image of
Z. The final image is obtained as the union of 4 sub-images
defined over the 4 quarters of support S, i.e. [0,1/2[x[0,1/2][=
S1, [1/2,1[%x[0,1/2[= 82, [0,1/2[%x[1/2,1]= Ss3, and
[1/2,1[x[1/2,1][= Sa, over which each sub-image is a con-
tracted version of the initial image with affinely transformed
gray levels. Explicitly, transformation T is defined by the
union of the four sub-transformations:
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with real coefficients a; and b; verifying 0 < |a;| < 1, for
j = 1to 4, so as to have contractive mappings.

The transformation 7" defined by Eqgs. (1)—(4) implements
on both the spatial coordinates (z, y) and the gray level s(z, y),
contractive affine transforms. Consequently, the mapping
s(z,y) — T[s(z,y)] is also a contractive affine transform.
It results [1] that s(x,y) — T'[s(z,y)] admits one single
fixed point, i.e. animage o (x, y) verifying T'[o(z,y)] = o(z,y)
also called the attractor of transformation 7. Starting from
any initial image so(z,y) € Z, iterative application of the
transformation 7" defined by Eqgs. (1)—(4) realizes an IFS. The
process converges to a unique attractor o(z,y) that is com-
pletely determined by the set of 8 parameters {(a;,b;),j =
1...4}. Animportant property of this correspondence [1] is
that small smooth changes in {(a;,b;),j = 1...4} are asso-
ciated to small smooth changes in o (z, y).

The attractor o (x, ) is defined as the solution to the fixed-
point equation

o(z,y) = a1 0(2x,2y) + by V(z,y) € S
o(z,y) = aso(2x —1,2y) + bo V(z,y) € Ss
U('T:y) = ag 0(2:1?, 2y - ]-) + b3 ,V(ﬂf,y) € 83
U('T:y) = a4 0(2:1? - 172y - 1) + b4 ,V(ﬂf,y) € 84

(5)
Such a functional equation expresses a self-transformability
property of attractor o(z, y), which confers to it a self-affine
or fractal character. This translates into complicated shapes
for o(z,y), with structures or details occuring at all scales, as
visible on the images of o (x, %) shown in Figs. 1 and 2.

Determining how to choose the parameters {(a;,b;)} of
the IFS in order to impose prescribed properties onto its at-
tractor, is a key issue for image modelling from IFS. Yet, it
is usually not possible to analytically solve Eq. (5) so as to
obtain an explicit expression of o(z,y) as a function of the
parameters {(a;,b;),j = 1...4}. The ability of IFS of gen-
erating attractors with rich structures is exploited for fractal
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Fig. 1. An example of the attractor o(z,y) of the IFS of
Egs. (1)-(4).

image compression [1, 2], where the parameters of the IFS
(similar to {(a;, b;)}) are usually determined by minimizing
a mean-squared difference between the attractor and the tar-
get image to be coded. By contrast here, we address image
modelling from IFS by means of exact matching of geomet-
rical moments between the attractor and a target, instead of
mean-squared distance minimization.

3. GEOMETRICAL MOMENTS

For any image f(z,y) of Z we define
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For appropriate choices of f(x,y), Eq. (7) provides useful
linear equations relating various linear coefficients of o(z, y)
to {(aj,b;),j = 1...4}. For instance, when f(z,y) =
exp[—i27(nx + py)], the quantities S, = (exp[—i2n(nz +

py)]o(z,y)) are the Fourier coefficients of the attractor o (z, y).

When f(z,y) = 2"yP, the quantities un, = (z"yPo(z,y))
are the geometrical moments of the attractor o(z,y), which

are found to verify, according to Eq. (7), with (n, p) integers,
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with the binomial coefficients ]; . Itis thus possible in prin-

ciple, through Eq. (8), to determine the parameters {(a;, b;),
j = 1...4} of the IFS so as to impose up to 8 geometrical
moments p,,, to its attractor o(x,y). For instance, for the 4
first moments one obtains from Eq. (8)
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with an application shown in Fig. 2.

A similar approach could be used from Eq. (7) to impose
Fourier coefficients of the attractor o(x, ).

4. CONTINUITY OF ATTRACTORS

The division into four sub-images, which is at the root of the
IFS of Egs. (1)—(4), gives rise to a block structure visible in
the images of Figs. 1 and 2. This structure can be eliminated
while preserving the self-similarity of the images, by ensuring
that the IFS generate a continuous attractor. This is realized
by imposing that on o (z,y) the sub-images over Sy, Sa, S3
and S, are transformed by the IFS in a continuous way on
both sides of the line boundaries that these sub-images have
in common. Continuity along the x axis thus is associated to
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Fig. 2. Attractor o(z,y) of the IFS of Egs. (1)—(4) with the
parameters b;’s selected from Egs. (9)—(12) to impose the 4
geometrical moments pg0 = p11 = 1 and 10 = po1 = 2.

the conditions

aro(z,1) + by azo(z,0) + b3, Vze[0,1]
{ axo(z,1) +by = aso(x,0)+by, VYzel0,1],
(13)
while continuity along the y axis is associated to the condi-
tions

aro(l,y) + by ax0(0,y) +ba, Yy €[0,1]
aso(l,y) +b3 = as0(0,y)+bs, Yy e€[0,1]

If one sticks with only 8 scalar parameters {(a;,b;),
j = 1...4} for the IFS, it is usually not possible to find
an attractor o(x,y) that will fulfill the fixed-point equation
(5) together with the continuity conditions (13)—(14). This
can be easilly understood if one considers a discretized ver-
sion of o(z,y) over a spatial grid with size N, x N,. In
this case, Eq. (5) will translate into a set of N, x N, lin-
ear equations with N, x IN,; unknows (the values of o(z, y)
at the grid points). This set of equations will generally have
a unique solution defining a unique attractor o(z,y) param-
eterized by {(a;,b;),j = 1...4}. Further, if continuity is
to be imposed at the line boundaries where S;, S»2, S3 and
S, contact, Egs. (13)—(14) translate into N, + N, additional
conditions to be verified by o (z,y). This is usually not possi-
ble with only the 8 degrees of freedom {(a;.b;),7 =1...4}
for o (x,y). However, if one-dimensional function parameters
are introduced like for instance b, (), b2(y), b3 (y) and by (z),
this will introduce extra degrees of freedom in numbers N,
and N,, generally allowing to match the requirements of the
continuity conditions (13)—(14) for o (z, v).

