
 
 

 

  

Abstract—Laser Doppler flowmetry (LDF) technique is an 

optical tool used in clinical investigations to monitor 

microvascular blood flow. Recent preliminary works have 

shown that LDF signals recorded in young healthy human 

subjects are weakly multifractal. Such an information is 

important as it could lead to a better knowledge of the 

underlying optical processes giving rise to the signals. In the 

present work, our goal is to analyze the behavior of LDF signals 

in anesthesia conditions. For this purpose, we herein study the 

possible modifications brought by isoflurane, an anesthetic 

commonly used in clinical practice, on the complexity of LDF 

signals. In order to conduct our work, twenty LDF signals from 

anesthetized healthy rats are processed. Anesthesia is 

performed by using doses of isoflurane varying between 1.5% 

and 3%, which leads to very light and very deep anesthesia, 

respectively. The signal processing approach is carried out with 

two different methods, a parametric generalized quadratic 

variation based estimation method and a Hurst rescaled range 

analysis. The results show that extreme doses of isoflurane lead 

to no distinguishable modification on the characterization of 

LDF signals based on the two above approaches. These findings 

infer that, if isoflurane changes the microvascular tissue optical 

properties, these modifications have no influence on LDF 

signals complexity measured by the two signal processing 

approaches used herein.  
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I. INTRODUCTION 

ASER Doppler flowmetry (LDF) is an optical method 
enabling the monitoring of microvascular blood flow, a 

very important marker of tissue health. The technique relies 
on the Doppler effect: when coherent light is directed toward 
a tissue, photons are scattered by moving objects and by 
static structures. If they encounter moving particles (mainly 
red blood cells), the Doppler effect appears, modifying the 
photon frequency. When the reemitted light is directed 
toward a photodetector, optical mixing of light frequency 
shifted and non frequency shifted gives rise to a stochastic 
photocurrent. When the concentration of moving red blood 
cells is low, the first moment of the photocurrent 

ω ω ωP d( )∫  (where P(ω) corresponds to the power spectrum 

of the photocurrent) scales with the concentration of moving 
blood cells times their average velocity  [1]. This signal is 
called perfusion or, more generally, LDF signal. 

 
Recent preliminary works conducted on LDF data have 

shown that perfusion signals recorded on young healthy 
human subjects are weakly multifractal [2], and that aging 
can lead to a reduced multifractality [3]. Such an information 
is important as it could lead to a better knowledge of the 
underlying optical processes giving rise to the signals. The 
results could also be used to model the peripheral 
cardiovascular system.  

 
In this paper, our goal is to analyze the behavior of LDF 

signals in anesthesia conditions, more precisely when 
anesthesia is induced by isoflurane. Isoflurane is an 
halogenated volatile anesthetic commonly used in clinical 
practice and for which pharmacology [4] and mode of action 
have been reviewed [5]. We herein focus our work on the 
possible modifications brought by the anesthetic on the 
complexity of LDF signals. More precisely, the question to 
answer here is: do LDF signals recorded in two different 
isoflurane-induced anesthesia conditions (light and deep 
anesthesia) have the same complexity? In order to conduct 
our study, two different signal processing methods, a 
parametric generalized quadratic variation (GQV) based 
estimation method, and a Hurst rescaled range 
analysis (R/S), are proposed. To our knowledge, these two 
methods have never been applied on LDF signals recorded 
during isoflurane-induced anesthesia. The influence of the 
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depth of anesthesia is studied by using doses of isoflurane 
varying between 1.5% and 3% (very light and very deep 
anesthesia, respectively). As in other applications [6-8], rats 
are used in our work because experiments in rats are 
generally easier to conduct than in humans. Moreover, the in 
vivo circulatory effects of isoflurane in rats are well 
characterized [9-12] and are similar to those in humans [13-
15].  

 
The present paper is organized as follows: the 

measurement procedure used to record the LDF signals in 
rats is detailed in the following section. Then, the two 
processing methods proposed herein are introduced. 
Afterwards, the results are presented and discussed. Finally, 
we end the paper with a conclusion.  

II. MEASUREMENT PROCEDURE 

Twenty Sprague Dawley rats were analyzed. Procedures 
for the maintenance and use of the experimental animals 
were carried out in accordance with the Guide for the Care 
and Use of Laboratory Animals published by the National 
Institutes of Health (NIH publication No. 85-23, revised 
1996). Isoflurane was administered to split the group of rats 
into two. The first group (10 rats) corresponds to rats with a 
light anesthesia: dose of isoflurane between 1.5% and 1.9%. 
The second group (10 rats) corresponds to rats with a dose of 
isoflurane between 2.4% and 3% (deep anesthesia) [16], 
[17]. For the blood perfusion signal acquisition, the LDF 
probe was connected to a laser Doppler flowmeter (PF5000 
Master, Periflux, Perimed, Sweden) and positioned on the 
thigh of the rat placed in the prone position. The wavelength 
of the laser Doppler flowmeter was of 780 nm and the 
signals were recorded for 16 min 40 s with a frequency 
sampling of 32 Hz. LDF signals were assessed in arbitrary 
units (a.u.) because the LDF technique can yet not measure 
absolute perfusion. Signals recorded during light and deep 
anesthesia are shown in Figs. 1 and 2, respectively.  
 

III. PROCESSING METHODS 

Two signal processing methods are proposed herein to 
characterize the complexity of LDF signals during light and 
deep anesthesia in rats. The first one corresponds to a 
parametric GQV based estimation method that leads to the 
computation of Hölder exponents. The second one refers to a 
R/S method that leads to the computation of Hurst 
exponents. 

 

A. Hölder exponents and parametric generalized 

quadratic variation based estimation method 

The rapid changes in a time series are called singularities and 
a   characterization   of  their  strength  is  obtained  with  the  
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Fig. 1. Skin laser Doppler flowmetry signal recorded on a healthy rat, 
during light anesthesia. 
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Fig. 2. Skin laser Doppler flowmetry signal recorded on a healthy rat, 
during deep anesthesia. 

 
Hölder exponents [18]. The Hölder exponent h(x0) of a 
function f at the point x0 is the highest h value so that f is 
Lipschitz at x0. There exists a constant C and a polynomial 
Pn(x) of order n so that for all x in a neighborhood of x0 we 
have [19-21] 

f x P x x C x xn
h

( ) ( )− − ≤ −0 0 .          (1) 

Moreover, the Hausdorff dimension of the set where the 
Hölder exponent is equal to h is [19] 

{ }D h x h x hH( ) ( )= =dim .            (2) 

 
Monofractal signals are homogeneous: they have the same 

scaling properties throughout the entire signal; therefore, 
they are indexed by a single global exponent, called Hurst 
exponent, which suggests that they are stationary from 
viewpoint of their local scaling properties [22]. However, 
multifractal signals can be decomposed into many subsets 
characterized by different local Hurst exponents that quantify 
the local singular behavior and relate the local scaling of the 
time series [22]. Therefore, signals are considered as 
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multifractal when a "broad" range of Hölder exponents is 
found, whereas a "narrow" range implies monofractality. 
Multifractal signals are more complex and inhomogeneous 
than monofractal ones [2], [23].  

 
In our work, each one of the twenty LDF signals is first 

processed with a parametric GQV based estimation 
method (method described in Refs. [2], [24], [25]) to obtain 
its Hölder exponents. For that purpose, we use the 
FracLab v2.0 tool [26], and we take into account 
15200 pointwise Hölder exponents for each time series.  

 

B. R/S analysis 

The second method used herein is the R/S analysis. The 
latter method was introduced by Hurst and applied to the 
fractal analysis by Mandelbrot. It is a well known way to 
compute Hurst exponents [27]. The main steps of the 
algorithm for a time series xi,  1 ≤ i ≤ n ≤ N are (N is the 
number of samples in the signal) 

 - Computation of the mean of n terms 

 x
n

x
n i

i

n
= ∑

=

1

1

.                 (3)  

 - Calculation of the sum of the differences between one 
term and the mean 

 [ ]X i n x xu n
u

i
( , ) = −∑

=1

.             (4) 

 - Evaluation of the range of those differences 

 R n X i n X i n
i n i n

( ) ( , ) ( , )= −
≤ ≤ ≤ ≤
max min
1 1

.         (5) 

 -  Computation of the standard deviation for n terms 

 ( )S n
n

x xi n
i

n
( ) = −∑

=

1 2

1

.            (6) 

 - Introduction of Hurst exponent (H) 

 R n S n n
H

( ) / ( ) ( / )≈ 2 .             (7) 

The value of the Hurst exponent is obtained with a least 
square linear fit. 
 

When applying this method on the LDF signals, we can 
see that they can be cut into sets of 500 or 1000 points 
without corrupting them; a chi square test shows that, 
considering sets of 500 or 1000 points, the Gaussian 
character of the repartition of their values is preserved. 
Herein, the evaluation of Hurst exponents is therefore made 
considering sets of 500 points from 15200 points of each 
time series. 

IV. RESULTS AND DISCUSSION 

The results obtained with the parametric GQV based 
estimation method for the two states of anesthesia are 
presented in Table I, and illustrated in Figs. 3 and 4. Table I 
is computed as follows: for each of the twenty time series, 

we determine for the Hölder exponents, the minimum, 
maximum, range, mean, and standard deviation values. Then, 
for each group of rats, an average for the ten minimum 
values obtained is computed; idem for the maximum, range, 
mean, and standard deviation (see Table I). In order to 
compare the results with known multifractal data, we 
generate a multifractional Brownian motion (multifractal 
signal) [28] and compute 15200 Hölder exponents from the 
latter signal (see Table I). 