With the proposed solution, the fixed-point equation (5)

transforms into

f 0’(.7,‘, y) = a 0(2'7:1 2y) + bl (2117)
,V(m,y) € 81
0'(.7,‘, y) = a2 0(2'7: - 11 2y) + b2(2y)
,V(m,y) € 82
U(l‘,y) = asg 0(2'7:1 2y - 1) + b3(2y - 1)
,V(m,y) € 83
o(z,y) = as02x—1,2y—1)+bsy(22 — 1)
L ,V(m,y) € 84 ;
(15)
and the continuity conditions Eq. (13) into
ayo(z,1) + bi(z) = agzo(z,0) + bs(y =0)
Vo € [0,1]

aso(z,1) + bo(y =1)

ag0(z,0) + by(2)

Vo € [0,1],
(16)
and Eq. (14) into
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a20(0,y) + ba(y)
,Vy € [Ov 1[

a40(0,y) + ba(z = 0)
,Vy €10,1] .

aso(1,y) + bs(y)

a7

With a discretized version of o(z,y) over a spatial grid
with size N, x N, Eq. (15) gives a set of N, x N, linear
equations, whereas Eqs. (16) and (17) provide a set of addi-
tional linear equations in number (of order) N, + N,. The
unknows are the values of o(z,y) and of by (), b2(y), bs(y)
and b4(x) over the discrete grid, amounting to a number of
unknowns of order N, x N, + N, + N,. The system of
Eqgs. (15)—(17) represents N, x N, + N, + N, linear equa-
tions for N, x N, + N, + N, unknows. In principle, it can be
solved through inversion of the (N, X Ny + N, +N,) x (N, %
Ny + N, + N,) matrix, a possibly very large matrix in prac-
tice for a sufficient spatial resolution of the fractal attractor
o(x,y).

When continuity is not imposed upon the attractor o (x, ),
the discretized scheme leads to a system of IV, x N, lin-
ear equations provided by Eg. (5), for IV, x IV, unknows
(the values of o(z,y) at the grid points), in the presence of
fixed given parameters (a;,b;). The iterative application of
the transformation defined by Egs. (1)-(4) converges to the
attractor o(z,y) solution to Eq. (5). This can be seen as a
(fast) iterative resolution of Eq. (5) avoiding the inversion of
a N, x N, matrix.

When continuity is imposed upon o(z,y), we have not
found a way of preserving this possibility of a fast iterative
scheme to converge to the solution of Egs. (15)-(17). This
may be a serious drawback for the efficient construction of



two-dimensional attractors o (z, y) when continuity is imposed
onto them. However, if we limit ourselves to a sub-class of
the class of continuous fractal attractors o(x,y), we may re-

cover the possibility of a very efficient iterative scheme. This

sub-class is restricted to two-dimensional attractors o (z, y)

that are separable under the form

o(z,y) = oz(x) oy(y) - (18)

In Eq. (18), o, (x) and o, (y) are one-dimensional fractal at-
tractors defined over the support [0, 1], which can be gener-
ated by one-dimensional versions of the IFS of Section 2. Es-
pecially, imposing continuity to such one-dimensional attrac-
tors will amount to imposing a condition on a zero-dimensional
frontier, i.e. one scalar condition, which can generally be ful-
filled with the degrees of freedom afforded by the scalar para-
meters of one-dimensional IFS. This scalar condition can be
explicitly solved for one parameter, reducing by one the num-
ber of degrees of freedom, for an IFS which can still be iter-
ated to convergence towards its one-dimensional continuous
attractor o, (x) or o, (y). This provides a fast iterative con-
struction of one-dimensional continuous attractors, and sub-
sequently, according to Eq. (18), of two-dimensional (separa-
ble) continuous attractors.

This process is illustrated by Fig. 3 which shows two con-
tinuous attractors o, (x) and o, (y) of one-dimensional IFS.
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Fig. 3. Continuous fractal attractors o, (z) and o,(y) from
one-dimensional IFS.

From the two continuous one-dimensional fractal attrac-
tors o, (z) and o,(y) of Fig. 3, it is possible to construct,
according to Eqg. (18), a continuous two-dimensional fractal
attractor o (z,y) shown in Fig. 4.

Among other applications, fractal images such as that of
Fig. 4 can be used as models for natural landscapes in image
synthesis, as suggested by the relief rendering of Fig. 5.
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Fig. 4. Continuous two-dimensional fractal attractor o (z, v)
constructed from Eq. (18) and o, (x) and o, (y) of Fig. 3.

Fig. 5. Relief rendering of the continuous two-dimensional
fractal attractor o (z, y) of Fig. 4.

5. CONCLUSION

Continuous separable two-dimensional attractors can also have
their geometrical moments imposed, as products of the cor-
responding moments of the underlying one-dimensional at-
tractors. Altogether, the approaches we have described offer
simple models for fractal images with control over various of
their properties, and which can serve different purposes, in-
cluding image coding, compression and synthesis.
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