From Table I, we can see that the minima, maxima, 
ranges, means, and standard deviations are very similar (or 
even equal) for light and deep anesthesia. The complexity of 
the signals from the two groups of rats can therefore be 
considered as equivalent. This also leads us to the 
proposition that a full range of use for isoflurane (a dose of 
isoflurane lower than 1.5% is not enough to anesthetize the 
rats, and a dose higher than 3% is too much to keep the rats 
alive) leads to the same characteristics in terms of 
complexity for LDF signals. Moreover, we can see that  
Hölder exponents ranges for light and deep anesthesia are 
much  lower  than  the  Hölder  exponents range for the mBm 
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Fig. 3. Hölder exponents from the signal presented in Fig. 1. 
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Fig. 4. Hölder exponents from the signal presented in Fig. 2. 
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TABLE I 
VALUE FOR THE MINIMUM, MAXIMUM, RANGE, MEAN, AND  

STANDARD DEVIATION OF THE HÖLDER EXPONENTS COMPUTED  
FOR SKIN LASER DOPPLER FLOWMETRY (LDF) SIGNALS  

RECORDED ON LIGHT AND DEEP ISOFLURANE-INDUCED ANESTHETIZED 

RATS, AND FOR A MULTIFRACTAL SIGNAL (mBm). 

LDF 
signals 

Minimum 
value 

Maximum 
value 

Range Mean 
value 

Standard 
deviation 

Light 
anesthesia 

0.29 0.38 0.09 0.33 0.01 

Deep  
anesthesia 

0.30 0.38 0.08 0.34 0.01 

mBm  0.29 0.71 0.42 0.51 0.13 

 
TABLE II 

VALUE FOR THE MEAN AND STANDARD DEVIATION OF THE HURST 

EXPONENTS COMPUTED FOR SKIN LASER DOPPLER FLOWMETRY (LDF)  
SIGNALS RECORDED ON LIGHT AND DEEP ISOFLURANE-INDUCED 

ANESTHETIZED RATS. 

LDF 
signals 

Mean 
value 

Standard 
deviation 

Light anesthesia 0.76 0.04 
Deep anesthesia 0.73 0.04 

 
signal (see Table I). This means that LDF signals recorded 
on isoflurane-induced anesthetized healthy rats (light and 
deep anesthesia) do not show a degree of complexity similar 
to that of a multifractional Brownian motion. 

 

 
The results given by the R/S method are shown in 

Table II, and illustrated in Figs. 5 and 6. For each group of 
rats, the average of the average of the Hurst exponent and the 
average of the standard deviation of the Hurst exponent are 
computed. The Hurst exponent, in both cases, presents very 
small variations, pointed out by the small value of the 
standard deviation (see Table II). One of the main 
characteristics of the multifractal signals is that they can be 
decomposed into subsets with different local Hurst 
exponents, which is not the case here. Therefore, the LDF 
signals processed in our work are homogeneous with respect 
to  the  Hurst  exponent.  Furthermore,  the  Hurst  exponents 
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Fig. 5. Variations of Hurst exponent considering sets of 500 points  
from the signal presented in Fig. 1. 
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Fig. 6. Variations of Hurst exponent considering sets of 500 points  
from the signal presented in Fig. 2. 
 
 

values being higher than 0.5, the fluctuations in the LDF 
dynamics exhibit correlated behavior.  
 

The conclusions obtained with the R/S method are in 
accordance with the ones given by the parametric GQV 
based estimation method: low or high doses do not lead to 
significant discernible change in LDF signals complexity. 
Moreover another complexity study, conducted by our group 
in isoflurane-induced anesthetized healthy rats, has shown 
that multifractal spectra (which correspond to another signal 
processing approach to analyze signal complexity) lead to 
the same findings as those obtained in the present paper [29]. 

 

V. CONCLUSION 

LDF technique is an optical tool able to bring information 
on microvascular blood flow and optical properties of 
tissues. Complexity of LDF signals in healthy rats is herein 
examined during isoflurane-induced anesthesia. Two 
different signal processing approaches are proposed. The 
results obtained with the two methods show that extreme 
doses of isoflurane (between 1.5% and 3%) do not lead to 
distinguishable modification on complexity of LDF signals. 
These findings infer that, if isoflurane changes the 
microvascular tissues optical properties (this question is 
currently being analysed in our group), these modifications 
have no influence on LDF signals complexity measured by 
the two signal processing approaches used herein. Further 
work is now needed in order to analyze if pathological 
conditions modify these results. Moreover, because the in 
vivo circulatory effects of isoflurane in rats are similar to 
those in humans, we can hypothesize that our results could 
be transposable to healthy human signals. 
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